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in EtOH at 508C under 50-bar initial hydrogen pressure, affording the corresponding

b-hydroxy esters in .98% ee.

Keywords: diphosphines, enantioselective hydrogenation, b-hydroxy esters, b-keto

esters, ruthenium

Chiral b-hydroxy esters are important building blocks for the synthesis of bio-

logically active compounds and natural products.[1] For example, (R)-3-hydro-

xytetradecanoic acid is the most common fatty acid constituent of the lipid A

component of bacterial lipopolysaccharides (LPS).[2] (R)-Ethyl 3-hydroxydo-

decanoate is an interesting intermediate for the synthesis of Arthrobacilin, a

cell-growth inhibitor.[3] (R)-Ethyl 6-chloro-3-hydroxy-hexanoate can be

converted into (R)-(þ)-a-lipoic acid, which is a cofactor in the biochemical

decarboxylation of a-keto acids and has also been reported to be a growth

factor for a variety of microorganisms.[4] Ethyl 7-chloro-3-hydroxyheptanoate

can be transformed into 7-amino-3-hydroxyheptanoic acid, used in the prep-

aration of spergualins, powerful antitumor agents.[5]

Catalytic asymmetric hydrogenation of b-keto esters is considered one of

the most efficient methods for the preparation of b-hydroxy esters and acids.[6]

Pioneering work came from Noyori et al., who showed that a Ru catalyst based

on BINAP as a chiral diphosphine ligand may be highly useful for the

reduction of b-keto esters.[7] Even ethyl g-chloroacetoacetate could be

reduced with this catalytic system. However, to obtain good enantioselectivity

(97% ee), the reduction had to be conducted at 1008C.[8] More recently, the

asymmetric hydrogenation of other b-alkyl and b-aryl substituted b-keto

ester was reported.[9] Zhang and coworkers could achieve high enantioselec-

tivities in the Ru-catalyzed hydrogenation of b-aryl substituted b-keto ester

and of ethyl 4-chloroacetoacetate with TangPHOS as a chiral ligand.[10]Inter-

estingly, homologues b-(v-chloroalkyl) substituted b-keto esters were not

used as prochiral substrates for the asymmetric reduction. One of the crucial

problems is the availability of the required prochiral substrates. These

b-keto esters are available by reaction of the dianion of ethyl acetoacetate

with alkyl iodides (Scheme 1).[11] Based on this methodology, a large set of

v-chloro-functionalized and nonfunctionalized b-keto esters bearing a long

alkyl chain could be prepared.

Scheme 1.
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Herein, we report the highly enantioselective hydrogenation of these functio-

nalized ketones using Ru catalysts containing the diphosphines I–III as ligands.

BINAP and Tol-BINAP are commercially available at low prices. Ligand III can

be derived from an economically beneficial cross-self-breeding process.[12]

Resultant b-hydroxy esters have great synthetic potential. Those that

contain a chloro substituent may serve as intermediates for the synthesis of

chiral v-hydroxy acids, v-amino acids, and lactones.

Results of the enantioselective hydrogenation are summarized in Table 1.

Required precatalysts were prepared in situ by reaction of

[Ru(p-cymene)Cl2]2 with the chiral ligand in DMF prior to the catalytic

reaction. Hydrogenations of both b-alkyl and b-(v-chloroalkyl) substituted

b-keto ethyl esters 1 were performed under an initial hydrogen pressure of

50 bar at 508C in ethanol as solvent. Under these conditions, b-hydroxy

esters 2 were obtained with excellent enantioselectivities. The use of MeOH

as a solvent led to transesterification (Scheme 2).

