Tetrahedron 70 (2014) 2464-2471

Contents lists available at ScienceDirect

Tetrahedron

journal homepage: www.elsevier.com/locate/tet

Oxidation of disulfides with electrophilic halogenating reagents: concise methods for preparation of thiosulfonates and sulfonyl halides

Masayuki Kirihara^{*}, Sayuri Naito, Yuki Nishimura, Yuki Ishizuka, Toshiaki Iwai, Haruka Takeuchi, Tomomi Ogata, Honoka Hanai, Yukari Kinoshita, Mari Kishida, Kento Yamazaki, Takuya Noguchi, Shiro Yamashoji

Department of Materials and Life Science, Shizuoka Institute of Science and Technology, 2200-2 Toyosawa, Fukuroi, Shizuoka 437-8555, Japan

ARTICLE INFO

Article history: Received 23 October 2013 Received in revised form 5 February 2014 Accepted 6 February 2014 Available online 19 February 2014

Keywords: Sulfonyl fluoride Thiosulfonate Sulfonyl chloride Sulfonyl bromide Selectfluor™ Oxidation

ABSTRACT

The reaction of aromatic or benzylic disulfides with 2.5 equiv of SelectfluorTM in acetonitrile/water (10:1) at room temperature efficiently produced the corresponding thiosulfonates. Conversely, the reaction of disulfides with 6.5 equiv of SelectfluorTM or thiosulfonates with 4.5 equiv of SelectfluorTM in refluxing acetonitrile/water (10:1) provided sulfonyl fluorides in high yields. AccufluorTM and FP-T300TM are also effective in preparing sulfonyl fluorides from disulfides under the similar reaction conditions. Sulfonyl chlorides or sulfonyl bromides were effectively obtained from the reaction of disulfides with 6 equiv of either *N*-chlorosuccinimide or *N*-bromosuccinimide in acetonitrile/water (10:1) at room temperature. Some other electrophilic chlorinating or brominating reagents are also able to be used instead of *N*-chlorosuccinimide or *N*-bromosuccinimide for the syntheses of sulfonyl halides from disulfides. These reactions of disulfides with electrophilic halogenating reagents are convenient methods to prepare thiosulfonates and sulfonyl halides.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Thiosulfonates, which are stable compounds, can be used as strong electrophilic sulfenylating agents in organic synthesis.¹ Sulfenyl halides also act as electrophilic sulfenylating agents and have been widely used for this purpose (Scheme 1). However, they are unstable, difficult to handle, and must be prepared before use.² In spite of the synthetic utility of thiosulfonates,³ the reagents are not so accessible because there are few methods to prepare them.

Scheme 1. Electrophilic sulfenylating agents.

Therefore, several research groups have recently developed new practical syntheses of thiosulfonates.⁴

Sulfonyl fluorides have seldom been used in organic syntheses. However, some, for example, phenyl methyl sulfonyl fluoride (PMSF) and 4-(2-aminomethyl)benzenesulfonyl fluoride hydrochloride (AEBSF), are strong protease inhibitors, and are frequently utilized in biochemistry (Fig. 1). Especially, PMSF has been essential and commonly used for the purification of enzymes from various tissues containing serine protease.⁵

Fig. 1. Biologically important sulfonyl fluorides.

For such sulfonyl fluorides, there are few preparative methods.⁶ The traditional method is nucleophilic substitution of sulfonyl chlorides using the fluoride ion (^{*n*}Bu₄NF or KF/18-Crown-6).^{6a–d} This method requires strict anhydrous conditions, otherwise

Tetrahedror

^{*} Corresponding author. E-mail address: kirihara@ms.sist.ac.jp (M. Kirihara).

^{0040-4020/\$ –} see front matter @ 2014 Elsevier Ltd. All rights reserved. http://dx.doi.org/10.1016/j.tet.2014.02.013

hydrolyzed compounds (sulfonic acids) are obtained as the major products.^{6a–d} In 2009, Liskamp reported that the reaction of sodium sulfonates with *N*,*N*-diethylaminosulfur trifluoride (DAST) efficiently produces the corresponding sulfonyl fluoride.^{6e} However, this method also required anhydrous conditions, because DAST is sensitive to water. Therefore, a more concise, less watersensitive method for the preparation of sulfonyl fluoride was still needed (Scheme 2).

Scheme 2. Preparation of sulfonyl fluoride.

We recently found that the reaction of aromatic or benzylic disulfides with 2.5 equiv of SelectfluorTM {1-chloromethyl-4-fluoro-1,4-diazoniabicyclo[2.2.2]octane bis(tetrafluoroborate)} in aceto-nitrile/water (10:1) at room temperature efficiently produced the corresponding thiosulfonates, and the reaction of disulfides with 6.5 equiv of SelectfluorTM in refluxing acetonitrile/water (10:1) provided sulfonyl fluoride in high yields (Scheme 3). These results were published as a preliminary communication.⁷

sulfonyl chlorides or sulfonyl bromides could be efficiently produced from the reactions of disulfides with electrophilic chlorinating or brominating reagents, including *N*-chlorosuccinimide (NCS, for sulfonyl chlorides) or *N*-bromosuccinimide (NBS, for sulfonyl bromides).

This paper describes in detail the reaction of disulfides with electrophilic halogenating reagents.

2. Synthesis of thiosulfonates from the reaction of disulfides with Selectfluor^{\rm TM}

SelectfluorTM can be used for the reagent of electrophilic fluorination of aromatic compounds.^{8a} Therefore we examined the reaction of diphenyl disulfide (**1a**) with 2.5 equiv of SelectfluorTM to prepare bis(*p*-fluorophenyl) disulfides (**4a**), during the course of our study of the synthesis of organofluorine compounds. Unfortunately, neither **4a** nor other fluorinated aromatic compounds were obtained at all. Phenyl benzenesulfonthiolate (thiosulfonate) (**2a**) was produced in high yield accompanied by a small amount of phenyl sulfonyl fluoride (**3a**) (Scheme 4).

SelectfluorTM is not only an electrophilic fluorinating reagent⁸ but also a strong oxidant,⁹ which explains why **1a** was further oxidized by SelectfluorTM to produce **2a** and **3a**. Based on this result, we theorized that the reaction of disulfides with SelectfluorTM might be an efficient method to prepare thiosulfonates. Initially, *p*-tolyl disulfide (**1b**) was chosen as a substrate and treated with 2.5 equiv of SelectfluorTM at room temperature to investigate any solvent effect (Table 1). In acetonitrile, the amount of water was

Scheme 3. Synthesis of thiosulfonates and sulfonyl fluoride by using SelectfluorTM.

Scheme 4. Reaction of diphenyl disulfide with selectfluorTM.

