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Retro iminonitroso Diels–Alder reactions were investigated in both solution and solid phase. In thermal
or Cu(I)-mediated reactions, interconversion of various nitroso cycloadducts occurred in the presence of
separate dienes. Up to 99% of conversion was observed. Use of chiral ligands in the Cu(I)-mediated reac-
tions gave new cycloadducts enantioselectively.
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Since its discovery in 1947, the nitroso Diels–Alder reaction
(NDA) has become a powerful synthetic tool for the formation of
1-amino-4-hydroxy-2-ene derivatives in one step.1 Many groups
have continued to develop and apply nitroso Diels–Alder reactions
in organic syntheses.2 We successfully used nitroso Diels–Alder
reactions to obtain cycloadducts as versatile building blocks for a
variety of synthetic applications, including preparation of carbocy-
clic nucleoside analogs and novel natural product scaffolds.3

The retro Diels–Alder reaction (retro DA) has been known since
the discovery of the forward DA itself and has been used to gener-
ate a wide variety of reactive species in a synthetically useful man-
ner.4 The retro DA strategy has been of considerable utility in
promoting acylnitroso cycloaddition reactions. For example, it
has been used to store in situ generated transient and unisolable
acylnitroso agents 1 by cycloaddition with dimethylanthracene
(DMA).5 To avoid the direct use of oxidant, the resultant cycload-
ducts can be thermolized at relatively low temperature to release
the free acylnitroso species 1 (Scheme 1). However, very few
examples have been reported regarding retro nitroso Diels–Alder
reactions (retro NDA) related to aryl or heteroaryl nitroso agents.6

Studies of retro NDA reactions would benefit understanding of
reaction mechanisms and extend their synthetic use. We envi-
sioned that the dissociation of nitroso cycloadducts might occur
under thermal or Lewis acid-mediated conditions to generate
new nitroso cycloadduct scaffolds in the presence of added dienes.
Herein we describe the preliminary results of this study in both
solution and solid phase.

Three structurally differentiated nitroso cycloadducts 6a–c were
obtained from NDA reactions between 6-methyl-2-nitrosopyridine
2a and colchicine 3, 1,3-cyclopentadiene 4 and ergosterol 5, respec-
tively (Scheme 2).3e We chose these cycloadducts for initial investi-
gations of the retro NDA reactions since, in our early report, we
ll rights reserved.

: +1 574 631 6652.
noticed that cycloaddition with colchicine was a reversible pro-
cess.3e The experiments were conducted by treating cycloadducts
6a–c with 5.0 equiv of 1,3-cyclohexadiene 7 at both 25 �C and
50 �C.7 As shown in Table 1, dissociations of colchicine adduct 6a
and ergosterol adduct 6c at 25 �C were observed and in situ trapping
of the released nitroso species 2a with 7 gave adduct 8 in 43% and
20% yield, respectively (entries 1 and 5). Not surprisingly, at elevated
temperature (50 �C), complete retro NDA reactions of 6a and 6c oc-
curred within several hours, affording adduct 8 in good yields (en-
tries 2 and 6). In the presence of a large excess of 7, the net
reaction of 6c was accelerated and compound 8 was obtained in
54% yield at 25 �C (entry 7). In contrast, no retro NDA reaction was
detected for adduct 6b at 25 �C or even at high temperature (entries
3 and 4). These observations clearly indicated that structure and con-
figuration played important roles in the related retro NDA reactions.
Compared to their parent natural products or adduct 6b, NDA ad-
ducts 6a and 6c are more sterically congested.

Heating 6a and 6b in the presence of 7 at 50 �C produced only
89% and 86% of adduct 8 even though no starting compounds (6a
and 6c) were recovered (Table 1, entries 2 and 6). This encouraged
further study and revealed that a small portion of released nitroso
2a underwent reaction to form azo-oxy compound 9.8 To the best
of our knowledge, the formation of 9 directly from a pyridinylnitr-
oso precursor has not been reported. Further analyses of solutions
of 6-methyl-2-nitrosopyridine, 2a, showed that while 2a existed in
equilibrium with the corresponding azodioxy dimer,9 azo-oxy
compound 9 slowly formed upon standing in pure organic sol-
vent10 (Fig. 1).