Table 1. Enantioselective hydrogenation of 1a– f with Ru-diphosphine catalysts

Entry Ligand Substrate Producta Ee (%)b Prod. conf.d

1 I (BINAP) 1a 2a 98.1 (R)-(2)

2 II (Tol-BINAP) 1a 2a 98.7 (R)-(2)

3 III 1a 2a 89.0 (S)-(þ)

4 I (BINAP) 1b 2b 98.1 (R)-(2)

5 II (Tol-BINAP) 1b 2b 98.5 (R)-(2)

6 III 1b 2b 86.0 (S)-(þ)

7 I (BINAP) 1c 2c 98.0c (R)-(2)

8 II (Tol-BINAP) 1c 2c 98.7 (R)-(2)

9 III 1c 2c 91.0 (S)-(þ)

10 I (BINAP) 1d 2d 98.3c (2)

11 II (Tol-BINAP) 1d 2d 98.6c (2)

12 III 1d 2d 86.0c (þ)

13 I (BINAP) 1e 2e 98.0 (2)

14 II (Tol-BINAP) 1e 2e 98.4 (2)

15 III 1e 2e 91.0 (þ)

16 I (BINAP) 1f 2f 98.6 (2)

17 II (Tol-BINAP) 1f 2f 98.7 (2)

18 III 1f 2f 91.0 (þ)

aConditions: catalyst/substrate ratio ¼ 1/200; H2 (initial pressure 50 bar), 508C,

EtOH; complete conversion, products were isolated in quantitative yields.
bEnantiomeric excess was determined by 31P NMR after coupling with the chiral

phosphorus derivatizing agent 3 derived from (S)-BINOL.
cDetermined by chiral GC (Lipodex E column, 50 m).
dAbsolute configurations of 2a, 2b, and 2c were assigned by comparison of the sign

of the optical rotation with that of known alcohols.[13]
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In all cases, enantioselectivities obtained with Ru-[(R)-TolBINAP] were

slightly superior to those obtained with Ru-[(R)-BINAP]. Interestingly, the use

of diphosphine III also gave good enantioselectivities (87–91% ee) (Scheme 3).

The use of the commercial Ru[(R)-BINAP]Cl2 gave the same results as

those obtained with a catalyst prepared in situ from (R)-BINAP and [Ru(p-

cymene)Cl2]2. In contrast to results reported in the asymmetric hydrogenation

of 4-chloroacetoacetate,[8] we did not observe any effect of the chloro substi-

tuent on the activity as well as on the enantioselectivity (Scheme 4).

The ee of the chiral products was determined by a method similar to that

reported by Tang et al.,[14] reaction of b-hydroxy esters with enantiopure chlor-

ophosphite 3 derived from (S)-BINOL and subsequent integration of the signals

in the 31P NMR spectrum. The derivatizing agent (31P NMR, d 179.2) reacted

immediately and quantitatively with alcohol 2 to give diastereomeric phosphites

4 and 40. The 31P NMR spectrum of both diastereomeric products is characterized

by signals separated at the base line (Table 2); therefore it was possible to

determine precisely the enantiomeric composition of the hydrogenation products.

Scheme 2.

Scheme 3.

Scheme 4.
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In summary, a highly enantioselective hydrogenation catalyzed by

Ru-BINAP, catalysts of b-alkyl and b-(v-chloroalkyl) substituted b-keto

ethylesters prepared by a unique method, afforded biologically interesting

b-hydroxy esters with high enantioselectivities.

EXPERIMENTAL

General Procedure of the Asymmetric Hydrogenation

A dry 20-mL Schlenk tube containing a Teflonw-coated stirring bar was

charged with [Ru(p-cymene)Cl2]2 (2 mg, 6.5 mmol), chiral diphosphine

ligand (6.75 mmol), and DMF (1 mL) under an argon atmosphere. The

resulting reddish brown suspension was heated at 1008C under argon for

15 min to give a clear reddish brown solution. DMF was removed under

vacuum at 50 8C; EtOH (3 or 4 mL) and b-keto ester (1.3 mmol) were

added. The resultant solution containing precatalyst and substrate was trans-

ferred with a syringe under argon inside an autoclave, which was charged

with hydrogen (50 bar). The reduction was performed under this pressure at

508C overnight. b-Hydroxy esters (yield .95%) were purified by silica-gel

column chromatography (n-heptane–AcOEt ¼ 80:20) and characterized by

NMR and HRMS. Enantiomeric excesses were determined by chiral

capillary GC (Lipodex E column, 50 m) or by 31P NMR analysis after

coupling with chiral chlorophosphite derived from BINOL.

