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Aryldialkylphosphine–boranes undergo facile Birch-type reduction to afford cyclohexadienyldialkylphos-
phine–boranes in high yields. Judicious choice of the metal and the reaction conditions allows for com-
plete elimination of the undesired P–Ph bond cleavage.
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Figure 1. Model phosphine–boranes 1a–d.
Apart from the established methods for the modification of
organophosphorus compounds via transformations at phosphorus
or through elaboration of their carbon chains,1 structural modifica-
tions of P-aryl groups in organophosphorus compounds are mark-
edly less developed and are effected mainly within the outer
sphere of the aryl substituent.2–6 The classical and synthetically
useful method for arene modification leading to 1,4-cyclohexadie-
nyl systems through a two-electron reduction by alkali metals, the
Birch reduction, is only scarcely represented in organophosphorus
chemistry. Examples include exploratory Birch reductions of some
electron-rich tertiary triarylphosphines7–9 and a more recent re-
lated dearomatisation of N-benzyl diarylphosphinamides through
anionic cyclisation in the presence of a lithium base.10,11 An effi-
cient conversion of a common P-phenyl or P-aryl substituent into
a non-aromatic 1,4-cyclohexadienyl group possessing an isolated
double bond functionality bonded to a phosphorus atom could
open new possibilities for the synthesis of many other structurally
diverse phosphorus compounds. Typically, however, treatment of
P-phenyl (or P-aryl) substituted organophosphorus compounds
with alkali metals results in cleavage of the P-phenyl (or P-aryl)
bond,12–14 hence modification of the reaction conditions is re-
quired to shift the reaction towards the formation of the Birch-type
products. Herein, we present our results on Birch reductions of
dialkylphenylphosphine–boranes which are expected to furnish
valuable electron-rich, protected trialkylphosphine- boranes.15

Four model dialkylphenylphosphine–boranes 1a–d were se-
lected for the test experiments (Fig. 1). They represent symmetri-
cally and non-symmetrically substituted cyclic and acyclic
systems and include one example possessing a cleavable benzyl
substituent.

Preliminary experiments with 1a performed under classical
Birch conditions (2 equiv Na/MeOH, NH3 liq.) revealed that the
reductions were not selective and the secondary phosphine–bor-
ane 2a, a product of P–Ph bond cleavage, and the expected Birch
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reduction product 3a were both detected in the reaction mixture
along with some unreacted starting material (Scheme 1).

An increased amount of alkali metal and methanol in the reaction
mixture shifted the reaction completely towards formation of the
secondary phosphine–borane 2a and the presence of the Birch
reduction product 3a was not detected (Scheme 1). Although the
viability of the desired Birch reduction was in principle confirmed,
it became apparent that more favourable reaction conditions were
needed to secure the formation of the Birch–type product with high-
er selectivity. Thus, we screened the reactivity of the model phos-
phine–boranes 1a–d with different alkali metals under modified
Birch reduction conditions. The results are presented in Table 1.

Under standard conditions (�70 �C, 5 min) lithium was the least
selective among the alkali metals tested and showed the greatest
tendency to cause P–Ph bond cleavage (Table 1, entries 1 and 7).
The reason may lie in its high redox potential (�3.04 V) which
forces cleavage of the P–Ph bond. The tendency to favour P–Ph
bond cleavage as compared to Birch reduction decreased on chang-
ing the metal from lithium to potassium (Table 1, entries 3, 6, 9 and
14) and to sodium (Table 1, entries 2, 5, 8 and 11), with the latter
showing the highest selectivity towards the formation of 3-(1,4-
cyclohexadienyl)-substituted phosphine–boranes.

The reduction of benzyl-t-butyl-phenylphosphine–borane (1d)
was different from the three other boranes as even with sodium
as the reducing agent, secondary phosphine–borane 4d was ob-
tained as the main product as a result of benzyl group cleavage (Ta-
ble 1, entry 11). Shortening the reaction time had little or no
influence on the product ratio (Table 1, entry 15). It appeared, how-
ever, that the proton source added to the reaction mixture could
markedly influence both the product ratio and the reaction yields
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Table 1
Alkali metal screening on the Birch reduction of aryldialkylphosphine–boranes 1a–d
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Entry Phosphine Metal (equiv) Time, HX Yield %

1 2 3

1 1a Li (2.5) 5 min, NH4Cl 21 37 19
2 1a Na (2.5) 5 min, NH4Cl — — 84
3 1a K (2.5) 5 min, NH4Cl — 28 36
4 1b Li (2.5) 5 min, NH4Cl 23 n.d. 42
5 1b Na (2.5) 5 min, NH4Cl — n.d. 83
6 1b K (2.5) 5 min, NH4Cl 15 n.d. 68
7 1c Li (2.5) 5 min, NH4Cl 67 traces 15
8 1c Na (2.5) 5 min, NH4Cl 9 9 60
9 1c K (2.5) 5 min, NH4Cl — — 100

10 1d Li (2.5) 5 min, NH4Cl — (4d) 62 8
11 1d Na (2.5) 5 min, NH4Cl 39 (4d) 22 19
12 1d Na (2.5) 5 min, AcOH (3.0 equiv) 16 (4d) 30 39
13 1d Na (2.5) 5 min, TsOH (3.0 equiv) 4 (4d) 40 53
14 1d K (2.5) 5 min, NH4Cl — (4d) 81 15
15 1d K (2.5) 1 min, NH4Cl 30 (4d) 55 10
16 1d Mg (1.2) 20 min, NH4Cl 60 — 25
17 1d Mg (4.0) 20 min, NH4Cl — — 63 (5d) 15

n.d. = not determined.
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Scheme 1. Classical Birch reduction of 1a.
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by favouring the formation of the Birch-type product (Table 1, en-
tries 12 and 13).

Evaluation of the results revealed that in the series studied, the
selectivity towards the formation of the Birch-type products in-
creased in the order Li < K < Na which is the reverse correlation of
the metal redox potentials (Li �3.04 V, K �2.92 V, Na �2.71 V). A
simple extrapolation of this correlation led to the assumption that
magnesium (Mg �2.35 V) might be an even better reducing agent
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than sodium for the desired Birch reduction of arylphosphine–bor-
anes. Indeed, treatment of 1d with a solution of magnesium in li-
quid ammonia, prepared by electrolysis of metallic magnesium in
the presence of ammonium tetrafluoroborate as a charge carrier,
led to the formation of the desired Birch reduction product 3d as
the main product accompanied, somewhat unexpectedly, by t-bu-
tyl-3-(1,4-cyclohexa-dienyl)phosphine–borane 5d (Table 1, entry
17). It appears that the latter compound is formed from the Birch
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reduction product 3d by a consecutive P–benzyl bond cleavage
rather than by the reverse order of events. An attempted Birch
reduction of t-butylphenylphosphine–borane 4d under the same
reaction conditions afforded only phosphinous acid–borane 6 and
primary phosphine–borane 7 without any detectable traces of 5d,
along with some unreacted starting material (Scheme 2). This sug-
gests that with 4d as the starting material, deprotonation was the
main reaction occurring under the applied conditions.

In conclusion, the presented results demonstrate that by judi-
cious choice of the metal and the reaction conditions the Birch-
type reduction of a P-phenyl ring in dialkylphenylphosphine–bor-
anes can be accomplished with high selectivity and in high yields.
Conditions have also been developed under which the reduction
can be accomplished without cleaving the benzyl substituent pres-
ent in the substrate.
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