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ABSTRACT
Secondary phosphine chalcogenides, R2PX (R=(CH2)2Ph, Ph; X = S,
Se), react with divinyl chalcogenides, (CH2=CH)2Y (Y = S, Se, Te), at
the2:1molar ratio (80–82°C, 56–80 h) in the absenceofboth catalysts
(initiators) and solvents to quantitatively afford the corresponding
anti-Markovnikov diadducts. Even at the equimolar reactant ratio,
the diadducts are themajor products, thoughmonoadducts are also
formed. When Y = Te, vinylphosphine chalcogenides and metal Te
are obtained, thus showing that divinyl telluride behaves as the
vinylating agent.
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1. Introduction

Tertiary α,ω-diphosphines and α,ω-diphosphine chalcogenides continue to attract sig-
nificant attention of researchers. Currently, these important organophosphorus com-
pounds find widespread application as prospective ligands for the design of metal com-
plex catalysts,[1–11] precursors of pharmaceutical compounds,[12–19] as well as special
solvents-stabilizers for the preparation of nano-sized semi-conducting materials.[20–28]
α,ω-Diphosphine chalcogenides bearing chalcogenoalkane moieties are of special interest
as polydentate hemilabile ligands.[29–40]

Among the most straightforward approaches to the synthesis of functional α,ω-
diphosphines and phosphine chalcogenides is the reaction of secondary phosphines and
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2 N. K. GUSAROVA ET AL.

phosphine chalcogenides with available divinyl chalcogenides, easily prepared from acety-
lene and elemental sulfur, selenium and tellurium in the presence of superstrong bases of
the type KOH – polar non-hydroxylic solvent (DMSO, HMPA).[41–43]

Earlier it has been reported that diaddition of secondary phosphine and phosphine
chalcogenides to divinyl chalcogenides (divinyl sulfide,[9] divinyl selenide,[44] divinyl
telluride,[45,46] divinyl sulfoxide,[47] divinyl sulfone,[48,49] as well as divinyl ethers of
glycols [50]) proceeds in the presence of radical initiators [9,44–46] or bases [47–49,51,52]
and, as a rule, in organic solvents.

In recent years, catalyst- and solvent-free reactions attract a particular attention. This
is especially important in view of modern requirements of green chemistry. For exam-
ple, it has been shown that secondary phosphine and phosphine chalcogenides react with
diverse monoalkenes (including functionalized ones) under non-catalyst and non-solvent
conditions to afford anti-Markovnikov adducts.[53–57]

2. Results and discussion

To extend the preparative scope of the novel environmentally benign method for the syn-
thesis of functional phosphine chalcogenides and to gain additional knowledge about the
C–P bond formation from PH-addends and alkenes under non-catalytic solvent-free con-
ditions, in the present work, we have studied the reaction of secondary phosphine sulfides
and phosphine selenides with available [41–43] divinyl chalcogenides.

The experiments have shown that bis(2-phenethyl)phosphine sulfide 1, bis(2-
phenethyl)phosphine selenide 2 and diphenylphosphine sulfide 3 react with divinyl sulfide
4 and divinyl selenide 5 (molar ratio of the starting reagents is 2:1) upon heating (80–82°C,
56–80 h) in the absence of catalysts and solvents to afford the corresponding diadducts
6a–6d in almost quantitative yields (Table 1, Entries 1–4). It should be emphasized that
the radical scavengers (hydroquinone or TEMPO) do not inhibit the addition of phos-
phine chalcogenide 1 to divinyl sulfide 4 (Table 1, Entries 5, 6). Moreover, in the dark, this
reaction proceeds with the same efficiency as in the light (Table 1, Entry 7).

Using bis(2-phenethyl)phosphine oxide as an example, it has been found that secondary
phosphine oxides do not react with divinyl chalcogenides 4 and 5 under the conditions
elaborated.

The attempts to direct this reaction at the preferable formation of the monoadduct
by heating (at 43–45°; 50–53° or 80–82°C) phosphine sulfides 1, 3 with divinyl sulfide
4 or divinyl selenide 5 (their molar ratio 1:1) do not give the desired result. In all the
experiments, mixtures of mono – 7a,b,d and diadducts 6a,b,d are formed, the latter being
significantly (∼ threefold times) prevailing. This indicates a much higher addition rate of
the phosphine chalcogenides to the monoadducts (Scheme 1).