Determination of Ee Based on 31P NMR

Preparation of chlorophosphite of (S)-BINOL was carried out according to

the protocol of Minnaard et al.[15] For example, a dry NMR analysis tube

was charged under argon with ethyl 3-hydroxytetradecanoate (20 mg,

0.073 mmol), (S)-BINOL-chlorophosphite (0.4 mL, 0.14 mmol) in toluene

Table 2. 31P NMR chemical shifts of 1:1 mixtures of diastereomeric phosphites 4 and 40

Entry

b-Hydroxy

ester 2

31P NMR chemical shifts

Dd (ppm) Ratioa4 40

1 2a 153.35 151.33 2.02 50.4/49.6

2 2b 153.31 151.23 2.08 49.9/50.1

3 2c 153.34 150.44 2.9 50.5/49.5

4 2e 153.35 150.31 3.04 49.9/50.1

5 2f 152.72 150.44 2.28 50.3/49.7

a31P NMR integral ratio of 4 and 40.
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(0.35 M), d8-toluene (0.2 mL), and one drop of triethylamine. The resulting

mixture was analyzed by 31P NMR (d8-toluene, 300 or 400 MHz). Three

signals are obtained: one of nonreacted chlorophosphite and two related to

the diastereomeric triesters.

Data

(R)-Ethyl 3-hydroxytetradecanoate (2a). Yellow oil; [a]D
20 ¼ 26.1 (c 1,

CH2Cl2; 98.5% ee); 1H NMR (300 MHz, CDCl3) d 4.14 (q, J ¼ 7.23 Hz,

2H), 3.97 (m, 1H), 3.00 (bs, 1H, OH), 2.50–2.30 (m, 2H), 1.60–1.10

(m, 23H), 0.85 (t, J ¼ 6.3 Hz, 3H); 13C NMR (75 MHz, CDCl3) d 173.0

(C55O), 68.1 (CH), 60.6 (CH2), 43.8 (CH2), 41.3 (CH2), 36.5 (CH2), 31.9

(CH2), 29.6 (CH2), 29.6 (CH2), 29.5 (CH2), 29.3 (CH2), 25.5 (CH2), 23.8

(CH2), 22.7 (CH2), 14.1 (CH3), 14.1 (CH3); HRMS (EI, 70 eV): m/z
271.22577 (M-Hþ exact mass calcd. for C16H31O3: 271.22677); ee determined

by 31P NMR (300 MHz, d8-toluene) d 153.35, 151.33.

(R)-Ethyl 3-hydroxydodecanoate (2b). Yellow oil; [a]D
20 ¼ 29.4 (c 0.5,

CH2Cl2; 98% ee); 1H NMR (300 MHz, CDCl3) d 4.15 (q, J ¼ 7.13 Hz, 2H),

3.97 (m, 1H), 2.84 (bs, 1H, OH), 2.43 (m, 2H), 1.60–1.10 (m, 19H), 0.85

(t, J ¼ 6.5 Hz, 3H); 13C NMR (75 MHz CDCl3) d 173.1 (C55O), 68.0 (CH),

60.6 (CH2), 43.8 (CH2), 41.3 (CH2), 36.5 (CH2), 31.9 (CH2), 29.6 (CH2),

29.5 (CH2), 29.3 (CH2), 24.5 (CH2), 22.7 (CH2), 14.15 (CH3), 14.08 (CH3);

HRMS (EI, 70 eV): m/z 243.19547 (M-Hþ exact mass calcd. for C14H27O3:

243.19461); ee determined by 31P NMR (300 MHz, d8-toluene) d 153.31,

151.23.

(R)-Ethyl 6-chloro-3-hydroxyhexanoate (2c). Yellow oil; [a]D
20 ¼ 23.7

(CH2Cl2, c 0.1; 98.0% ee); 1H NMR (300 MHz, CDCl3) d 4.14

(q, J ¼ 7.15 Hz, 2H), 4 (m, 1H), 3.55 (dt, J ¼ 6.52 and 2.6 Hz, 2H), 2.87

(bs, 1H, OH), 2.44 (m, 2H), 2.00–1.75 (m, 2H), 1.60 (m, 2H), 1.24

(t, J ¼ 7.147 Hz, 3H); 13C NMR (75 MHz, CDCl3) d 173.2 (C55O), 67.5

(CH), 61.0 (CH2), 45.2 (CH2), 41.6 (CH2), 33.8 (CH2), 28.9 (CH2), 14.4

(CH3). HRMS (EI, 70 eV): m/z 193.06187 (M-Hþ exact mass calcd. for

C8H14O3Cl: 193.06260); ee determined by chiral capillary GC (Lipodex E

column (50 m), (R) t1 ¼ 88.929 min. and (S) t2 ¼ 92.944 min) and also by

quantitative 31P NMR (300 MHz, d8-toluene) d 153.34, 150.44.