Further study of these reactions revealed that the sulfonyl fluorides can be synthesized from thiosulfonates in high yields. Other electrophilic fluorinating reagents are also applicable to the synthesis of sulfonyl fluorides from disulfides. We also found that found to be crucial to obtaining the corresponding thiosulfonate **2b** in high yield (runs 1–3). Acetonitrile/water (10:1) is the ideal (run 2). Neither aqueous methanol nor aqueous dimethylformamide afforded satisfactory results (runs 4 and 5).

Table 1

Reaction of di-p-tolyl disulfide with Selectfluor™ in several solvent-systems

Run	Solvent	Time	Ratio (%) ^a		
			1b	2b	3b
1	CH₃CN	1 h	52	26	22
2	CH ₃ CN/H ₂ O (10:1)	2 min	0	97	3
3	CH ₃ CN/H ₂ O (5:1)	24 h	11	87	2
4	CH ₃ OH/H ₂ O (10:1)	1 h	94	5	1
5	DMF/H ₂ O (10:1)	1 h	4	60	37

^a Determined by 1H NMR (methyl protons). No products other than the thiosulfonate (**2b**) and the sulfonyl fluoride (**3b**) were detected in all cases.

Several disulfides were treated with 2.5 equiv of SelectfluorTM under optimal conditions [in acetonitrile/water (10:1), at room temperature] (Table 2). The corresponding thiosulfonates **2** were obtained in moderate to high yields accompanied by small amounts of the sulfonyl fluoride **3** in the cases of disulfides bearing aromatic or benzylic substituents (entries 1–5). For a disulfide having a relatively electron-deficient aromatic substituent, the reaction proceeded more slowly (entry 5). When aliphatic disulfides were used,

Table 2

Synthesis of thiosulfonate

R-	S-S-R _ 1	Selectfluor TM (2.5 eq.) CH ₃ CN-H ₂ O (10:1), rt	0 R-S-S 0 2	S-R + F	0 R-S-F 0 3
Entry	R	Time (min)	Yield (%	6) ^a	
			1	2	3
1	Ph	2	0	84	2
2	p-Tol	2	0	93	Trace
3	p-MeOC ₆ H	4 1	0	51	8
4	Bn	2	0	82	10
5	p-ClC ₆ H ₄	20	3	72	10
6	$CH_3(CH_2)_9$	20	26 ^b	36 ^b	26 ^b
7	Cyclohexyl	30	Mixtur	e of 1 , 2 , and	3 ^c

^a Isolated yield except for entry 6.

^b Based on GC-MS analysis using an internal standard.

^c All attempts to determine the yields failed.

the reaction rate was slow and inseparable mixtures of **1**, **2** and **3** were produced (runs 6 and 7).

Although the details of the reaction mechanism are not clear enough, one of the plausible reaction mechanisms for this SelectfluorTM disulfide oxidation is shown in Scheme 5. Initially, one of the sulfur atoms of **1** is fluorinated by SelectfluorTM to form a sulfonium ion (**A**), and successive substitution of the fluorine atom by water provides a thiosulfinate (**B**). The unchanged sulfur atom of **B** is further oxidized via a similar mechanism to produce an unstable disulfoxide (**C**), which immediately rearranges to form a stable thiosulfonate (**2**).¹⁰

According to this reaction mechanism, hydrogen fluoride must be produced, trapped by the amine generated from the SelectfluorTM consumed, to yield the corresponding ammonium fluorides. In fact, ammonium fluorides were detected in the resulting reaction mixture by ¹⁹F NMR analysis (–155.7 and –189.1 ppm) as confirmation of this.

3. Synthesis of sulfonyl fluorides from the reaction of disulfides or thiosulfonates with electrophilic fluorinating reagents

The sulfonyl fluorides (**3**), which were obtained as byproducts of the reaction of the disulfides with 2.5 equiv of SelectfluorTM in aqueous acetonitrile, seem to be produced by further reaction of the thiosulfonates (**2**) with SelectfluorTM and water. To prove this hypothesis, the reaction of a thiosulfonate (**2b**) with 2.5 equiv of SelectfluorTM in aqueous acetonitrile was examined. The desired sulfonyl fluoride (**3b**) was obtained almost quantitatively under reflux conditions (Scheme 6).

Scheme 6. Reaction of thiosulfonate (2b) with SelectfluorTM.

The reaction of di-*p*-tolyl disulfide (**1b**) or *p*-tolylthiol (**6b**) with SelectfluorTM in refluxing acetonitrile/water (10:1) also efficiently provided **3b** (Scheme 7).

It is interesting that the corresponding sulfonic acid was not obtained, even in the presence of water. This phenomenon strongly suggests that the fluorine—sulfur bond is constructed via a radical or electrophilic mechanism.

The reaction of several disulfides (1) with 6.5 equiv of Selectfluor[™] in refluxing acetonitrile/water (10:1) was examined

Scheme 5. A plausible reaction mechanism from 1 to 2.

Scheme 7. Synthesis of sulfonyl fluoride (3b) from disulfide (1b) or thiol (6b).

(Table 3). The corresponding sulfonyl fluorides (**3**) were produced in moderate to high yields in all cases including aliphatic disulfides (entries 6 and 7).

Several sulfonyl fluorides (**3**) were also efficiently obtained from the reaction of the corresponding thiosulfonate (**2**) with 4.5 equiv

Table 3

Synthesis of sulfonyl fluorides from disulfides

R-9-9	-R Selectfluor TM (6.5	5 eq.) → 2 R-	U S—F
1	CH ₃ CN-H ₂ O (10:	1), reflux	0 3
Entry	R	Time (h)	Yield (%) ^a
1	Ph (3a)	2.0	69
2	<i>p</i> -Tol (3b)	1.5	86
3	<i>p</i> -MeOC ₆ H ₄ (3c)	1.0	77
4	Bn (3d)	1.5	88
5	$p-ClC_6H_4$ (3e)	3.0	96
6	Cyclohexyl (3f)	1.0	60
7	$CH_3(CH_2)_9$ (3g)	1.0	91

^a Isolated yields.

of SelectfluorTM in refluxing aqueous acetonitrile (Table 4). These reactions are superior to existing methods for preparing sulfonyl fluorides⁶ because the experimental procedure is quite simple and does not require strict anhydrous conditions.

Table 4

Synthesis of sulfonyl fluorides from thiosulfonate

0 R-S 0	$-S-R = \frac{Selectfluor^{TM}}{CH_3CN-H_2O}$	(4.5 eq.) (10:1), reflux 2	O R-S-F O 3
Entry	R	Time (h)	Yield (%) ^a
1	Ph (3a)	1.0	89
2	<i>p</i> -Tol (3b)	3.0	quant.
3	<i>p</i> -MeOC ₆ H ₄ (3c)	1.0	90
4	Bn (3d)	1.5	98
5	<i>p</i> -ClC ₆ H ₄ (3e)	4.7	72
6	Cyclohexyl (3f)	0.5	79

^a Isolated yields.

