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Chiral ruthenium(II) complexes, RuCl2(PPh3)(oxazolinyl-
ferrocenylphosphine), have been found to be effective
catalysts for asymmetric hydrosilylation of ketoximes to give
the corresponding primary amines in good yields with high
enantioselectivities (up to 89% ee) after acid hydrolysis.

Optically active primary amines are one of the most useful
synthetic intermediates of natural compounds and pharmaceuti-
cal drugs.1 However, the direct enantioselective synthesis of
optically active primary amines with high enantioselectivities is
limited only to the hydroboration of ketoxime ethers2 and the
kinetic resolution of racemic primary amines.3 A catalytic
hydrogenation of ketoximes producing directly the chiral
primary amines has been reported by several groups, but no
sufficient results have been achieved until now.4 This is in sharp
contrast to the enantioselective hydrogenation and transfer
hydrogenation of imines catalysed by transition metal com-
plexes with chiral ligands to afford the corresponding secondary
amines with high enantioselectivities.5,6 As an alternative direct
enantioselective synthesis of chiral primary amines, Brunner
and co-workers developed the rhodium-catalysed asymmetric
hydrosilylation of ketoximes using DIOP (2,3-O-isopropyli-
dene-2,3-dihydroxy-1,4-bis(diphenylphosphino)butane) as a
chiral ligand, but enantioselectivities of the produced primary
amines were moderate (up to 36% ee).7 On the other hand, we
have recently disclosed that the ruthenium(II)- and iridium(I)-
catalysed asymmetric hydrosilylation of imines by using
oxazolinylferrocenylphosphines8 (1) as chiral ligands gave the
corresponding secondary amines with high enantioselectivities
after acid hydrolysis (up to 89% ee).9 As an extension of our
studies, we have now investigated the ruthenium(II)-catalysed
asymmetric hydrosilylation of ketoximes by using 1 as chiral
ligands and have found that the corresponding chiral primary
amines were produced successfully. Preliminary results are
described here.

Treatment of 1-tetralone oxime10 (3a) with 3 equiv. of
diphenylsilane in THF in the presence of [RuCl2(PPh3)·1a] (2a)
(1 mol%) at rt for 24 h afforded 1,2,3,4-tetrahydro-1-naph-
thylamine (4a) in 46% GLC yield with 74% ee (R) after acid
hydrolysis (Scheme 1; Table 1, run 1).11 The ee value of 4a was
determined by GLC analysis of the corresponding trifluor-
oacetamide. The relatively low yield of 4a to the high
conversion of 3a is considered to be due to the formation of
unidentified side products together with 1-tetralone, which was
probably formed after the hydrolysis of some intermediates.
The addition of AgOTf (1 mol%; OTf = OSO2CF3) to the
reaction system slightly increased the yield of 4a (Table 1, run
2). The use of 2b, bearing i-Pr substituted oxazoline, in place of
2a caused a decrease of the catalytic activity (Table 1, run 3).
The ruthenium complex having an oxazolinylphenylphos-
phine12 (1c) without planar chirality showed a quite low

enantioselectivity (Table 1, run 4), compared with that having
an oxazolinylferrocenylphosphine (1a and 1b). Reaction in the
presence of 2 mol% of 2a and AgOTf in DME (1,2-dimethoxy-
ethane) gave the best enantioselectivity (up to 83% ee) (Table 1,
runs 5 and 6). It is noteworthy that none of the ox-
azolinylphosphines (1a, 1b, and 1c) worked effectively as chiral
ligands for the rhodium- and iridium-catalysed asymmetric
hydrosilylation of ketoximes. For example, the ee values of 4a
obtained by using rhodium and iridium catalysts having 1a were
only 8% (S) and 5% (R), respectively. Furthermore, no reaction
occurred when the ruthenium complex with DIOP was
employed under the same reaction conditions, in contrast to
Brunner’s results7 described above (Rh-catalysed: up to 36%
ee).

