

Tetrahedron Letters 44 (2003) 1305-1307

TETRAHEDRON LETTERS

Synthesis and application of crown ether tagged triarylphosphines

Toby Jackson and Anne Routledge*

The Department of Chemistry, University of York, Heslington, York YO10 5DD, UK Received 5 November 2002; revised 21 November 2002; accepted 29 November 2002

Abstract—Crown ether tagged triarylphosphines 1 and 2 were synthesised and applied in Mitsunobu and Heck reactions, their reactivity being evaluated against triphenylphosphine- and polymer-bound triphenylphosphine. Purification of the reactions was effected by post-reaction sequestration onto an ammonium functionalised solid-phase. © 2003 Elsevier Science Ltd. All rights reserved.

The synthesis of chemical libraries is still a burgeoning area of research for both industry and academia. Early library syntheses were generally performed on the solid-phase¹ but recently there has been a paradigm shift towards solution-phase synthesis.² This has introduced new enabling technologies such as scavenger resins,³ fluorous-phase synthesis,⁴ polymer-supported⁵ and tagged reagents.⁶

In this letter we describe our preliminary results towards a novel approach to tagged reagents exemplified by the synthesis and application of crown ether tagged triarylphosphines 1 and 2. Triarylphosphines have been synthesised on both soluble⁷ and insoluble⁸ polymer supports and with a masked carboxylic acid as a sequestering tag.⁹ Here we have used the crown ether as an inert 'phase label' to allow selective solid-phase sequestration of the reagent and/or byproducts from reaction mixtures. A recent paper has described affinity purification using crown ether-ammonium ion interaction to isolate compounds that contained a large crown ether moiety (dibenzo-32-crown-10).¹⁰ This was, in effect, using the crown ether as the 'support' on which synthesis was undertaken. Similarly the use of aminomethyl-18-crown-6 as an ionisable phase label has been reported.11

The crown tagged triarylphosphine **1** was synthesised in excellent yield in a one-step reaction from commercially available 2-aminomethyl 18-crown-6 and triphenylphosphine carboxylic acid as shown in Scheme 1. 15Crown-5 tagged triarylphosphine 2 was synthesised from triphenylphosphine alcohol⁷ and mesylated hydroxymethyl 15-crown-5 as shown in Scheme 2.

Scheme 1. *Reagents and conditions*: (i) DCC, DMAP (cat.), HOBt, DCM, ambient temperature, 18 h, 94%.

In order to demonstrate the application of these reagents as triphenylphosphine substitutes, both crown tagged triarylphosphines 1 and 2 were used in the Mitsunobu synthesis of 7-benzyloxycoumarin 4 from 7-hydroxycoumarin 3 (Scheme 3). The results were compared to triphenylphosphine and cross-linked polystyrene supported triphenylphosphine (Nov-abiochem 1.10 mmol g^{-1}) (Table 1). In the reaction, 15-crown 5-tagged triarylphosphine 2 proved as effective as both triphenylphosphine and polymer-supported triphenylphosphine in converting 3 into 4.

The reaction mixture from the 18-crown-6-tagged triarylphosphine-mediated Mitsunobu reaction was loaded onto an ammonium trifluoroacetate ArgoPoreTM column¹² then eluted with dichloromethane. No phosphine derived adducts passed through the column as determined by ³¹P NMR spectroscopy (Fig. 1). Elution

0040-4039/03/\$ - see front matter @ 2003 Elsevier Science Ltd. All rights reserved. PII: S0040-4039(02)02728-4

^{*} Corresponding author. Tel.: +44 (0)1094 434540; fax: +44 (0)1904 432516; e-mail: ar30@york.ac.uk

Scheme 2. Reagents and conditions: (i) TBDMS-Cl, imidazole, DCM, 24 h, 98%. (ii) BuLi (2.39 M in hexane), chlorodiphenylphosphine, THF -78° C, 0.5 h to 20°C, 24 h, 22%. (iii) TBAF (1 M in THF) (2 equiv.), 20°C, 3 h, 75%. (iv) MsCl (3 equiv.), Et₃N (3 equiv.), DCM, 20°C, 18 h, 55%. (v) Cs₂CO₃ (2 equiv.), THF, 20°C, 48 h, 70%.

Scheme 3. Reagents and conditions: (i) L (2 equiv.), benzyl alcohol (1.1 equiv.), DEAD (2 equiv.), THF, 0–20°C, 3 h.