A plausible reaction mechanism for the reaction of thiosulfonates (2) with SelectfluorTM is shown below (Scheme 8). A thiosulfonate sulfur atom is fluorinated by SelectfluorTM, and the resulting sulfonium ion (**D**) is attacked by water to form **E**. Intermediate **E** is further oxidized by SelectfluorTM and water to

produce the disulfone (**F**). The radical or electrophilic reaction of **F** with SelectfluorTM provides the sulfonyl fluoride (**3**), however, the mechanism of this step is still unclear.

Following the plausible reaction mechanism described above, the electrophilic fluorinating ability of Selectfluor™ plays an important role. It is also important that SelectfluorTM is stable to water and can therefore be used in aqueous solutions. We expected that other water tolerant electrophilic fluorinating reagents, such as Accufluor[™] [1-fluoro-4-hydroxy-1,4-diazoniabicyclo-[2,2,2]octane bis(tetrafluoroborate) on aluminum oxide] and FP-T300[™] (1fluoro-2.4.6-trimethyl-pyridinium trifluoromethanesulfonate) would be applicable to the preparation of thiosulfonates and sulfonyl fluorides. Actually, the reaction of *p*-tolyl disulfide (1b) with Accufluor[™] or FP-T300[™] in aqueous acetonitrile produced the sulfonyl fluoride (**3b**) in high yields (Scheme 9).¹¹ Unfortunately, the investigations of finding the suitable reaction conditions to selectively prepare the corresponding thiosulfonate (2b) using Accufluor[™] or FP-T300[™] were unsuccessful.

4. Reaction of disulfides with electrophilic chlorinating or brominating reagents

We expected that other water tolerant electrophilic halogenating reagents, such as *N*-chlorosuccinimide (NCS, an electrophilic chlorinating reagent) and *N*-bromosuccinimide (NBS, an electrophilic brominating reagent), would be applicable to the preparation of thiosulfonates and sulfonyl halides. It has been reported that the reaction of a disulfide with NCS and diluted hydrochloric acid provides the corresponding sulfonyl chloride.¹² The oxidative chlorination of disulfides with NCS/BnMe₃NCl/H₂O affording sulfonyl chlorides was also recently reported.¹³ However, the reaction of disulfides with simple NCS or NBS has not been reported. Therefore, the reaction of disulfides with NCS or NBS was examined.

Initially, *p*-tolyl disulfide (**1b**) was treated with varying amounts of NCS or NBS (1–6 equiv) in aqueous acetonitrile at room temperature (Table 5). Runs 1–6 made both the corresponding thiosulfonate and sulfonyl halide, and the sulfonyl halide was effectively obtained in runs 7 and 8. Although we have not succeeded in discovering the reaction conditions, which produce the thiosulfonate selectively, the reaction of disulfides with NCS or NBS are excellent methods for the preparation of sulfonyl halides.

Several disulfides **1** were treated with 6 equiv of NCS in aqueous acetonitrile at room temperature (Table 6). The corresponding sulfonyl chlorides were obtained in high yields in all cases.

The desired sulfonyl bromides were effectively obtained from the oxidation of the disulfides **1** with NBS in aqueous acetonitrile at room temperature in most cases (Table 7). Unfortunately, *p*methoxyphenylsulfonyl bromide (**5c**) was obtained in poor yield

CH₃CN-H₂O (10:1), reflux 73%

Table 7

Scheme 9. Reaction of 1b with electrophilic fluorinating regents.

Table 5

Reaction of 1b with NXS

(5b: X=Br)

Run	NXS	Equiv	Time (h)	Ratio (%) ^a		
				1b	2b	4b or 5b
1	NCS	1.0	0.5	68	22	10
2	NBS	1.0	0.5	79	4	17
3	NCS	2.0	1.0	24	64	12
4	NBS	2.0	1.0	42	34	24
5	NCS	4.0	2.0	0	64	36
6	NBS	4.0	2.0	6	51	43
7	NCS	6.0	3.0	0	0	100
8	NBS	6.0	3.0	0	0	100

^a Determined by ¹H NMR (methyl protons). No products other than the thiosulfonate (2b) and the sulfonyl halide (4b, 5b) were detected in all cases.

Table 6

Synthesis of sulfonyl chloride (4)

NCS (6.0 eq.)						
	1 CH ₃ CN-H ₂ O	(10:1), rt				
Entry	R	Time (h)	Yield (%) ^a			
1	<i>p</i> -Tol (4b)	2.3	83			
2	<i>p</i> -MeOC ₆ H ₄ (4c)	2.3	88			
3	Bn (4d)	2.5	84			
4	$p-ClC_{6}H_{4}(4e)$	2.3	85			
5	Cyclohexyl (4f)	1.0	90			
6	$CH_3(CH_2)_9(4g)$	1.0	91			

^a Isolated yields.

under the reaction conditions (entry 2); however, 5c was effectively produced when the reaction was performed in the dark (entry 3). Since sulfonyl bromide 5c is photo sensitive, the 5c, which was produced from the reaction of the disulfide 1c under standard conditions easily decomposed during the NBS-reaction. Although the reaction effectively proceeded in the dark, the resulting sulfonyl bromide **5d** is unstable¹⁴ and part of **5d** decomposed to benzyl bromide during silica-gel column chromatography purification.

Table /	
Synthesis of sulfonyl bromide (5))

R	$-S-S-R = \frac{NBS}{CH_3CN-H_2}$.0 eq.) O (10:1), rt 0	O S−Br O 5
Entry	R	Time (h)	Yield (%) ^a
1	p-Tol (5b)	3.0	79
2	<i>p</i> -MeOC ₆ H ₄ (5c)	4.6	5
3 ^b	$p-MeOC_6H_4$ (5c)	0.25	87

2.5

3.0

3.0

2.7

64

94

quant

а	Isolated yield	IS.

6

^b Reaction was performed in the dark.

Bn (**5d**)

 $p-ClC_{6}H_{4}(5e)$

Cyclohexyl (5f)

CH₃(CH₂)₉ (5g)

^c The mixture of sulfonyl bromide **5d** and benzyl bromide was obtained.

There have been no practical methods to prepare sulfonyl bromides. Therefore, they have seldom been used as reagents in organic synthesis. Our method is very practical, and seems to be an excellent preparation of sulfonyl bromides.

