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The control of stereochemistry in the installation of quaternary 

carbons remains an enduring challenge in complex total synthesis 
of natural products.

1 
The Lycopodium alkaloids magellanine 1

2
 

and lycojaponicumin B 2,3 Cyclopiane diterpene conidiogenone 

3,
4
 and Acorane terpene colletoic acid 4

5
 shown in Figure 1 are 

prime examples of such molecules. Each contains a stereogenic 

spirocyclic quaternary carbon embedded within a 

spiro[4.5]decane core. The complexity of these polycyclic 

architectures is further increased by the presence of contiguous 

chirality centers. 

 To synthesize the spiro[4.5]decane substructures found in 1-

4, we envisioned utilizing a phenolic dearomatization strategy.
6
 

Specifically, the classic Winstein-Masamune
7
 anionic phenolic 

dearomatization that proceeds via an Ar1,5 mechanism generates a 

spiro[4.5]decane substructure of 1-4. To wit, potassium tert-

butoxide (an exogenous base) in refluxing tert-butanol 

deprotonates the phenol 5 which subsequently reacts via 

vinylogous enolate reactivity to displace an electrophile at an sp3-

hybridized carbon terminus to afford spiro[4.5]deca-1,4-diene-3-

one 6 (Fig 2). This strategy
8
 has been demonstrated in 

contemporary complex molecule syntheses such as 

galanthamine,9a resiniferatoxin,9b and platensimycin.9c 

A limitation of the traditional Winstein-Masamune reaction is 

the carbon bearing the leaving group is sp3 hybridized. Further 

functionalization of that carbon is therefore particularly difficult. 

Recently, two independent publications by the Hamada
10

 and 
You

11
 groups utilizing palladium (7→→→→9) and iridium catalysis 

(8→→→→10) have effected a Tsuji-Trost12 5-exo-trig allylation variant 

of the classic Winstein-Masamune reaction. The use of phenol 

nucleophiles as vinylogous enolates in the intramolecular Tsuji-

Trost allylation had been relatively unexplored over the past half 
century. Therefore a Tsuji-Trost Winstein-Masamune phenolic 

allylation would be an ideal solution for the syntheses of 

molecules such as 1-4 as a vinyl group is deposited at the 

electrophilic carbon for post-cyclization modifications.
 

 

Figure 1. Alkaloid and Terpene Natural Products Bearing the 
Spiro[4.5]decane Core Architecture. 
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A Tsuji-Trost variant of the Winstein-Masamune reaction has been investigated for the synthesis 

of the AC spirocyclic ring system 9 bearing a quaternary carbon found in the fawcettimine type 

Lycopodium alkaloids magellanine 1 and lycojaponicumin B 2 and cyclopiane diterpenes such as 

conidiogenone 3. Annulation of the B ring for the synthesis of tricyclic ABC cores was 

demonstrated utilizing a 5-exo-trig free radical cyclization of a primary carbon radical onto a 

cyclohexadienone generated with tri-n-butylgermanium hydride (9→→→→11).  

2009 Elsevier Ltd. All rights reserved. 
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Figure 2. Classical Winstein-Masamune Spirocyclization (5→→→→6) and 

the Contemporary Tsuji-Trost Transition Metal Variants (7/8→→→→9/10). 

 

Our general retrosynthetic strategy for the construction of the 

ABC tricyclic cores found in 1-3 is depicted in Scheme 1. To 

expeditiously validate this strategy, we chose a generic model 
system 11 that lacks a D ring. The B ring of the angular tricyclic 

carbon backbone in 11 would arise via a 5-exo-trig radical 

cyclization of a primary carbon radical onto the β-carbon of a 

cyclohexadienone. The radical would be generated from 

halohydrin 12 that would arise from chemo- and regioselective 

difunctionalization of the more electron rich alkene in 9. The 

spiro[4.5]decane 9  and quaternary carbon would be synthesized 

by deploying the Tsuji-Trost Winstein-Masamune intramolecular 

phenolic allylation of 13. This ultimately leads back to a para-

substituted phenol 14 and a bis-electrophile 15. The phenol 14 is 

an ideal platform to commence synthetic efforts given the high 

degree of unsaturation that is conserved through the TTWM 
reaction to the cyclohexadienone 9. 

Scheme 1. Retrosynthetic strategy for the synthesis of tricyclic 

architecture 11. 
 