Adducts 6d and 7d (obtained from divinyl selenide and phosphine sulfide 3) are easily
isolated from the reaction mixture in 22% and 57% yields, respectively. At the same time,
separation of mono- and diadducts 7a,7b and 6a,6b on a chromatographic column has
met with no success, since they have almost the same solubility in most organic solvents
(benzene, ether, chloroform, acetone and ethanol) and close Rf values.

The reaction mechanism is of a special interest. As far as the addition takes place with
equal efficiency both in the light and in the dark and radical scavenges such as TEMPO and
hydroquinone do not influence the process, one should decline the radical mechanism. As
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JOURNAL OF SULFUR CHEMISTRY 3

a probable rationale of the mechanism, the electrophilic attack of the positively charged
phosphorus atom of the phosphine chalcogenides at the β-carbon of vinyl chalcogenides
may be admitted (Scheme 2). Such an attack should be facilitated by the negative charge

Table 1. Synthesis of α,ω-diphosphine chalcogenides 6a–6d under catalyst- and solvent-free
conditionsa.

Entry
Phosphine

chalcogenide
Divinyl

chalcogenide Time (h) Product (6)
Isolated yield

(%)

1 72 95

2 68 98

3 78 95

4 62 96

5b 80 95

6c 56 96

(continued).
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4 N. K. GUSAROVA ET AL.

Table 1. Continued.

Entry
Phosphine

chalcogenide
Divinyl

chalcogenide Time (h) Product (6)
Isolated yield

(%)

7d 76 95

76 95
aStandard reaction condition: molar ratio phosphine chalcogenide/divinyl chalcogenide = 2:1, 80–82°C, argon.
bExperiment was carried out in the presence of hydroquinone (10wt%).
cExperiment was carried out in the presence of TEMPO (5wt%).
dExperiment was carried out in dark.

Scheme 1. Synthesis of monoadducts 7a,b,d.

Scheme 2. A possible generation of intermediate A.

at this atom and stabilization of the emerging positive charge at the α-carbon atom by the
lone electron pair of the chalcogen atom (intermediate A).

This process should be additionally favored by simultaneous hydrid transfer from the
phosphorus atom to the carbenium center. Consequently, all this is likely realized in the
four-membered transition state B. Of course, the six-membered transition state C with
the participation of two molecules of the phosphine chalcogenides, having more favorable
valence angles, should not be excluded.
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Scheme 3. Reaction of divinyl telluride with secondary phosphine sulfides.

A higher rate of the addition to the mono-adducts (the advantageous formation of
the diadducts, see above) also requires rationalization. In terms of Scheme 1, this phe-
nomenon may be understood as an activation of the remaining double bond due to
its additional polarization under the intramolecular through-space influence from the
polarized phosphine chalcogenide moieties in the appropriate conformation D of the
mono-adduct.

It appears that the reaction of divinyl telluride with secondary phosphine sulfide under
similar conditions takes another direction. So, upon heating (80–82°C, 125 h) of divinyl

Figure 1. Ion fragmentation m/z 732 (130Te) of diadduct 8 in MS/MS TOF/TOF laser
desorption/ionization spectrum.
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6 N. K. GUSAROVA ET AL.

telluride with phosphine sulfide 1, instead of the expected diadduct 8, vinylphosphine sul-
fide 9 is formed in 72% yield,metal telluriumbeing also isolated. This reaction likely occurs
via the initial generation of diadduct 8, which further decomposes to give vinylphosphine
sulfide 9 andmetal tellurium (Scheme 3). Thus, in this case, divinyl telluride is a vinylating
agent relative to secondary phosphine sulfides.

Diadduct 8 has been detected in the reaction mixture by using the MSMS technique
(Figure 1).

3. Conclusion

In conclusion, a convenient, efficient and atom-economic method for the synthesis of
functionalized diphosphine chalcogenides via the catalyst- and solvent-free reaction of
secondary phosphine sulfides and phosphine selenides with divinyl sulfide and divinyl
selenide has been elaborated. The products obtained represent polydentate multifaceted
ligands, intermediates for drug design as well as for the generation of nano-sized semi-
conductors.