Other electrophilic chlorinating or brominating reagents [dichloramine T (N,N-dichloro-p-toluenesulfonamide) (run 2), Nchlorophthalimide (run 3), DBH (1,3-dibromo-5,5-dimethylhydantoin) (run 5), and N-bromophthalimide (run 6)] are also effective for the synthesis of sulfonyl halides from the disulfide (1b). The desired products were obtained in moderate to high yields (Table 8).

The mechanism of these reactions might be the same as for the reaction with SelectfluorTM.

Table 8

Reaction of 1b with electrophilic halogenating reagents

<i>p</i> -Tol ~ ^S S ^{/p}	Electrophilic Haloginating -Tol Reagent	
1b	CH ₃ CN-H ₂ O (10:1), rt	2 <i>p</i> -101 X 4b X=Cl 5b X=Br

Run	Reagent	Equiv	Time (h)	Product	Yield (%) ^a
1	NCS	6.0	2.3	4b	83
2	Dichloramine T	6.0	1.0	4b	78
3	N-Chlorophthalimide	6.0	5.5	4b	41
4	NCS	6.0	3.0	5b	79
5	DBH	3.0	1.0	5b	94
6	N-Bromophthalimide	6.0	0.75	5b	63

^a Isolated yields.

5. Conclusions

The oxidation of disulfides (1) with SelectfluorTM in the presence of water, produces the corresponding thiosulfonates (2), which further react with SelectfluorTM and water to provide the corresponding sulfonyl fluorides (3). AccufluorTM and FP-T300TM are also effective to prepare sulfonyl fluorides (3) from disulfides under the similar reaction conditions. Although the thiosulfonates (2) could not be selectively obtained from the reaction of the disulfides (1) with NCS or NBS in aqueous acetonitrile, the corresponding sulfonyl halides (4, 5) were efficiently produced under the reaction conditions. Some other electrophilic chlorinating or brominating reagents are also able to be used instead of *N*-chlorosuccinimide or *N*-bromosuccinimide for the syntheses of sulfonyl halides (4, 5) from disulfides (1).

6. Experimental

6.1. General

All reagents were obtained from Nacalai Tesque, Wako Pure Chemicals Industry, Kanto Kagaku, Kishida Reagents Chemicals Co, Tokyo Chemical Industry Co, or Aldrich, and were used without further purification. Melting points were measured using a Yanaco micromelting point apparatus (MP-J3), and are uncorrected. The ¹H and ¹³C NMR spectra were recorded using a JEOL (JNM-EX400) spectrometer in CDCl₃ solutions, using TMS or the residual CHCl₃ peak as an internal standard. The IR spectra were recorded using a Jasco IR-8300 FT-IR spectrophotometer. The mass spectra were recorded on a Shimadzu GCMS-QP1100EX spectrometer.

6.2. Representative experimental procedure to prepare thiosulfonates from disulfides

To a stirred solution of *p*-tolyl disulfide (**1b**) (246.3 mg, 1.0 mmol) in acetonitrile (2.0 mL) and water (0.2 mL), SelectfluorTM (885.5 mg, 2.5 mmol) was added at room temperature for over 20 min, and the resulting mixture was stirred. The reaction was monitored via thin layer chromatography (TLC). After the disulfide disappeared from the TLC, water (5 mL) was added, and the resulting mixture was extracted with ethyl acetate (15 mL×3). The extract was washed with brine, dried over anhydrous magnesium sulfate, and evaporated. Chromatography on silica gel using *n*-hexane/ethyl acetate as the eluent gave the corresponding thiosulfonate (**2b**) (259.3 mg, 93%) as colorless crystals.

6.2.1. Diphenyl thiosulfonate (**2a**).^{15,16} Colorless crystals, mp 41 °C (lit.¹⁶ 41–42 °C). ¹H NMR (CDCl₃) δ : 7.63–7.28 (10H, m). ¹³C NMR (CDCl₃) δ : 127.52, 127.78, 128.78, 129.40, 131.39, 133.62, 136.56, 142.87. MS (*m*/*z*): 250 (M⁺). IR (KBr) cm⁻¹: 1310, 1133.

6.2.2. 4,4'-Dimethylphenyl thiosulfonate (**2b**).¹⁶ Colorless crystals, mp 76.5 °C (lit.¹⁶ 73–75 °C). ¹H NMR (CDCl₃) δ : 2.38 (3H, s), 2.42 (3H, s), 7.14 (2H, d, *J*=8.4 Hz), 7.21 (2H, d, *J*=8.4 Hz), 7.25 (2H, d, *J*=8.4 Hz), 7.46 (2H, d, *J*=8.4 Hz). ¹³C NMR (CDCl₃) δ : 21.46, 21.62, 124.54, 127.55, 129.33, 130.16, 136.45, 140.40, 144.55. MS (*m*/*z*): 278 (M⁺). IR (KBr) cm⁻¹: 1327, 1142.

6.2.3. 4,4'-Dimethoxyphenyl thiosulfonate (**2**c).¹⁶ Colorless crystals, mp 91.3 °C (lit.¹⁶ 92–94 °C). ¹H NMR (CDCl₃) δ : 3.83 (3H, s), 3.87 (3H, s), 6.85 (2H, d, *J*=9.2 Hz), 6.88 (2H, d, *J*=9.2 Hz), 7.27 (2H, d, *J*=9.2 Hz), 7.51 (2H, d, *J*=9.2 Hz). ¹³C NMR (CDCl₃) δ : 55.46, 55.69, 113.81, 114.89, 118.90, 129.89, 134.91, 138.35, 162.18, 163.49. MS (*m*/*z*): 310 (M⁺). IR (KBr) cm⁻¹: 1321, 1129.

6.2.4. Dibenzyl thiosulfonate (**2d**).^{16,17} Yellow crystals, mp 101.5 °C (lit.¹⁷ 102–104 °C). ¹H NMR (CDCl₃) δ : 4.03 (2H, s), 4.22 (2H, s),

7.26–7.37 (10H, m). ¹³C NMR (CDCl₃) δ : 40.92, 69.03, 127.66, 128.31, 128.98, 129.34, 131.35, 134.81. MS (*m*/*z*): 122, 91, 65. IR (KBr) cm⁻¹: 3085, 1510, 1332.

6.2.5. 4,4'-Dichlorophenyl thiosulfonate (**2e**).¹⁶ Colorless crystals, mp 137.5 °C (lit.¹⁶ 134–136 °C). ¹H NMR (CDCl₃) δ : 7.31 (2H, d, J=8.4 Hz), 7.36 (2H, d, J=8.4 Hz), 7.43 (2H, d, J=8.4 Hz), 7.52 (2H, d, J=8.4 Hz). ¹³C NMR (CDCl₃) δ : 126.00, 128.92, 129.26, 129.91, 137.67, 138.56, 140.55, 141.28. MS (*m*/*z*): 159, 143, 111. IR (KBr) cm⁻¹: 1570, 1467.