Our efforts toward 11 commenced with the synthesis of  

benzylidene malonate 16 shown in Scheme 2 prepared in 3-steps 

from 4-hydroxybenzaldehyde according to the Hamada 

protocol.
10

 Briefly, Knoevenagel condensation of 4-

hydroxybenzaldehyde with dimethylmalonate was carried out in 

toluene in the presence of piperidine and catalytic acetic acid at 

reflux to afford benzylidene malonate in 99% yield. Subsequent 

hydrogenation of the olefin with hydrogen gas in the presence of 

10% palladium on carbon in methanol smoothly afforded reduced 

malonate in 97% yield. The phenol was protected as the tert-
butyldimethylsilyl ether with TBSCl, imidazole and catalytic 

DMAP in DMF giving in 95% yield. At this stage the allylic 

carbonate was installed via alkylation of the sodium enolate with 

the bis-electrophile 15. The silyl protecting group of 17 was 

quantitatively cleaved with TBAF in THF at ambient temperature 

giving the desired precursor 13 in 96% yield.  

Scheme 2. Synthesis of TTWM Spirocyclization Precursor 13 

Utilizing bis-Electrophile 15. 
 

Installation of the allylic carbonate utilized a new bis-

electrophile synthesis that is amenable to regioselective 

alkylation (Scheme 2). To that end, cis-1,4-butanediol 18 was 

treated with one equivalent of methyl chloroformate in 

tetrahydrofuran to afford a 1:1 mixture of the mono-19 and di-20 

that were readily separable by normal phase silica gel column 
chromatography. The allylic alcohol 19 was rapidly sulfonylated 

with methanesulfonyl chloride at 0°C in less than one hour to 

afford 15 in 70% yield.
13

 It should be noted that extended 

reaction times lead to chloride displacement of the mesylate 15 to 

the allylic chloride 21. The methylene groups of 20 are readily 

differentiated by 
1
H NMR with the allylic CH2 near the sulfonate 

at 4.74 ppm and that of the carbonate at 4.87 ppm. This 

differentially protected allylic 1,4-diol is an ideal annulating 

agent for the intramolecular phenolic para-allylation. 

With gram quantities of the spirocyclization precursor 13 in 

hand, we examined the palladium-catalyzed conditions shown in 

Table 1. Entries 1-4 at ambient temperature showed clean 

conversion of 13 to 9 after 6 hours by TLC, however the isolated 

yields after workup and purification were poor to moderate (13-

42%). We sought to reduce the reaction time by utilizing 

microwave heating in a closed system to minimize catalyst 

inactivation.   

 

 

OH

OH
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OR1

OCO2CH3

R

19 R1  = H; R2 = CO2CH3

20 R1  = R2 = CO2CH3

18 15 R = OMs
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ClCO2CH3, py
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Table 1. Palladium Catalyzed Intramolecular Phenolic Allylation of 

13 under Thermal and Microwave Heating. 

 

We discovered that with strict degassing of the reaction 
mixture at ambient temperature by sparging nitrogen gas for at 

least 15 minutes was crucial to the successful conversion of 13 to 

9. The optimal temperature and time with microwave heating was 

40°C for a total of 40 minutes. After the first 20 minutes, 
1
H 

NMR showed 51% conversion and the remaining material was 

fully converted after an additional 20 minute heating cycle. 

While the microwave heating showed full conversion to product 

by 
1
H NMR, the isolated yields of 9 were typically between 50-

60%.  

With usable quantities of alkene 9 in hand, we set out to 

chemoselectively functionalize the more electron rich pendant 

alkene in a regioselective fashion as either the selenohydrin 22a 

or halohydrins 22b/22c. As the cyclohexadienone alkenes in 9 

are electron-deficient we anticipated that reagents such as NBS, 

NIS and PhSeCl in aqueous acetonitrile would install a secondary 

hydroxyl group along with a primary halide or selenide. Table 2 

summarizes the best results of these electrophile initiated 

oxidation experiments. The selenohydrin 22a was isolated in 
87% yield while the bromohydrin 22b and iodohydrin 22c were 

typically lower isolated yields hovering around 55%.  

 
Table 2. Chemo- and regio-selective alkene halo(seleno)hydrin 
formation. 

 

With substrates 22a-c now synthesized, our focus now shifted 

toward investigating carbon radical initiation to induce a 5-exo-
trig radical cyclization thereby constructing the angular tricylic 

ABC cores found in 1-3. During our investigation employing tin 

hydride reagents, we observed smooth conversion of 22a or 22b 

to a more polar spot by TLC (Rf = 0.30 (1:1 hexanes-acetone). 