4. Experimental

4.1. General

The C, H, S microanalyses were performed on a Flash EA 1112 CHNS-O/MAS analyzer,
while the P and Se contentwere determined by combustionmethod. IR spectrawere run on
a Bruker Vertex 70 instrument. The 1H, 13C, 31P and 77Se NMR spectra were recorded on a
Bruker DPX 400 and Bruker AV-400 spectrometer (400.13, 100.61, 161.98 and 76.31MHz,
respectively). 85% H3PO4/H2O was employed as external standard for 31P NMR; hexam-
ethyldisiloxane was used for 1H, 13C NMR and Me2Se was the external standard for 77Se
NMR.Melting points (uncorrected) weremeasured on a Koflermicro hot-stage apparatus.
Laser desorption ionization MS/MS TOF/TOF mass spectrum was recorded on UltraFlex
III TOF/TOF (Bruker Daltonics GmbH, Germany), equipped with a pulse nitrogen laser
(337 nm) using FlexControl (BrukerDaltonics, Germany) software (version 3.3) in a reflec-
tron modi. The spectra were processed using FlexAnalysis 3.3 software (Bruker Daltonics,
Germany). Positively charged ions were fixed. Metastable ion peaks (PSD), decomposed in
field-free space, were determined in LIFTmode.Mass spectra were calibrated using Proteo
Mass set (Sigma, Germany). Samples were prepared by the Dried-Drop Method: 0.5 μL of
the sample (2.3 pMol) solution in CHCl3 (Merk, Germany) was deposited onto the target
NALDITM (Nanosys, Inc. Palo Alto, CA, USA), having a nano-structured surface allowing
to study the analyte without matrix, and allowed to air-dry (for several minutes) at room
temperature.

All steps of the experiment were carried out in argon atmosphere. Divinyl chalco-
genides were readily prepared according to the published procedure.[41–43] Secondary
phosphine chalcogenides 1, 2 were synthesized by oxidation of the corresponding phos-
phines with powdered sulfur or selenium. The initial phosphine was prepared from red
phosphorus and styrene as described in the literature.[58] Diphenylphosphine sulfide 3
was prepared by oxidation of commercially available diphenylphosphine (Aldrich) with
elemental sulfur.
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4.2. General procedure for synthesis of α,ω-diphosphine chalcogenides 6a–6d

Amixture of secondary phosphine chalcogenide 1–3 and divinyl chalcogenide 4, 5 (molar
ratio 2:1) was stirred at 80–82°C for 56–80 h under argon atmosphere. The reaction was
monitored by 31P NMR following the disappearance of the signal of the starting phos-
phine chalcogenide (δP = 3÷ 23 ppm) and simultaneous appearance of a new signal at
38÷ 49 ppm, corresponding to tertiary phosphine chalcogenide 6a–6d. After the reac-
tion completion, the crude product was dissolved in a small amount of chloroform and
reprecipitated to hexane to give compounds 6a–d in 95–98% yields.

4.2.1. 2-[2-(Diphenethylphosphorothioyl)ethyl]sulfanylethyl(diphenethyl)phosphine
sulfide (6a)

Colorless oil; yield: 0.38 g (95%). 1H NMR (400.13MHz, CDCl3): δ = 2.13 [m, 12 H,
CH2P(CH2)2], 2.81 (m, 4 H, CH2S), 2.93 (m, 8 H, PhCH2), 7.18–7.31 (m, 20 H, Ph). 13C
NMR (100.61MHz, CDCl3): δ = 24.97 (d, 2JPC = 2.0Hz, SCH2), 28.59 (d, 2JPC = 3.1Hz,
PhCH2), 31.04 (d, 1JPC = 45.5Hz, PCH2CH2S), 33.29 (d, 1JPC = 48.2Hz, PCH2CH2Ph),
126.65 (Cp, Ph), 128.24, 128.76 (Co,m, Ph), 140.33 (d, 3JPC = 14.2Hz, Ci, Ph). 31P NMR
(161.98MHz, CDCl3): δ = 48.8. IR (neat, cm−1): 3084, 3061, 3026, 3001 (ν=CHof phenyl
rings), 2922, 2904, 2861 (ν CH), 1952, 1878, 1809, 1753, 1602, 1584, 1496 (ν C=Cof phenyl
rings), 1452, 1404 (δ CH2), 1274, 1214, 1137, 1072, 1027, 1008, 951, 911, 836 (δ CH of
phenyl rings), 752 br.c (ν P–C), 699 (δ CH of phenyl rings), 598 (ν P=S). Anal. Calcd for
C36H44P2S3: C, 68.11; H, 6.99; P, 9.76; S, 15.15. Found: C, 68.19%; H, 7.23%; P, 9.67%; S,
14.85%.