6.3. Representative experimental procedure to prepare sulfonyl fluorides from disulfides

To a stirred solution of *p*-tolyl disulfide (**1b**) (246.3 mg, 1.0 mmol) in acetonitrile (10.0 mL) and water (1.0 mL), SelectfluorTM (2306 mg, 6.5 mmol) was added at room temperature for over 20 min, and the resulting mixture was heated under reflux. The reaction was monitored via TLC. After the disulfide and the corresponding thiosulfonate disappeared from the TLC, water (10 mL) was added, and the resulting mixture was extracted with ethyl acetate (20 mL×3). The extract was washed with brine, dried over anhydrous magnesium sulfate, and evaporated. Chromatography on silica gel using *n*-hexane/ethyl acetate as the eluent gave the sulfonyl fluoride (**3b**) (299.0 mg, 86%) as colorless crystals.

6.4. A representative experimental procedure to prepare sulfonyl fluorides from thiosulfonates

To a stirred solution of 4,4'-dimethylphenyl thiosulfonate (**2b**) (278.0 mg, 1.0 mmol) in acetonitrile (10.0 mL) and water (1.0 mL), SelectfluorTM (1594 mg, 4.5 mmol) was added at room temperature for over 20 min, and the resulting mixture was heated under reflux for 1.5 h. The reaction was monitored via TLC. After the thiosulfonate disappeared from the TLC, water (10 mL) was added and the resulting mixture was extracted with ethyl acetate (20 mL×3). The extract was washed with brine, dried over anhydrous magnesium sulfate, and evaporated. Chromatography on silica gel using *n*-hexane/ethyl acetate as the eluent gave the sulfonyl fluoride (**3b**) (347.8 mg, quant.) as colorless crystals.

6.4.1. Benzenesulfonyl fluoride (**3a**).¹⁸ Pale yellow crystals, mp 87 °C (lit.¹⁸ 88–89 °C). ¹H NMR (CDCl₃) δ : 7.64 (2H, t, *J*=7.8 Hz), 7.79 (1H, t, *J*=7.8 Hz), 8.03 (2H, d, *J*=7.8 Hz). ¹³C NMR (CDCl₃) δ : 128.37, 129.65, 133.04 (d, *J*=24.9 Hz), 135.56. ¹⁹F NMR (CDCl₃) δ : -200.43. MS (*m*/*z*): 160 (M⁺). IR (KBr) cm⁻¹: 1730, 1405, 1208.

6.4.2. *p*-Tolylsulfonyl fluoride (**3b**).¹⁸ Pale yellow crystals, mp 39 °C (lit.¹⁸ 41–43 °C). ¹H NMR (CDCl₃) δ : 2.49 (3H, s), 7.42 (2H, d, *J*=7.8 Hz), 7.90 (2H, d, *J*=8.3 Hz). ¹³C NMR (CDCl₃) δ : 21.75, 128.37, 129.95 (d, *J*=24.0 Hz), 130.23, 147.11. ¹⁹F NMR (CDCl₃) δ : -200.12 (1F, s). MS (*m*/*z*): 174 (M⁺). IR (KBr) cm⁻¹: 1410, 1205.

6.4.3. 4-Methoxyphenylsulfonyl fluoride (**3c**).¹⁸ Yellow crystals, mp 93 °C (lit.¹⁸ 93–94 °C). ¹H NMR (CDCl₃) δ : 3.92 (3H, d, *J*=2.0 Hz), 7.06 (2H, d, *J*=7.6 Hz), 7.95 (2H, d, *J*=7.6 Hz). ¹³C NMR (CDCl₃) δ : 55.86, 114.83, 123.94 (d, *J*=24.8 Hz), 130.78, 165.19. ¹⁹F NMR (CDCl₃) δ : –199.03 (1F, s). MS (*m*/*z*): 190 (M⁺). IR (KBr) cm⁻¹: 2852, 1405, 1213.

6.4.4. Benzylsulfonyl fluoride (**3d**).¹⁹ Pale yellow crystals, mp 90 °C (lit.¹⁹ 92 °C). ¹H NMR (CDCl₃) δ : 4.60 (2H, d, J=3.1 Hz), 7.40–7.49 (5H, m). ¹³C NMR (CDCl₃) δ : 56.84 (d, J=17.4 Hz), 125.47, 129.33,

129.93, 130.66. ¹⁹F NMR (CDCl₃) δ : -214.89 (1F, s). MS (*m*/*z*): 174 (M⁺). IR (KBr) cm⁻¹: 1406, 1214.

6.4.5. 4-Chlorophenylsulfonyl fluoride (**3e**).¹⁸ Colorless crystals, mp 48 °C (lit.¹⁸ 36–37 °C). ¹H NMR (CDCl₃) δ : 7.61 (2H, d, *J*=8.5 Hz), 7.96 (2H, d, *J*=8.5 Hz). ¹³C NMR (CDCl₃) δ : 129.89, 130.13, 131.4 (d, *J*=26.5 Hz), 142.69. ¹⁹F NMR (CDCl₃) δ : –199.90 (1F, s). MS (*m*/*z*): 194 (M⁺). IR (KBr) cm⁻¹: 1412, 1213, 1089.

6.4.6. Cyclohexylsulfonyl fluoride (**3***f*).²⁰ Colorless oil. ¹H NMR (CDCl₃) δ : 1.26–1.37 (3H, m), 1.67–1.77 (3H, m), 1.94–1.97 (2H, m), 2.28–2.31 (2H, m), 3.28–3.34 (1H, m). ¹³C NMR (CDCl₃) δ : 14.11, 24.62, 24.67, 26.42. ¹⁹F NMR (CDCl₃) δ : -225.45 (1F, s). MS (*m*/*z*): 166 (M⁺). IR (neat) cm⁻¹: 2944, 2254, 1399, 1199.

6.4.7. *Decylsulfonylfluoride* (**3***g*).²⁰ Pale yellow oil. ¹H NMR (CDCl₃) δ : 0.8–0.96 (3H, m), 1.27–1.97 (16H, m), 3.35 (2H, s). ¹³C NMR (CDCl₃) δ : 14.08, 22.63, 23.38, 27.83, 28.68, 28.773, 29.13, 29.18, 29.37, 31.80. ¹⁹F NMR (CDCl₃) δ : –213.04 (1F, s). MS (*m*/*z*): 224 (M⁺). IR (neat) cm⁻¹: 2928, 1856, 1402, 1197.

