Tetrahedron Letters 52 (2011) 1545-1548

Contents lists available at ScienceDirect

Tetrahedron Letters

journal homepage: www.elsevier.com/locate/tetlet

First synthesis of P-chirogenic prophosphatranes

Yibo Zhou^a, Daniel W. Armstrong^b, Ying Zhang^b, John G. Verkade^{a,*}

^a Department of Chemistry, Iowa State University, Ames, IA 50011-3111, United States

^b Department of Chemistry and Biochemistry, University of Texas at Arlington, 700 Planetarium Place, Arlington, TX 76019-0065, United States

ARTICLE INFO

Article history: Received 13 November 2010 Revised 4 January 2011 Accepted 10 January 2011 Available online 18 January 2011

Keywords: Prophosphatrane P-Chirogenic Resolution Enantiomeric Catalyze

ABSTRACT

Syntheses are reported for the novel P-chirogenic bicyclic prophosphatranes $P(RNCH_2CH_2)_2N(OCH_2CH_2)_-$ (**8**) in which the two R groups [i.e., 1-methylenenaphthyl and 1,2-methoxybenzyl (**8**)] and in its corresponding phosphine oxide (**9**) are different. Also synthesized was the transannulated protonated phosphatrane cation in the salt [HP(RNCH_2CH_2)_3N]Cl in which the three R groups [i.e., 1-methylenenaphthyl, 1,2-methoxybenzyl, and (*S*)-1-phenethyl (**14**)] are different, and also in its corresponding deprotonated prophosphatrane form P(RNCH_2CH_2)_3N (**15**). Good analytical resolution of racemic **9** is reported, whereas only partial resolution was achieved for diastereomeric **14**.

© 2011 Elsevier Ltd. All rights reserved.

Nucleophilic organophosphorus catalysts enjoy wide use in organic reactions,¹ and many phosphine ligands are exceedingly effective in metal-assisted cross couplings.² Such transformations are of increasing interest in the synthesis of pharmaceuticals,² fine chemicals,³ and compounds of biological interest.⁴ Bulky electronrich phosphines can be particularly useful for aryl chloride⁵ and also for aromatic and heteroaromatic silanoate⁶ substrates in cross coupling reactions. Prochiral olefins have been hydrogenated enantioselectively using chiral phosphites in the presence of a rhodium catalyst.⁷ Allylation catalyzed by palladium/chiral phosphine ligand systems appears to be of considerable utility⁸ and such a ligand has also been reported to efficiently facilitate an asymmetric Heck^{8e,9} as well as other Heck-type reactions.^{9b}

Chiral organophosphorus compounds catalyze a wide variety of useful enantiomeric transformations as organocatalysts.¹⁰ Chiral phosphines catalyze the enantioselective acylation of alcohols to effect their kinetic resolution^{10a,11} as well as desymmetrization of *meso* diols via acylation.^{10a} Chiral phosphines also catalyze reactions of prochiral substrates as in MBH^{10a,12} and aza-MBH reactions,^{10a} formation of asymmetric quaternary carbon centers in the addition of nucleophiles to the γ -position of ethyl butynoate and ethyl 2,3-butadineate,^{10a} and also in Steglich rearrangements.^{10a} Cycloadditions of the [4 + 2] type are catalyzed by chiral phosphines as well as such reactions of the relatively rare [3 + 2] variety.^{10a}

Non-chiral prophosphatranes of type **A** (with two or three identical R groups) in Figure 1 have been reported to catalyze a wide variety of important organic reactions¹³ and to function as excellent ligands for palladium-catalyzed transformations.¹⁴ Because a significant number of such reactions are carried out with prochiral substrates, it would be of interest to investigate the efficacy of P-chirogenic prophosphatranes in such reactions. P-chirogenic compounds¹⁵ form a sizeable sub-class of chiral phosphines, but no examples of P-chirogenic prophosphatranes have been reported until now.

Prophosphatrane structures of types **A** and **B**, for example, feature a P-chiral 'pocket' for substrate activation by the nucleophilic phosphorus. Such a pocket in **A** and/or **B** may be anticipated to favor high product ee values since the R groups are held quite rigidly in place by the bicyclic framework and by the planarity of all four nitrogens.^{1,2} This rigidity would be reasonably maintained by any changes in the N \rightarrow P transannular distance that could potentially occur during the catalytic cycle.