4.2.2. 2-[2-(Diphenethylphosphorothioyl)ethyl]selanylethyl(diphenethyl)phosphine
sulfide (6b)

Colorless oil; yield: 0.54 g (98%). 1H NMR (400.13MHz, CDCl3): δ = 2.17 (m, 12 H,
CH2PCH2), 2.82 (m, 4 H, CH2Se), 2.94 (m, 8 H, PhCH2), 7.18–7.25 (m, 20 H, Ph). 13C
NMR (100.61MHz, CDCl3): δ = 15.20 (d, 2JPC = 3.7Hz, CH2Se), 28.53 (PhCH2), 32.08
(d, 1JPC = 44.2Hz, PCH2CH2Se), 32.93 (d, 1JPC = 47.5Hz, PhCH2CH2P), 126.61 (Cp,
Ph), 128.23, 128.71 (Co,m, Ph), 140.30 (d, 3JPC = 13.4Hz, Ci, Ph). 31P NMR (161.98MHz,
CDCl3): δ = 49.5. 77Se NMR (76.31MHz, CDCl3): δ = 249 (CH2SeCH2). IR (neat,
cm−1): 3084, 3061, 3026, 3001 (ν=CH of phenyl rings), 2925, 2854 (ν CH), 1602, 1583,
1496 (ν C=C of phenyl rings), 1453, 1405 (δ CH2), 1254, 1214, 1179, 1121, 1081, 1047,
1029, 1006, 949, 910, sh 888, 873, sh 832, sh 808 (δ CH of phenyl rings), br.c 750 (ν P–C),
698 (δCHof phenyl rings), sh 612, 596 (ν P=S). Anal. Calcd forC36H44P2S2Se: C, 63.40;H,
6.51; P, 9.11; S, 9.39; Se, 11.61. Found: C, 63.46%; H, 6.59%; P, 8.96%; S, 9.48%; Se, 11.51%.

Physical-chemical and spectral data (NMR 1H, 31P) were identical to those for the com-
pound obtained previously from phosphine sulfide 1 and divinyl selenide under radical
initiation (75°C, AIBN, 1,4-dioxane).[44]

4.2.3. 2-[2-(Diphenethylphosphoroselenoyl)ethyl]selanylethyl(diphenethyl)
phosphine selenide (6c)

Light yellow oil; yield: 0.55 g (95%). 1H NMR (400.13MHz, CDCl3): δ = 2.28 (m, 12 H,
CH2PCH2), 2.83 (m, 8 H, PhCH2), 2.94 (m, 4 H, CH2Se), 7.19–7.25 (m, 20 H, Ph). 13C
NMR (100.61MHz, CDCl3): δ = 15.72 (d, 2JPC = 2.7Hz, CH2Se), 29.04 (PhCH2), 31.35
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8 N. K. GUSAROVA ET AL.

(d, 1JPC = 36.5Hz, PCH2CH2Se), 32.23 (d, 1JPC = 40.4Hz, PhCH2CH2P), 126.36 (Cp,
Ph), 127.99, 128.44 (Co,m, Ph), 139.80 (d, 3JPC = 13.6Hz, Ci, Ph).31P NMR (161.98MHz,
CDCl3): δ = 38.9. 77Se NMR (76.31MHz, CDCl3): δ = -387 (d, 1JP−Se = 702.0Hz,
P=Se), 252 (CH2SeCH2). IR (neat, cm−1): 3084, 3061, 3026, 3001 (ν =CH of phenyl
rings), 2924, 2854 (ν CH), 1602, 1583, 1496 (ν C=C of phenyl rings), 1454, 1404 (δ CH2),
sh 1269, 1254, 1214, 1178, 1120, 1082, 1029, 1006, 949, 910, 888, 873 (δ CH of phenyl
rings), br.c 753 (ν P–C), 698 (δ CH of phenyl rings), sh 572, 575 (ν P=Se). Anal. Calcd for
C36H44P2Se3: C, 55.78; H, 5.70; P, 7.97; Se, 30.57. Found: C, 56.01%; H, 5.69%; P, 7.84%;
Se, 30.46%.