6.5. Representative experimental procedure to prepare sulfonyl chloride from disulfides

To a stirred solution of *p*-tolyl disulfide (**1b**) (246.3 mg, 1.0 mmol) in acetonitrile (2.0 mL) and water (0.2 mL), *N*-chlorosuccinimide (802 mg, 6.0 mmol) was added, and the resulting mixture was stirred at room temperature for 3 h. Water (10 mL) was added and the resulting mixture was extracted with ethyl acetate (20 mL×3). The extract was washed with brine, dried over anhydrous magnesium sulfate, and evaporated. Chromatography on silica gel using *n*-hexane/ethyl acetate as the eluent gave the sulfonyl chloride (**4b**) (304.7 mg, 83%) as colorless crystals.

6.5.1. *p*-Toluenesulfnoyl chloride (**4b**).¹⁹ Mp 68 °C (lit.¹⁹ 65–69 °C). ¹H NMR (CDCl₃) δ : 2.49 (3H, s), 7.41 (2H, d, *J*=8.4 Hz), 7.93 (2H, d, *J*=8.4 Hz). ¹³C NMR (CDCl₃) δ : 21.83, 127.06, 130.23, 141.71, 146.79. MS (*m*/*z*): 190 (M⁺ for ³⁵Cl). IR (neat): 1591, 1375, 1299, 1172, 1079, 810, 653, 567, 525.

6.5.2. *p*-Methoxybenzenesulfonyl chloride (**4c**).¹⁹ Colorless crystals, mp 38 °C (lit.¹⁹ 39–42 °C). ¹H NMR (CDCl₃) δ : 3.93 (3H, s), 7.05 (2H, d, *J*=9.0 Hz), 7.98 (2H, d, *J*=9.0 Hz). ¹³C NMR (CDCl₃) δ : 55.96, 114.69, 129.54, 136.07, 164.85. MS (*m*/*z*): 206 (M⁺ for ³⁵Cl). IR (neat) cm⁻¹: 3101, 2945, 2846, 1589, 1493, 1371, 1268, 1163, 1083, 1022, 832, 659, 566.

6.5.3. Benzylsulfonyl chloride (**4d**).¹⁹ Colorless oil. ¹H NMR (CDCl₃) δ : 4.87 (2H, s), 7.43–7.51 (5H, m). ¹³C NMR (CDCl₃) δ : 70.90, 126.10, 129.21, 130.28, 131.38. MS (*m*/*z*): 190 (M⁺ for ³⁵Cl), 192 (M⁺ for ³⁷Cl). IR (neat) cm⁻¹: 2989, 2918, 1494, 1455, 1367, 1257, 1162, 908, 772, 696, 515.

6.5.4. 4-Chlorobenzenesulfonyl chloride (**4e**).¹⁹ Colorless crystals, mp 53 °C (lit.¹⁹ 50–52 °C). ¹H NMR (CDCl₃) δ : 7.61 (2H, d, *J*=8.8 Hz), 7.99 (2H, d, *J*=8.8 Hz). ¹³C NMR (CDCl₃) δ : 128.43, 130.04, 142.21, 142.59. MS (*m*/*z*): 211 (M⁺ for ³⁵Cl). IR (neat) cm⁻¹: 1577, 1474, 1377, 1280, 1174, 1091, 1011, 826, 753, 603, 565, 468.

6.5.5. Cyclohexanesulfonyl chloride (**4f**).¹⁹ Colorless oil. ¹H NMR (CDCl₃) δ : 1.43–1.20 (3H, m), 1.78–1.68 (3H, m), 2.00 (2H, d, *J*=13.4 Hz), 2.43 (2H, d, *J*=12.4 Hz), 3.51 (1H, tt, *J*=12.4, 3.4 Hz). ¹³C NMR (CDCl₃) δ : 24.73, 25.07, 27.23, 74.93. MS (*m*/*z*): 99, 83. IR (neat) cm⁻¹: 2941, 2863, 1452, 1366, 1272, 1160, 994, 750, 589, 539, 483.

6.5.6. Decanesulfonyl chloride (**4g**).²¹ Colorless crystals, mp 30 °C (lit.²¹ 34 °C). ¹H NMR (CDCl₃) δ : 0.89 (3H, t, *J*=6.3, 7.1 Hz), 1.52–1.27

(16H, m), 2.08–2.01 (2H, m), 3.66 (2H, t, *J*=7.8, 8.1 Hz). ¹³C NMR (CDCl₃) δ : 14.09, 22.64, 24.26, 27.56, 28.87, 29.15, 29.19, 29.37, 31.81, 65.48. MS (*m*/*z*): 207, 140. IR (neat) cm⁻¹: 2927, 2857, 1461, 1375, 1166, 755, 735, 591, 521.

6.6. Representative experimental procedure to prepare sulfonyl bromide from disulfides

In a 10 mL round bottom flask, *p*-tolyl disulfide (**1b**) (246.3 mg, 1.0 mmol) was dissolved in acetonitrile (2.0 mL) and water (0.2 mL). The round bottom flask was covered with aluminum foil to shield it from light. *N*-Bromosuccinimide (1068 mg, 6.0 mmol) was added to the mixture, and the resulting mixture was stirred at room temperature for 3 h. Water (10 mL) was added and the resulting mixture was extracted with ethyl acetate (20 mL×3). The extract was washed with brine, dried over anhydrous magnesium sulfate, and evaporated. Chromatography on silica gel using *n*-hexane/ethyl acetate as the eluent gave the sulfonyl bromide (**5b**) (371.4 mg, 79%) as colorless crystals.

6.6.1. *p*-Toluenesulfonyl bromide (**5b**).²² Colorless crystals, mp 95 °C (lit.²² 95–96 °C). ¹H NMR (CDCl₃) δ : 2.49 (3H, s), 7.39 (2H, d, *J*=8.4 Hz), 7.89 (2H, d, *J*=8.4 Hz). ¹³C NMR (CDCl₃) δ : 21.85, 126.54, 130.13, 144.61, 146.86. MS (*m*/*z*): 155, 91. IR (neat) cm⁻¹: 1361, 1296, 1171, 1076, 808, 647, 567, 550.

6.6.2. *p*-Methoxybenzenesulfonyl bromide (**5c**).²² Colorless oil. ¹H NMR (CDCl₃) δ : 3.93 (3H, s), 7.03 (2H, d, *J*=9.1 Hz), 7.95 (2H, d, *J*=9.1 Hz). ¹³C NMR (CDCl₃) δ : 55.99, 114.53, 129.10, 139.18, 170.26. MS (*m*/*z*): 253 (M⁺ for ⁸¹Br), 251 (M⁺ for ⁷⁹Br). IR (neat) cm⁻¹: 3100, 2943, 2846, 1586, 1491, 1360, 1266, 1157, 1079, 1018, 834, 655, 561.