Examination of the 
1
H NMR revealed a structure other than the 

desired tricyclic compound that contained both aromatic protons 

and an internal alkene functionality (signals at 5.74 and 5.62 

ppm). This material was fully characterized with 2D NMR and 

determined to be the rearomatized phenol 23 containing a 

primary allylic alcohol. The trans conformation of the alkene was 

established based on the coupling constant (
3
Jc,f = 15.7 Hz). 

COSY NMR was used to identify the spin systems in the 
structure located at the alkene (Hl → Hf → Hc → Hh) and the 

phenol (Hg → Hd). HSQC and HMBC confirmed the connectivity 

of the phenol. Additionally, 
13

C chemical shifts supported the 

presence of the phenol (155 ppm) and primary alcohol (63 ppm). 

We speculate that addition of nBu3Sn• to the cyclohexadienone 

carbonyl of 22 is more favorable than generation of the primary 

carbon radical. The formation of a stabilized ring divinyl radical 

then leads to subsequent fissure of bond a and ensuing radical 

rearrangement processes. 

Independent reports from the Beckwith and Clive groups have 

demonstrated the utility of tri-n-butylgermanium hydride to 

selectively generate carbon radicals from alkyl iodides in the 

presence of cyclohexadienones.
14

 We were pleased to observe 
that upon treatment of iodide 22c with nBu3GeH and AIBN in 

refluxing toluene, the desired tricyclic compound was indeed 

produced in 43% yield. The structure of 11 was fully elucidated 

using extensive 1D and 2D NMR experiments. 

 

Scheme 3. Rearomatization (22b/c→→→→23) with tin hydride versus 

cyclization with germanium hydride (22c→→→→11). 

 

Given the geometrical constraints of this system, the primary 

carbon radical 24 is forced to add to the electron deficient β-
carbon of the proximal alkene of the spiro[4.5]cyclohexadienone 

from the bottom face. This addition gives cis ring fusion in the 

bicyclo[4.3.0]nonane, whereas addition from the top face would 

give a strained trans ring junction. The ensuing stabilized radical 

25 is then quenched by nBu3GeH and concomittantly sets the 

correct desired trans relationship between Hf and Hk. Based on 

the stereochemistry of the spirocycle 9, the stereochemistry of Hk 

(pointing down) is conserved. It should be noted that the radical 

addition to the distal olefin would result in an energetically 

disfavored trans ring junction about the bicycle[3.3.0]octane 

substructure. 
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Scheme 4. Plausible radical cyclization pathway and structure 

elucidation of tricycle 11. 
 

Initial examination of the alkene region of the 
1
H NMR 

revealed loss of the cyclohexadienone symmetry and showed 

new peaks at 5.87 (He) and 5.44 (Hd) ppm both integrating for 
one proton. COSY correlations, as indicated by the bold black 

lines, was used to identify and connect the spin systems in the 

structure showing connectivity of the ABC rings (Hg → Hf → Hn 

→ Hp → Hk → Ho) and the alkene region (He → Hd → Hf). The 

correlation of Hd → Hf is a result of “W” coupling which was 

realized through observation of the 3-dimensional structure. 
13

C 
NMR, DEPT135 and HSQC experiments showed two new CH2 

groups at 68.2 ppm and 39.6 ppm belonging to CHg and CHn, 

respectively. HMBC, as indicated by the blue arrows, further 

supported the connectivity of the tricycle as shown in Scheme 4. 

NOESY correlations, as indicated by the red arrows, were 

utilized to confirm the major secondary alcohol diastereomer. It 
was seen that Hp only showed correlation with Hk and not Hf 

implying the alcohol for the major diastereomer pointed up.  

In conclusion we have carried out an 8-step synthesis of the 

ABC tricyclic core 11 found in numerous alkaloid and terpene 

natural products from 4-hydroxybenzaldehyde in 18% yield. 

Salient features of this route include the development of a new 
orthogonally activated bis-electrophile 15 in the malonate 

alkylation of 16, demonstration of the Tsuji-Trost-Winstein-

Masamune spirocyclic allylation 13→→→→9, and nBu3Ge• initiated 5-

exo-trig radical cyclization of 9→→→→11. We are currently 

investigating the application of this strategy to complex alkaloids 

and terpenes such as those identified in Figure 1.  
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• Spiro[4.5]cyclohexadienone is an ideal 
scaffold to synthesize complex alkaloids 
and terpenes 

• 1,4-bis-electrophile composed of an 
allylic carbonate and allylic mesylate 
has been synthesized  

• Intramolecular phenolic allylation 
utilized in the synthesis of 
spiro[4.5]decane substructure 

• Germanium hydride initiated free radical 
cyclization achieved angular tricycle 
formation 

 

 