Asymmetric hydrosilylation of other ketoximes with di-
phenylsilane was investigated in the presence of 2 and
AgOTf.13 Typical results are summarised in Table 2. Reactions
of 1-indanone oxime (3b) and 1-benzosuberon oxime (3c)
proceeded smoothly, but only moderate enantioselectivities
were obtained (Table 2, runs 3–5). In the case of acetophenone

Scheme 1 Asymmetric hydrosilylation of ketoximes.

Table 1 Ruthenium-catalysed asymmetric hydrosilylation of 1-tetralone
oxime (3a)a

Run
Catalyst/
mol%

Additive/
mol%

Reaction
time/h

Conv. of
3a (%)

Yield of
4a (%)b

ee of 4a
(%)c

1 2a (1) — 24 > 95 46 74 (R)
2 2a (1) AgOTf(1) 18 > 95 50 78 (R)
3 2b (1) AgOTf(1) 80 > 95 45 74 (R)
4 2c (1) AgOTf(1) 40 77 44 23 (R)
5 2a (2) AgOTf(2) 15 > 95 71 79 (R)
6d 2a (2) AgOTf(2) 24 > 95 65 83 (R)
a All reactions were carried out in the presence of a catalyst and an additive
using ketoxime 3a (1.0 mmol) and Ph2SiH2 (3.0 mmol) in THF (5 ml) at
rt.b GLC yield.c Determined by GLC analysis of the corresponding
trifluoroacetamide.d DME was used in place of THF.
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oxime (3d),14 the best enantioselectivity of 89% ee was
achieved (Table 2, run 7). Introduction of a p-halogeno or p-
methyl substituent to the aromatic ring of acetophenone oxime
slightly decreased the enantioselectivity (Table 2, runs 8–10).
When 2b was used in place of 2a as catalyst, a slightly better
enantioselectivity was obtained in several cases (Table 2, runs
7–10). Dialkyl ketoxime (3h) was also converted into the
corresponding dialkyl amine, but unfortunately in low yield
with low enantioselectivity (Table 2, run 11).

In summary, we have developed the highly enantioselective
ruthenium(II)-catalysed hydrosilylation of ketoximes to give the
corresponding primary amines with high enantioselectivities
(up to 89% ee) after hydrolysis. This may provide a versatile
method for the straightforward synthesis of chiral primary
amines because of the ready accessibility of ketoximes by
reaction of ketones with hydroxylamine. Further work is
currently in progress aiming at the elucidation of the reaction
mechanism and broadening the scope of this asymmetric
hydrosilylation.

This work was supported by Grant-in-Aid for Scientific
Research (Nos. 09102004 and 12750747) from the Ministry of
Education, Culture, Sports, Science and Technology, Japan.
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Table 2 Ruthenium-catalysed asymmetric hydrosilylation of ketoximes
(3)a

Run Ketoxime Catalyst Solvent
Reaction
time/h

Conv. of
3 (%)

Yield of
4 (%)b

ee of 4
(%)c

1 3a 2a THF 20 > 95 50 79 (R)
2 3a 2a DME 25 > 95 62 83 (R)
3 3b 2a DME 40 > 95 26 18 (R)
4 3b 2b DME 40 > 95 10 35 (R)
5 3c 2a THF 90 > 95 45 60 (R)
6 3d 2a THF 20 > 95 5 58 (R)
7 3d 2b THF 40 > 95 21 89 (R)
8 3e 2b THF 25 > 95 22 61 (R)
9 3f 2b THF 25 70 26 74 (R)

10 3g 2b DME 40 > 95 15 69 (R)
11 3h 2a THF 90 > 95 6 12 (R)
a All reactions were carried out in the presence of catalyst (0.010 mmol) and
AgOTf (0.010 mmol) using ketoxime 3 (0.50 mmol) and Ph2SiH2 (2.0
mmol) in solvent (5 ml) at rt.b GLC yield.c Determined by GLC analysis of
the corresponding trifluoroacetamide.
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