6.6.3. 4-Chlorobenzenesulfonyl bromide (**5e**).²³ Colorless crystals, mp 53 °C (lit.²³ 56 °C). ¹H NMR (CDCl₃) δ : 7.59 (2H, d, *J*=8.4 Hz), 7.95 (2H, d, *J*=8.4 Hz). ¹³C NMR (CDCl₃) δ : 127.91, 129.91, 142.06, 145.33. MS (*m*/*z*): 144, 109. IR (neat) cm⁻¹: 1570, 1470, 1365, 1282, 1161, 1089, 1012, 826, 749, 691, 590, 463.

6.6.4. Cyclohexanesulfonyl bromide (**5f**). Pale yellow oil. ¹H NMR (CDCl₃) δ : 1.45–1.21 (3H, m), 1.75–1.66 (3H,m), 1.99 (2H, d, *J*=13.7 Hz), 2.42 (2H, d, *J*=12.9 Hz), 3.49 (1H, tt, *J*=11.8, 3.4 Hz). ¹³C NMR (CDCl₃) δ : 24.80, 24.99, 27.55, 78.84. IR (neat) cm⁻¹: 2940, 2861, 1451, 1357, 1270, 1151, 995, 893, 742, 572, 525, 474. MS (ESI) (*m*/*z*): 251 [(M+Na)⁺ for ⁸¹Br], 249 [(M+Na)⁺ for ⁷⁹Br]. HRMS (ESI) calcd for C₆H₁₁⁷⁹BrO₂SNa [(M+Na)⁺], 248.9555, found: 248.9549.

6.6.5. *Decanesulfonyl bromide* (**5***g*). Pale yellow oil. ¹H NMR (CDCl₃) δ : 0.89 (3H, t, *J*=7.0 Hz), 1.52–1.27 (16H, m), 2.04 (2H, m), 3.66 (2H, t, *J*=8.0 Hz). ¹³C NMR (CDCl₃) δ : 14.09, 22.64, 24.58, 27.28, 28.90, 29.16, 29.20, 29.37, 31.81, 69.66. IR (neat) cm⁻¹: 2939, 2860, 1451, 1354, 1212, 1154, 955, 848, 742, 571, 529. MS (ESI) (*m/z*): 309 [(M+Na)⁺ for ⁸¹Br], 307 [(M+Na)⁺ for ⁷⁹Br]. HRMS (ESI) calcd for C₁₀H₂₁⁷⁹BrO₂SNa [(M+Na)⁺], 307.0338, found: 307.0331.

Acknowledgements

This study was supported in part by the grant from the Strategic Research Foundation Grant-aided Project for Private Universities from Ministry of Education, Culture, Sport, Science and Technology, Japan (MEXT), 2010–2014 (S1001032).

References and notes

- Zefirov, N. S.; Zyk, N. V.; Beloglaskina, E. K.; Kutateladze, A. G. Sulfur Rep. 1993, 14, 223–244.
- 2. Selikson, S. J.; Watt, D. S. Tetrahedron Lett. 1974, 3029–3032.

2470

- 3. Palumbo, G.; Ferreri, C.; D'Ambrocio, C.; Caputo, R. Phosphorus, Sulfur Silicon Relat. Elem. 1984, 19, 235–238; (a) Fujiki, K.; Akieda, S.; Yasuda, H.; Sasaki, Y. Synthesis 2001, 1035–1042.
- 4. Liang, G.; Chen, J.; Chen, J.; Li, W.; Chen, J.; Wu, H. Tetrahedron Lett. 2012, 53, 6768-6770; (a) Liang, G.; Liu, M.; Chen, J.; Ding, J.; Gao, W.; Wu, H. Chin. J. *Chem.* **2012**, 30, 1611–1616; (b) Bahrami, K.; Khodaei, M. M.; Khaledian, D. Tetrahedron Lett. 2012, 53, 354-358; (c) Gao, F.; Zhai, H.; Jin, M.; Chu, G.; Duan, H.; Li, C. Synthesis **2011**, 3635–3638; (d) Sobhani, S.; Aryanejad, S.; Maleki, M. F. Synlett 2011, 319-322; (e) Cai, M.-T.; Lv, G.-S.; Chen, J.-X.; Gao, W.-X.; Ding, J.-C.; Wu, H.-Y. *Chem. Lett.* **2010**, 39, 368–369; (f) Xu, Y.; Peng, Y.; Sun, J.; Chen, J.; Ding, I.; Wu, H. T. J. Chem. Res. 2010, 358-360; (g) Langlois, B. R.; Large, S.; Anker, N.; Roidot, N.; Poure, P. J. Org. Chem. **1996**, 61, 7545–7550; (h) Chemla, F. Synlett 1998, 894-896; (i) Billard, T.; Langlois, B. R. J. Fluorine Chem. 1997, 84, 63-64; (j) Iranpoor, N.; Fiouzabadi, H.; Pourali, A.-R. Synlett 2004, 347-349; (k) Iranpoor, N.; Fiouzabadi, H.; Pourali, A.-R. Tetrahedron 2002, 58, 5179-5184; (1) Iranpoor, N.; Moharada, N.; Rezaeifard, A.-R. Tetrahedron Lett. **2004**, 45, 3811–3815; (m) Liu, Y.; Zhang, Y. Tetrahedron Lett. **2003**, 44, 4291–4294; (n) Iranpoor, N.; Fiouzabadi, H.; Pourali, A.-R. Phosphorus, Sulfur Silicon Relat. Elem. **2006**, 181, 473–479; (o) Pandgar, B. P.; Pandit, S. S. *J. Sulfur Chem.* **2004**, 25, 347–350; (p) Pavlovic, E.; Quist, A. P.; Gelius, U.; Nyholm, L; Oscarsson, S. Langmuir 2003, 19, 4217-4221; (q) Grossi, L.; Montevecchi, P. C.; Strazzari, S. Eur. J. Org. Chem. 2001, 131–135; (r) Takata, T.; Kim, Y. H.; Oae, S. Bull. Chem. Soc. Jpn. 1981, 54, 1443-1447; (s) Oae, S.; Togo, H.; Numata, T.; Fujimori, K. Chem. Lett 1980 1193-1196
- (a) Liu, Y.; Particelli, M. P.; Cravatt, B. F. Proc. Natl. Acad. Sci. U.S.A. 1999, 96, 5. 14694-14699; (b) Verhelst, S. H. L.; Bogyo, M. QSAR Comb. Sci. 2005, 261-269; (c) Jeffery, D. A.; Bogyo, M. Curr. Opin. Biotechnol. 2003, 14, 87-95; (d) Kozarich, J. W. Curr. Opin. Chem. Biol. 2003, 7, 78-83; (e) Campbell, D. A.; Szardenings, A. K. Curr. Opin. Chem. Biol. 2003, 7, 296–303; (f) Speers, A. E.; Cravatt, B. F. ChemBioChem 2004, 5, 41-47; (g) Barglow, K. T.; Cravatt, B. F. Chem. Biol. 2004, 11, 1523-1531; (h) Berger, A. B.; Vitorino, P. M.; Bogyo, M. Am. J. Pharmacogenomics 2004, 4, 371-381; (i) Kato, D.; Boatright, K. M.; Berger, A. B.; Nazif, T.; Blum, G.; Ryan, C.; Chehade, K. A. H.; Salvesen, G. S.; Bogyo, M. Nat. Chem. Biol. 2005, 1, 33-38; (j) Barglow, K. T.; Cravatt, B. F. Angew. Chem., Int. Ed. 2006, 45, 7408-7411; (k) Verhelst, S. H. L.; Witte, M. D.; Arastu-Kapur, S.; Fonovic, M.; Bogyo, M. ChemBioChem 2006, 7, 943-950; (1) Evans, M. J.; Cravatt, B. F. Chem. Rev. 2006, 106, 3279-3301; (m) Fonovic, M.; Bogyo, M. Curr. Pharm. Des. 2007, 13, 253-261; (n) Sadaghiani, A. M.; Verhelst, S. H. L.; Bogyo, M. Curr. Opin. Biol. 2007, 11, 20–28; (o) Alapafuja, S. O.; Nikas, S. P.; Bharathan, I. T.; Shukla, V. G.; Nasr, M. L.; Bowman, A. L.; Zvonok, N.; Li, J.; Shi, X.; Engen, J. R.; Makriyannis, A. J. Med. Chem. **2012**, 55, 10074–10089; (p) Shannon, D. A.; Gu, C.; McLaughlin, C. J.; Kaiser, M.; van der Hoorn, R. A. L.; Weerapana, E. ChemBioChem **2012**, 13, 2327-2330; (q) Brouwer, A. J.; Ceylan, T.; Jonker, A. M.; van der Linden, T.; Liskamp, R. M. J. Bioorg. Med. Chem. 2011, 19, 2397-2406; (r) Brouwer, A. J.;