Physical-chemical and spectral data (NMR 1H, 31P) were identical to those for the com-
pound obtained previously from phosphine sulfide 2 and divinyl selenide under radical
initiation (75°C, AIBN, 1,4-dioxane).[44]

4.2.4. 2-[2-(Diphenylphosphorothioyl)ethyl]selanylethyl(diphenyl)phosphine sulfide
(6d)

White powder, m.p. 146–148°C; yield: 0.49 g (96%) prepared from diphenylphosphine
sulfide 3 (1.5mmol, 0.412 g) and divinyl selenide 4 (0.75mmol, 0.100 g). 1H NMR
(400.13MHz, CDCl3): δ = 2.76 (m, 8H, PCH2CH2Se), 7.45–7.86 (m, 20H, Ph). 13CNMR
(100.61MHz, CDCl3): δ = 14.60 (d, 2JPC = 3.0Hz, CH2Se), 33.91 (d, 1JPC = 49.8Hz,
CH2P), 128.7 (d, 2JPC = 12.2Hz, Co), 131.1 (d, 3JPC = 10.3Hz, Cm), 131.5 (d, 4JPC =
3.0Hz, Cp). 31P NMR (161.98MHz, CDCl3): δ = 42.5. IR (KBr, cm−1): 3053 (ν=CH);
2926, 2892 (ν CH), 1477 (ν C=C of phenyl rings), 1463, 1430 (δ CH2), 1317, 1268, 1172,
1102, 1010, 920, 873, sh 776 (δ CH of phenyl rings), 751 (ν P–C); 737, 719, 698 (δ CH of
phenyl rings), sh 619, 603 (ν P=S). Anal. Calcd for C28H28P2S2Se: C, 59.05; H, 4.96; P,
10.88; S, 11.26; Se, 13.86. Found: C, 59.42%; H, 4.99%; P, 10.98%; S, 10.77%; Se, 13.84%.

Physical-chemical and spectral data (NMR 1H, 31P) were identical to those for the com-
pound obtained previously from phosphine sulfide 3 and divinyl selenide under radical
initiation (75°C, AIBN, 1,4-dioxane).[44]

4.3. Synthesis ofmonoadducts (7a,b,d)

Amixture of phosphine sulfide 1 (1.0mmol) and divinyl chalcogenide 4, 5 (1.0mmol) was
stirred at 80–82°C for 40–70 h (argon) following the disappearance of the signal of the
starting phosphine sulfide 1 (31P NMR) to give a mixture of mono-7a,7b and diadducts
6a,6b in a ratio of 70% and 30%, respectively, (31P NMR data).

Separation ofmono- and diadducts 6a, 7a and 6b, 7b on a chromatographic column has
met with no success, since they have almost the same solubility in most organic solvents
(benzene, ether, chloroform, acetone, and ethanol) and close Rf values.

4.3.1. Themixture of adducts (6a and 7a)
1H NMR (400.13MHz, CDCl3): δ = 2.14 (m, 18 H, CH2P(CH2)2 in 6a and 7a), 2.83
(m, 6 H, CH2S in 6a and 7a), 2.94 (m, 12 H, PhCH2 in 6a and 7a), 5.15 (d, 1 H,
3JHH = 16.7Hz,=CH2 in 7a), 5.23 (d, 1 H, 3JHH = 10.1Hz,=CH2 in 7a), 6.25 (dd, 1
H,=CH in 7a), 7.14–7.26 (m, 30 H, Ph in 6a and 7a). 31P NMR (161.98MHz, CDCl3):
δ = 48.5 (7a), 48.8 (6a).

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
C

al
if

or
ni

a,
 S

an
 D

ie
go

] 
at

 0
3:

50
 2

7 
Ju

ne
 2

01
6 



JOURNAL OF SULFUR CHEMISTRY 9

4.3.2. Themixture of adducts (6b and 7b)
1H NMR (400.13MHz, CDCl3): δ = 2.18 (m, 18 H, CH2PCH2 in 6b and 7b), 2.84
(m, 6 H, CH2Se in 6b and 7b), 2.94 (m, 12 H, PhCH2 in 6b and 7b), 5.54 (d, 1 H,
3JHH = 16.9Hz,=CH2 in 7b), 5.78 (d, 1 H, 3JHH = 9.8Hz,=CH2, in 7b), 6.62 (dd, 1
H,=CH in 7b), 7.19–7.26 (m, 30 H, Ph in 6b and 7b). 31P NMR (161.98MHz, CDCl3):
δ = 49.3 (7b), 49.5 (6a).