Here we report initial results for the synthesis of chiral **8** and **9** in Scheme 1, and chiral **14** and **15** in Scheme 2.

The synthesis of racemic **8** was achieved by monoprotection of an NH_2 group in **2** with BOC to provide intermediate **3**, which was

Figure 1. Prophosphatranes.

^{*} Corresponding author. Tel.: +1 515 294 5023; fax: +1 515 294 0105. *E-mail address:* jverkade@iastate.edu (J.G. Verkade).

^{0040-4039/\$ -} see front matter \odot 2011 Elsevier Ltd. All rights reserved. doi:10.1016/j.tetlet.2011.01.041

Scheme 1. Synthesis of prophosphatrane 8 and its oxide 9.

then followed by reductive amination of the second NH_2 group with α -naphthaldehyde, BOC deprotection, and reductive amination with *ortho*-benzaldehyde to afford compound **6** bearing different R groups attached to the two terminal NH groups. Under similar conditions for the synthesis of non-chiral prophosphatranes of type **A**,¹⁶ compound **6** was converted into the oxa-prophosphatrane salt **7**, which was then deprotonated to afford oxa-prophosphatrane **8**. The overall yield of **8** through seven steps from **1** is 28%. This is the first report of the synthesis of a prophosphatrane featuring two different heteroatoms on the phosphorus. For purification and optical resolution of an air- and moisturestable derivative of **8**, this type **B** product was converted into its corresponding oxide **9** in 80% yield via CH₃SiOOSiCH₃ oxidation.

Our synthesis of a P-chirogenic prophosphatrane of type **A** with three different R groups on the P–N nitrogens relied on the successful synthesis of the intermediate tetraamine **13** in Scheme 2. Starting with **6**, which was synthesized from **1** as shown in Scheme 1, the two terminal NH groups were protected by BOC, followed by protection of the OH group as the mesylate **11**, which was allowed to react with (s)-1-methyl benzylamine to provide **12**. Following

BOC deprotection of **12**, **13** was afforded in very good overall yield (66% from **6** through four steps) and in 21% overall yield from **1** through nine steps. This represents the first synthesis of a tetraamine of type **13** with three different R groups on the terminal NH groups. Our methodology is amenable to scale-up and easy purification of the products of each step via column chromatography. Analogously to the synthesis of non-chiral prophosphatranes of type of **A**,¹⁶ diastereomeric **15** was obtained by reaction of **13** with ClP((NMe₂)₂, which was prepared in situ via the reaction of HMPT {P(NMe₂)₃} with PCl₃, to form the salt **14** which was then deprotonated with *t*BuOK in THF. The ³¹P NMR spectrum of **15** showed two peaks [δ 127.89 (s), 127.83 (s)] consistent with the presence of two diastereomers.

Results of chiral HPLC separation experiments with **9** and **14** are shown in Figures 2 and 3, respectively. Racemic prophosphatrane oxide **9** was successfully resolved into a pair of enantiomers on a Chiralpak IA column with a mobile phase of methyl *t*-butyl ether/methanol/acetic acid/triethylamine (85:15:0.3:0.2). The diastereomeric phosphatrane salt **14** was partially separated to a pair of diastereomers on a Chiralpak IC column with a mobile phase of

Scheme 2. Synthesis of diastereomeric prophosphatrane 15.

Figure 2. Enantiomeric separation of 9 on a Chiralpak IA column (15 cm).

Figure 3. Partial diastereomeric separation of 14 on a Chiralpak IC column (25 cm).

methyl *t*-butyl ether/methanol/acetic acid/triethylamine (85:15: 0.3:0.2).

In conclusion, we have successfully synthesized the first examples of P-chirogenic prophosphatranes. Thus $P(RNCH_2CH_2)_2-N(OCH_2CH_2)-(\mathbf{8})$ bearing two different R groups and its corresponding phosphine oxide (**9**) are reported, as well as $P(RNCH_2-CH_2)_3N$ (**15**) featuring three different R groups. Good analytical resolution of racemic **9** and partial analytical resolution of diastereomeric prophosphatrane salt **14** was achieved. Our work

sets the stage for further enantiomeric resolution and subsequent evaluation of compounds of the title type in inducing enantioselectivity in organic reactions.