Jonker, A.; Werkhoven, P.; Kuo, E.; Li, N.; Gallastegui, N.; Kemmink, J.; Florea, B. I.; Groll, M.; Overkleeft, H. S.; Liskamp, R. M. J. J. Med. Chem. 2012, 55, 10995-11003

- (a) Segall, Y.; Quistad, G. B.; Nomura, D. K.; Casida, J. E. Bioorg. Med. Chem. Lett. 2003, 13, 3301-3303; (b) Dubbaka, S. R.; Vogel, P. Tetrahedron 2005, 61, 1523–1530; (c) Segall, Y.; Quistad, G. B.; Casida, J. E. Synth. Commun. **2003**, 33, 2151-2159; (d) Kim, J.-G.; Jang, D. O. Synlett 2010, 3049-3052; (e) Brouwer, A. J.; Ceylan, T.; Van der Linden, T.; Liskamp, R. M. J. Tetrahedron Lett. 2009, 50, 3391-3393
- 7. Kirihara, M.; Naito, S.; Ishizuka, Y.; Hanai, H.; Noguchi, T. Tetrahedron Lett. 2011, 52, 3086-3089.
- 8. (a) Banks, R. E.; Besheesh, M. K.; Mohialdin-Khaffaf, S. N.; Sharif, I. J. Chem. Soc., Perkin Trans. 1 1996, 2069–2076; (b) Stavber, S.; Zupan, M. Adv. Org. Synth. 2006, 2, 213-268; (c) Nyffeler, P. T.; Duron, S. G.; Burkart, M. D.; Vincent, S. P.; Wang, C.-H. Angew. Chem., Int. Ed. 2005, 44, 192–212; (d) Singh, R. P.; Shreeve, J. M. Acc. Chem. Res. 2004, 37, 31-44; (e) Banks, R. E. J. Fluorine Chem. 1998, 87, 1-17.
- Podgorsek, A.; Zupan, M.; Iskra, J. Angew. Chem., Int. Ed. 2009, 48, 8424-8450; (a) Stavber, S.; Zupan, M. Acta Chim. Slov. 2005, 52, 13-26.
- 10. Freeman, F.; Angeletakis, C. N. J. Am. Chem. Soc. **1981**, 103, 6232–6235.
- 11. Most other commercially available electrophilic fluorinating reagents, such as N-fluoropyridinium salts (except for FPT-300) and N-fluorosulfoneimides, are unstable to water and can not be used in aqueous solutions. Therefore, reactions of disulfides with these electrophilic fluorinating reagents have not been examined
- 12. Nishiguchi, A.; Maeda, K.; Miki, S. Synthesis 2006, 4131-4134.
- 13 Veisi, H.; Sedrpoushan, A.; Hemmati, S.; Kordestani, D. Phosphorous, Sulfur, and Silicon 2012, 187, 769-775.
- 14. King, J. F.; Smith, D. J. H. J. Am. Chem. Soc. 1967, 89, 4803-4804.
- 15 Billard, T.; Langlois, B. A.; Large, S.; Anker, D.; Roibot, N.; Roure, P. J. Org. Chem. 1996, 61, 7545-7550.
- 16
- Palumbo, G.; Caputo, R. Synthesis 1981, 888-890.
- 17. Harpp, D. N.; Bodzay, S. J. Sulfur Lett. 1987, 73-80. 18. Lee, I.; Shim, C. S.; Chun, S. Y.; Kim, H. Y.; Lee, H. W. J. Chem. Soc., Perkin Trans. 2 **1988** 1919–1923
- 19 ALDRICH Chemistry, Handbook of Fine Chemistry; Sigma-Aldrich: St. Louis, **LISA 2009**
- 20. Varfolomeev, L. I.; Grodetsky, S. A.; Doudkin, V. V.; Calculator, V. R.; Katyanova, V. R.; Kozlov, N. A.; Kurakov, V. A.; Matveev, A. A.; Kaurova, G. I.; Moldavian, D. D.; Matalin, V. A.; Timofeev, S. N.; Fedorova, T. E.; Shkultetskaya, L. V.; Furin, G. G.; Ki, V. C. Angarskii Elektroliznyi Khimicheskii Kombinat 2002, RU2183621 (C1).
- 21. Burdon, J.; Farazmand, I.; Stacey, M.; Tatlow, J. C. J. Chem. Soc. 1957, 2574–2578. 22. Poshkus, A. C.; Herweh, J. E.; Magnotta, F. A. J. Org. Chem. 1963, 28, 2766–2769.
- 23. Litvinenko, L. M.; Dadali, V. A.; Savelova, V. A.; Krichevtsova, T. I. Zh. Obshch. Khim. 1964, 34, 3730-3733.