Ethyl 7-chloro-3-hydroxyheptanoate (2d). Yellow oil; [a]D
20 ¼ 29.6

(CH2Cl2, c 0.25; 98.6% ee); 1H NMR (300 MHz, CDCl3) d 4.15

(q, J ¼ 7.17 Hz, 2H), 3.99 (m, 1H), 3.52 (t, J ¼ 6.64 Hz, 2H), 3.10 (bs, 1H,

OH), 2.54–2.33 (m, 2H), 1.85–1.72 (m, 2H), 1.65–1.40 (m, 4H), 1.25

(t, J ¼ 7.17 Hz, 3H); 13C NMR (75 MHz, CDCl3) d 173.0 (C55O), 67.7

(CH), 60.7 (CH2), 44.8 (CH2), 41.2 (CH2), 35.6 (CH2), 32.4 (CH2), 22.8
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(CH2), 14.2 (CH3); HRMS (EI, 30 eV): m/z 209.09361 and 211.09135

(M þ Hþ exact mass calcd. for C9H18O3
35Cl: 209.09390 and

for C9H18O3
37Cl: 211.09095); ee determined by chiral capillary GC

(Lipodex E column (50 m), 1008C, isothermal, (2) t1 ¼ 128.59 min. and

(þ) t2 ¼ 129.15 min).

Ethyl 9-chloro-3-hydroxynonanoate (2e). Yellow oil; [a]D
20 ¼ 211.5

(CH2Cl2, c 0.2; 98% ee); 1H NMR (300 MHz, CDCl3) d 4.16

(q, J ¼ 7.15 Hz, 2H), 3.98 (m, 1H), 3.52 (t, J ¼ 6.7 Hz, 2H), 2.97 (bs, 1H,

OH), 2.55–2.33 (m, 2H), 1.76 (m, 2H), 1.30–1.60 (m, 8H), 1.27

(t, J ¼ 7.15 Hz, 3H); 13C NMR (75 MHz, CDCl3) d 173.0 (C55O), 67.9

(CH), 60.7 (CH2), 45.0 (CH2), 41.3 (CH2), 36.3 (CH2), 32.5 (CH2), 28.8

(CH2), 26.8 (CH2), 25.3 (CH2), 14.2 (CH3); HRMS (EI, 30 eV): m/z
235.10901 (M-Hþ exact mass calcd. for C11H20O3Cl: 235.10955); ee deter-

mined by 31P NMR (300 MHz, d8-toluene) d 153.35, 150.31.

Ethyl 10-chloro-3-hydroxydecanoate (2f). Yellow oil; [a]D
20 ¼ 215

(CHCl3, c 0.5; 98.6% ee); 1H NMR (75 MHz, CDCl3) d 4.13

(q, J ¼ 7.13 Hz, 2H), 3.95 (m, 1H), 3.50 (t, J ¼ 6.72 Hz, 2H), 3.02 (bs, 1H,

OH), 2.50–2.30 (m, 2H), 1.73 (m, 2H), 1.26–1.54 (m, 10H), 1.24

(t, J ¼ 7.13 Hz, 3H); 13C NMR (75 MHz, CDCl3) d 173.0 (C55O), 67.9

(CH), 60.7 (CH2), 45.0 (CH2), 41.3 (CH2), 36.4 (CH2), 32.6 (CH2),

29.3 (CH2), 28.8 (CH2), 26.8 (CH2), 25.3 (CH2), 14.2 (CH3); HRMS (EI,

30 eV): m/z 251.14027 and 253.13830 (M þ Hþ exact mass calcd. for

C12H24O3
35Cl: 251.14085 and for C12H24O3

37Cl: 253.13790); ee determined

by 31P NMR (300 MHz, d8-toluene) d 152.72, 150.44.
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