Acknowledgments

J.G.V. is grateful to the NSF for a grant (0750463) in support of this research. D.W.A. gratefully acknowledges the Robert A. Welch Foundation (Y-0026) for partial support of this work.

Supplementary data

Supplementary data (experimental details and characterizational data [NMR spectral (¹H, ¹³C, ³¹P) HRM spectral and HPLC conditions]) associated with this article can be found, in the online version, at doi:10.1016/j.tetlet.2011.01.041.

References and notes

- (a) Methot, J. L.; Roush, W. R. Adv. Synth. Catal. 2004, 346, 1035; (b) Adrio, L. A.; Kuok, K. J. Organomet. Chem. 2009, 35, 62.
- Metal-Catalyzed Cross-Coupling Reactions; de Meijere, A., Diederich, F., Eds.; Wiley-VCH: Weinheim, 2004.
- 3. Zapf, A. Angew. Chem., Int. Ed. 2003, 42, 5394.
- 4. Nicolaou, K. C.; Bulger, P. G.; Sarlah, D. Angew. Chem., Int. Ed. 2005, 44, 4442.
- (a) Garabatos-Perere, J. R.; Butenschoen, H. J. Organomet. Chem. 2008, 693, 357;
 (b) Barrios-Landeros, F.; Carrow, B. P.; Hartwig, J. F. J. Am. Chem. Soc. 2009, 131, 8141;
 (c) Mauger, C. C.; Mignani, G. S. A. Aldrichim. Acta 2006, 39, 17024;
 (d) Tewari, A.; Hein, M.; Zapf, A.; Beller, M. Tetrahedron 2005, 61, 9705.
- Denmark, S. E.; Smith, R. C.; Chang, W.-T. T.; Muhuhi, J. M. J. Am. Chem. Soc. 2009, 131, 3104–3118.
- Lyubimov, S. E.; Kalinin, V. N.; Tyutyunov, A. A.; Olshevskaya, V. A.; Dutikova, Y. V.; Cheong, C. S.; Petrovskii, P. V.; Safronov, A. S.; Davankov, V. Chirality 2009, 21, 2–5.
- (a) Howell, G.; Minnaard, A. J.; Feringa, B. L. Org. Biomol. Chem. 2006, 4, 1278;
 (b) Trost, B. M.; Frederiksen, M. U. Angew. Chem., Int. Ed. 2005, 44, 308–310; (c)

Boaz, N. W.; Ponasik, J. A.; Large, S. E.; Debenham, S. D. *Tetrahedron: Asymmetry* **2004**, *15*, 2151; (d) Acemoglu, L.; Williams, J. M. J. In *Handbook of Organopalladium Chemistry for Organic Synthesis*; Negishi, E., Ed.; John Wiley & Sons: Hoboken, NJ, 2002; Vol. 2, pp 1945–1979; (e) Gilbertson, S. R.; Genov, D. G.; Rheingold, A. R. Org. *Lett.* **2000**, *2*, 2885; (f) Nemoto, T.; Kanematsu, M.; Tamura, S.; Hamada, Y. Adv. Synth. Catal. **2009**, *351*, 1778.