Table 1. Synthesis of 7-benzyloxycoumarin 4

Phosphine L	Percentage conversion of 3 to 4^{a} (%)
Triphenylphosphine	91
Polymer-supported triphenylphosphine	93
Tagged triarylphosphine 1	63
Tagged triarylphosphine 2	>95

Tagged triarylphosphine 2ca = "D" > > 95

^a Percentage conversion determined by HPLC analysis.

of the column with dichloromethane doped with 2% v/v triethylamine released all sequestered tagged phosphine oxide (Fig. 2). After washing to remove triethylamine, 80% of the expected triarylphosphine oxide was recovered.

Palladium-mediated carbon-carbon bond formations are extensively used in organic synthesis. In order to explore the application of crown-tagged triarylphosphine 2 in a Heck reaction it was used to synthesise the

Figure 1. ³¹P NMR spectrum of dichloromethane eluent from reaction to form 4.

Figure 2. ³¹P NMR spectrum of dichloromethane (+2%v/v) triethylamine) elution of ammonium functionalised Argo-PoreTM column.

methyl ester of 3-phenylacrylic acid 6 (Scheme 4) from iodobenzene 5 and methylacrylate. The results were compared to those obtained with triphenylphosphine (Table 2).

Scheme 4. *Reagents and conditions*: (i) L (0.32 equiv.), Pd(OAc)₂ (0.17 equiv.), NEt₃ (2 equiv.), THF reflux, 8 h.

 Table 2. Synthesis of 3-phenylacrylic acid methylester 6

Phosphine L	Percentage conversion of ${\bf 5}$ to ${\bf 6}^a$ (%)
Triphenylphosphine	>95
Tagged triphenylphosphine 2	>95

^a Percentage conversion determined by HPLC analysis.

In both cases the reaction showed quantitative conversion of iodobenzene 5 to 3-phenylacrylic acid methyl ester 6. The reaction mixture was loaded onto an ammonium trifluoroacetate $\operatorname{ArgoPore^{TM}}$ column then eluted with dichloromethane. As expected no phosphine derived adducts passed through the column as determined by ³¹P NMR spectroscopy (Fig. 3).

Figure 3. ³¹P NMR spectrum of dichloromethane eluent from Heck reaction to form **6**.

In conclusion, we have demonstrated that tagged triarylphosphine reagents can be used in both Mitsunobu and Heck chemistry with removal of phosphine derived by-products achieved by elution through ammonium functionalised ArgoPoreTM resin. Work is currently in progress to recycle these reagents by reduction of the triarylphosphine oxide.

Acknowledgements

We thank the EPSRC (T.J.) and the University of York for funding.

References

- 1. Thompson, L. A.; Ellman, J. A. Chem. Rev. 1996, 96, 555–600.
- Kreuger, E. B.; Hopkins, T. P.; Keaney, M. T.; Walters, M. A.; Boldi, A. M. J. Comb. Chem. 2002, 4, 229–238.
- Krajnc, P.; Brown, J. F.; Cameron, N. R. Org. Lett. 2002, 4, 2497–2500.
- 4. Curran, D. P.; Hoshino, M. J. Org. Chem. 1996, 61, 6480-6481.
- 5. Itsuno, S.; Tanaka, S.; Hirao, A. Bioorg. Med. Chem. Lett. 2002, 12, 1853–1856.
- 6. Wang, X.; Parlow, J. J.; Porco, J. A. Org. Lett. 2000, 2, 3509–3512.
- Sieber, F.; Wentworth, P.; Toker, J. D.; Wentworth, A. D., Jr.; Metz, W. A.; Reed, N. N.; Janda, K. D. J. Org. Chem. 1999, 64, 5188–5192.
- 8. Holletz, T.; Cech, D. Synthesis 1994, 789-791.
- Starkey, G. W.; Parlow, J. J.; Flynn, D. L. Bioorg. Med. Chem. Lett. 1998, 8, 2385–2390.
- Zhang, S. Q.; Fukase, K.; Kusumoto, S. *Tetrahedron* Lett. 1999, 40, 7479–7483.
- 11. Lepore, S. D. Tetrahedron Lett. 2001, 42, 6437-6439.
- 12. Ammonium functionalised ArgoPore[™] resin was prepared by the methodology outlined in Ref. 10.