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The Mitsunobu reaction has become one of the most powerful tools to alkylate acidic pronucleophiles. A
significant caveat of Mitsunobu chemistry, however, is that the reaction mixture is often plagued with
purification problems owing to the phosphine oxide and hydrazine dicarboxylate by-products. In addi-
tion to the development of more readily separable Mitsunobu reagents, the product’s physicochemical
properties may be exploited to facilitate purification. In this regard, we present a swift and efficient
preparation of 3-hydroxybenzisoxazoles by the Mitsunobu-triggered heterocyclizations of salicylhydrox-
amic acids, which can be isolated by an acid–base work-up. As expected, a range of functional groups was
compatible with the chemistry.

� 2016 Elsevier Ltd. All rights reserved.
Bioisosterism is the replacement of key functional groups with
moieties that result in safer and/or clinically more effective drugs.1

During our research program on the development of inhibitors of
the Mcl-1 oncoprotein,2 we explored the replacement of an
arenecarboxylic acid motif, that is proposed to capture Arg263
through a salt bridge, with various bioisosteres to promote cell
penetration. Bearing pKa’s of around 5,3 3-hydroxybenzisoxazoles
represent a potential surrogate for arenecarboxylic acids. Typically,
3-hydroxybenzisoxazoles are prepared by cyclizations of the corre-
sponding salicylhydroxamic acids with carbonyl diimidazole in
refluxing THF,4 although the range of yields associated with this
chemistry would suggest it to be rather capricious. We considered
if a milder and more reliable approach to these target molecules
could be developed.

The Mitsunobu reaction is a powerful tool to alkylate acidic
pronucleophiles through the in situ activation of primary and sec-
ondary alcohols, and occasionally tertiary alcohols, upon the reac-
tion of a phosphine, typically triphenylphosphine (PPh3), with an
azodicarboxylate, typically diisopropyl azodicarboxylate (DIAD).5,6

Suitable pronucelophiles exhibit pKa’s<12, and include carboxylic
acids, phenols, sulfonamides,6 as well as various heterocycles, such
as purines,7 benzodiazepine-2,5-diones,8 and 3-hydroxyisoxa-
zoles.9 The chemistry is highly versatile featuring in the construc-
tion of CAO, CAS, CAN, and CAC bonds.6 Moreover, the reaction is
mild, often occurring in under an hour at room temperature, and is
tolerant of a wide range of functional groups. However, despite all
these highlights, this chemistry is marred by the often problematic
purification owing to the attendant phosphine oxide and hydrazine
dicarboxylate generated in the reaction. Many groups, including
ours, have developed alternative phosphine and azodicarboxylates
to facilitate purification of the reaction mixture.6,10–12 In parallel
with this, the product’s physicochemical properties may be
exploited to facilitate purification. Recently, we reported on the
Mitsunobu-triggered dehydration of salicylaldoximes to generate
salicylonitriles via the corresponding benzisoxazoles.13 Due to
their acidities, the products were isolable by acid–base work-ups
without the need for column chromatography. Herein, we present
the Mitsunobu-triggered heterocyclizations of salicylhydroxamic
acids to 3-hydroxybenzisoxazoles that can likewise be isolated
by an acid–base work-up.

We considered that salicylhydroxamic acid carries all the ele-
ments for a successful Mitsunobu reaction, i.e. an acidic nucle-
ophile (phenol moiety) and an alcohol (hydroxamic acid
hydroxyl). Indeed, a lone report on the heterocyclization of salicyl-
hydroxamic acid into its corresponding 3-hydroxyisoxazole by the
Mitsunobu reaction exists, although no conditions, yield, nor work-
up/purification were provided.14 Furthermore, no exploration into
the substrate scope was presented. In our hands, treatment of sal-
icylhydroxamic acid 1 with 1.25 equiv of both PPh3 and DIAD in
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Scheme 1. Mitsunobu-triggered heterocyclization of salicylhydroxamic acid 1a.
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anhydrous THF at room temperature afforded 3-hydroxybenzisox-
azole 2 in 95% yield, which was isolated by an acid–base extraction
with no need for flash column chromatography (Scheme 1);15 the
1H and 13C NMR spectra are furnished in the Supporting informa-
tion. Complete conversion occurred within 30 min. Reducing the
equivalents of the Mitsunobu reagents led to slightly lower conver-
sions. The conversion was just as efficient in toluene and CH2Cl2,
despite the poor initial solubility of 1 in these solvents. We next
evaluated the tolerance of a range of functional groups to this
chemistry, as described in Table 1.
Table 1
a

Entry Substrate Product Yield (%) Entry

1 95 8

2 91 9

3 96 10

4 89 11c

5 86 12

6 93 13

7 96 14

a 1 equiv of 1 and 1.25 equiv of PPh3 were dissolved in anhydrous THF (0.07 M) under
after 30 min indicated reaction was complete.

b Isolated yield after work-up as described in the References and notes section.
c General work-up modified: instead of the acidification step, the basic aqueous layer
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First, all but one of the salicylhydroxamic acids were prepared
by a standard two-step procedure (Scheme 2A). Briefly, the appro-
priate salicylic acid was esterified with MeOH and concentrated
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an inert atmosphere at rt. After 2 min, 1.25 equiv of DIAD were added dropwise. TLC

was neutralized with 1 M HCl, then the product 2k was extracted into CH2Cl2.
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Scheme 3. Proposed mechanism for the Mitsunobu-triggered cyclodehydrations of salicylhydroxamic acids into their corresponding 3-hydroxybenzisoxazoles.
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H2SO4. Subsequently, the methyl ester was transformed into the
corresponding salicylhydroxamic acid by treatment with NH2OH
and NaOH for 16 h. 4-Cyanosalicylhydroxamic acid (1m) could
not be prepared by this procedure owing to transformation of
the nitrile functional group into a methyl imidate. Instead, as
shown in Scheme 2B, 4-cyanosalicylic acid was converted to its
acid chloride via oxalyl chloride, amidated with O-(tetrahydropy-
ran-3-yl)-hydroxylamine, and then the THP protecting group was
subsequently removed by treatment with p-tosic acid in methanol
to deliver the desired salicylhydroxamic acid 1m. As can be seen in
Table 1, electron-neutral, electron-rich and electron-poor salicyl-
hydroxamates cyclized efficiently under the reaction conditions,
and a variety of functional groups were compatible with the Mit-
sunobu chemistry. Compound 2a was also prepared on a larger
scale (5 mmol) in a similarly high-yield of 92%, indicating the
chemistry is scalable. In Scheme 3, we have proposed a mechanism
for this transformation. Briefly, it is postulated that the DIAD/PPh3

betaine deprotonates the phenol of the salicylhydroxamic acid,
which is followed by triphenylphosphinylation of the hydroxamic
acid hydroxyl group. A subsequent intramolecular SN2 reaction
on the iminolic nitrogen by the phenolate anion then delivers the
3-hydroxybenzisoxazole.

In conclusion, we have demonstrated that heterocyclizations of
salicylhydroxamic acids to their corresponding 3-hydroxyben-
zisoxazoles proceeds quickly and efficiently under mild conditions
through an intramolecular Mitsunobu reaction. As anticipated, the
chemistry is tolerant of a range of functional groups. Significantly,
the products were isolable by acid–base work-ups, circumventing
the often difficult purification of Mitsunobu reactions.
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