- (a) Mata, Y.; Dieguez, M.; Pamies, O.; Claver, C. Org. Lett. 2005, 7, 5597–5599; (b) Tietze, L. E.; Lotz, F. In Asymmetric Synthesis; Christman, B., Ed., 2nd ed.; Wiley-VCH: Weinheim, 2008; pp 155–160.
- (a) Gröger, H.; Burda, E. In Phosphorous Ligands in Asymmetric Catalysis; Börner, A., Ed.; Wiley-VCH: Weinheim, 2008; Vol. 3, pp 1175–1195; (b) Andrushko, V.; Börner, A. In Phosphorus Ligands in Asymmetric Catalysis; Börner, A., Ed.; Wiley-VCH: Weinheim, 2008; Vol. 2, pp 715–748; (c) Glueck, D. S. Chem. Eur. J. 2008, 14, 7108; (d) Erre, G.; Enthaler, S.; Junge, K.; Gladiali, S.; Beller, M. Coord. Chem. Rev. 2008, 252, 471; (e) Benincori, T.; Marchesi, A.; Mussini, P. R.; Pilati, T.; Ponti, A.; Rizzo, S.; Sannicolo, F. Chem. Eur. J. 2009, 15, 86.
- (a) Vedejs, E.; Daugulis, O.; Diver, S. T. J. Org. Chem. **1996**, *61*, 430; (b) Vedejs, E.; Daugulis, O. J. Am. Chem. Soc. **1999**, 121, 5813; (c) Duffey, T. A.; MacKay, J. A.; Vedejs, E. J. Org. Chem. **2010**, 75, 4674–4685.
- (a) Wei, Y. Acc. Chem. Res. 2010, 43, 1005–1018; (b) Lei, Z.-Y.; Liu, X.-G.; Shi, M.; Zhao, M. Tetrahedron: Asymmetry 2008, 19, 2058–2062.

- (a) Chintareddy, V. R.; Wadhwa, K.; Verkade, J. G. J. Org. Chem. 2009, 74, 8118;
 (b) Wadhwa, K.; Chintareddy, V. R.; Verkade, J. G. J. Org. Chem. 2009, 74, 6681;
 (c) Wadhwa, K.; Verkade, J. G. J. Org. Chem. 2009, 74, 5683;
 (d) Wadwha, K.; Verkade, J. G. J. Org. Chem. 2009, 74, 5683;
 (d) Wadwha, K.; Verkade, J. G. J. Org. Chem. 2009, 74, 4368;
 (e) Wadhwa, K.; Verkade, J. G. J. Org. Chem. 2009, 74, 4368;
 (f) Wadhwa, K.; Verkade, J. G. J. Org. Chem. 2009, 74, 4368;
 (e) Wadhwa, K.; Verkade, J. G. J. Org. Chem. 2009, 50, 4307;
 (f) Chintareddy, V. R.; Verkade, J. G. J. Org. Chem. 2010, 75, 7166–7174.;
 (h) Raders, S. M.; Verkade, J. G. J. Org. Chem. 2010, 75, 5308.
- (a) Venkat Reddy, C. V.; Kingston, J. V.; Verkade, J. G. J. Org. Chem. 2008, 73, 3047; (b) Raders, S.; Kingston, J. V.; Verkade, J. G. J. Org. Chem. 2010, 75, 1744; (c) Kingston, J. V.; Verkade, J. G. J. Org. Chem. 2007, 72, 2816; (d) Venkat Reddy, C. V., Kingston, J. V.; Verkade, J. G., in preparation.; (e) Zhou, Y.; Verkade, J. G. Adv. Synth. Catal. 2010, 352, 616.
- (a) Taylor, A. M.; Altman, R. A.; Buchwald, S. L. J. Am. Chem. Soc. 2009, 13, 9900;
 (b) Benetskii, E. B.; Davankov, V. A.; Petrovskii, P. V.; Rastorguev, E. A.; Grishina, T. B.; Gavrilov, K. N.; Rosset, S.; Bailat, G.; Alexakis, A. Russ. J. Org. Chem. 2008, 44, 1846; (c) Chen, Y.-L.; Froehlich, R.; Hoppe, D. Tetrahedron: Asymmetry 2009, 20, 1144; (d) Chan, V. S. H.; Chiu, M.; Bergman, R. G.; Toste, D. F. J. Am. Chem. Soc. 2009, 131, 6021; (e) Barta, K.; Eggenstein, M.; Hoelscher, M.; Francio, G.; Leitner, W. Eur. J. Org. Chem. 2009, 6198; (f) Imamoto, T. In Phosphorus Ligands in Asymmetric Catalysis; Börner, A., Ed.; Wiley-VCH: Weinheim, 2008; Vol. 3, pp 1201–1210, 1267.
- 16. Kisanga, P. B.; Verkade, J. G. Tetrahedron 2001, 57, 467.