The retro iminonitroso Diels–Alder reaction was also observed
when we subjected racemic spirocyclic adduct 11b3d to the cata-
lytic asymmetric iminonitroso Diels–Alder reaction conditions.
Trapping of nitroso agent 2b generated from the degradation of
11b with 1,3-cyclohexadiene 7 in the presence of Cu(I)PF6(MeCN)4

and (S)-BINAP produced cycloadduct 12 with moderate
enantioselectivity (19% yield, 52% ee, Scheme 3).11 The absolute

http://dx.doi.org/10.1016/j.tetlet.2009.07.121
mailto:mmiller1@nd.edu
http://www.sciencedirect.com/science/journal/00404039
http://www.elsevier.com/locate/tetlet


R3
N
O

* N
O*

R3

R1

R2

R1

R2

+
NDA

retro NDA

R

O

NHOH

+

DMA

R'4NIO4 O
N

O

R

Retro NDA

R

O

N
O

1

Scheme 1. Nitroso Diels–Alder and retro acylnitroso Diels–Alder reaction.
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Scheme 2. Nitroso Diels–Alder reaction with various dienes.

Table 1
Retro NDA reaction of iminonitroso cycloadducts 6a–c

(5 eq)
CHCl3

6a-c   +

O
NN

8

N N
O

2a7

Entry Adduct Temp (�C) Time (h) 8a (%)

1 6a 25 24 43
2 6a 50 5 89
3 6b 25 24 0
4b 6b >50 — 0
5 6c 25 24 20
6 6c 50 2 86
7c 6c 25 24 54

a Isolated yields reported.
b Temperature was increased from 50 �C to 70 �C (reflux).
c CHCl3/1,3-cyclohexadiene 7 (10% v:v) as solvent.
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stereochemistry was proposed based on the literature-based
mechanistic model.12

To minimize the competing non-catalytic asymmetric imino-
nitroso Diels–Alder reaction process, work-up temperature was
modified from room temperature to �20 �C. By doing this, cycload-
duct 11b was obtained in 74% yield and with an improved ee value
(Table 2, entries 1 and 2). Under these optimized conditions, an
extended study was performed using different iminonitroso
reagents 2a–c and chiral phosphine ligands.13 Use of chiral ligand
(S)-DifluoroPhos and 6-methyl-2-nitrosopyridine, 2a, provided
spirocyclic adduct 11a with the highest ee value (96% ee, entry
5). A dramatically decreased ee value was observed when
5-methyl-3-nitrosoisoxazole, 2c, was used (28% ee, entry 6).

Retro Diels–Alder reactions were also attempted in solid phase
using NDA adducts attached to resin. The adduct resins 13a and
13b,14 derived from a-terpinene, were exposed to various dienes
in a microwave cavity for 5 min, then products 15 were cleaved
from the resin with TBAF and were analyzed by LC/MS.15 The re-
sults are summarized in Table 3. While the nitrophenyl NDA ad-
duct 13a provided quantitative retro NDA adducts with all tested
dienes, the pyridyl derivative 13b was less reactive under the same
conditions (Table 3, entries 1–6). Reactions with unsymmetric
dienes such as 2,4-hexadien-1-ol, 7b, and 1-methoxy-1,3-cyclo-
hexadiene, 7c, gave cycloadducts as mixtures of two regioisomers
in good to excellent yields (entries 4–6).

In summary, we found that various iminonitroso cycloadducts
can undergo retro nitroso Diels–Alder reactions in both solution
and solid phase under thermal or Cu(I)-mediated conditions. By
trapping the released nitroso dienophiles with separate dienes,
new adduct scaffolds were generated in an efficient fashion. Use
of chiral ligands in the Cu(I)-mediated reactions gave new cycload-
ducts enantioselectively. We hope that the chemistry we describe
here can help expand the use of retro iminonitroso Diels–Alder
reactions in organic syntheses.



Table 2
NDA Reaction with various iminonitroso agents and chiral phosphine ligands
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a Reaction was worked up at room temperature.
b Reaction was worked up at �20 �C.
c Isolated yields reported.
d Determined by Chiral HPLC.
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Scheme 3. Retro NDA reaction of spirocyclic adduct 11b.

O
N N

O

NN
N N

O

dimer

Solvent

monomer

O
N N

N

NSlow

Solvent

-

2a 9

-

Figure 1. Solution state equilibrium of 6-methyl-2-nitrosopyridine 2a and generation of 9.
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Table 3
Retro HDA reaction of resin-bounded a-terpinene adducts with various dienes
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Entry Adduct Diene 15a (%)

1 13a 7 99
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a Determined by LC/MS.
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