4.3.3. Diphenyl[2-(vinylselanyl)ethyl]phosphine sulfide (7d)
A mixture, prepared from diphenylphosphine sulfide 3 (1.0mmol, 0.218 g) and divinyl
selenide 4 (1.0mmol, 0.133 g), containing mono-7d and diadduct 6d in a ratio of 70%
and 30%, respectively (31P NMR data), was dissolved in cold ether. Upon storage, a white
powder, diadduct 6d (0.226 g, 57%), was precipitated from the mixture. The ether solution
was decanted, concentrated under reduced pressure and passed through a thin (5mm)
layer of Al2O3. The solvent was evaporated and the residue was dried at 1mm Hg to
give viscous monoadduct 7d as light-yellow oil (0.054 g, 22%). 1H NMR (400.13MHz,
CDCl3): δ = 2.87 (m, 4 H, PCH2CH2Se), 5.46 (d, 1 H, 3JHH = 16.7Hz, =CH2), 5.73
(d, 1 H, 3JHH = 9.6Hz, =CH2), 6.64 (dd, 1 H, CH=), 7.53 (m, 6 H, Ph), 7.89 (m, 4 H,
Ph). 13C NMR (100.61MHz, CDCl3): δ = 16.26 (d, 2JPC = 2.0Hz, CH2Se), 33.96 (d,
1JPC = 49.2Hz, CH2P), 118.12 (=CH2), 125.40 (CH=), 128.6 (d, 2JPC = 12.06Hz, Co),
130.9 (d, 3JPC = 10.2Hz, Cm), 131.6 (d, 4JPC = 2.0Hz, Cp), 132.1 (d, 1JPC = 74.4Hz, Ci).
31P NMR (161.98MHz, CDCl3): δ = 41.9. Anal. Calcd for C16H17PSSe: C, 54.70; H, 4.88;
P, 8.82; S, 9.13; Se, 22.48. Found: C, 54.75%; H, 4.90%; P, 8.96%; S, 9.01%; Se, 22.38%.

Physical-chemical and spectral data (NMR 1H, 31P) were identical to those for the com-
pound obtained previously from phosphine sulfide 3 and divinyl selenide under radical
initiation (75°C, AIBN, 1,4-dioxane).[44]

4.4. Reaction of phosphine sulfide 1with divinyl telluride

A mixture of secondary phosphine sulfide 1 (1.5mmol, 0.412 g) and divinyl telluride
(0.75mmol, 0.136 g) was stirred at 80–82°C for 125 h (argon) following the disappearance
in the 31P NMR of the signal of the starting phosphine sulfide 1 at 21.3 ppm and simul-
taneous appearance of new signals at 51.3 ppm (the expected diadduct 8) and 43.1 ppm
(vinylphosphine sulfide 9). As the reaction proceeded, the intensity of the signal corre-
sponding to vinylphosphine sulfide 9 increased, while the intensity of the signal corre-
sponding to diadduct 8 dropped. The presence of the expected diadduct 8 in the reaction
mixture was proved byMSMS analysis: the spectrum showed a characteristic cluster of iso-
topic peaks of the molecular ion withm/z 732 (for 130Te). After complete disappearance of
the signal of the starting phosphine sulfide 1 in the 31P NMR spectrum, the reaction mix-
ture contained diadduct 8 (51.3 ppm) and vinylphosphine sulfide 9 (43.1 ppm), the signal
intensity being 5% and 95%, respectively. The crude product represents a viscous mass
containing black inclusions (elemental tellurium). Ether (5ml) was added to the product
obtained, and the residue precipitated was separated and washed many times with ether to
give 0.081 g of elemental tellurium.

The ether extracts were combined and evaporated under reduced pressure; the residue
was dissolved in a small amount of ether and passed through thin layers of Al2O3, and the
ether was distilled to give 0.336 g (yield 72%) of vinylphosphine sulfide 9.

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
C

al
if

or
ni

a,
 S

an
 D

ie
go

] 
at

 0
3:

50
 2

7 
Ju

ne
 2

01
6 



10 N. K. GUSAROVA ET AL.

4.4.1. Diphenethyl(vinyl)phosphine sulfide (9)
Light yellow viscous substance; yield: 0.336 g (72%). 1H NMR (400.13MHz, CDCl3):
δ = 2.16–2.28 (m, 4 H, CH2PCH2), 2.84–3.05 (m, 4 H, PhCH2), 6.21–6.57 (m, 3 H,
CH=CH2), 7.19–7.32 (m, 10 H, Ph). 31P NMR (161.98MHz, CDCl3): δ = 43.1. Anal.
Calcd for C18H21PS: C, 71.82; H, 6.99; P, 10.91; S, 10.51. Found: C, 71.93%; H, 7.03%; P,
10.47%; S, 10.57%.

Physical-chemical and spectral data were identical to the literature ones.[59]
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