Accepted Manuscript

Phosphine-Free NiBr₂-Catalyzed Synthesis of Unsymmetrical Diaryl Ketones *via* Carbonylative Cross-Coupling of Aryl Iodides with Ph₃SnX (X = CI, OEt)

Nasser Iranpoor, Habib Firouzabadi, Elham Etemadi-Davan

PII: S0022-328X(15)30008-5

DOI: 10.1016/j.jorganchem.2015.05.038

Reference: JOM 19079

To appear in: Journal of Organometallic Chemistry

Received Date: 5 February 2015

Revised Date: 8 May 2015

Accepted Date: 23 May 2015

Please cite this article as: N. Iranpoor, H. Firouzabadi, E. Etemadi-Davan, Phosphine-Free NiBr₂-Catalyzed Synthesis of Unsymmetrical Diaryl Ketones *via* Carbonylative Cross-Coupling of Aryl lodides with Ph₃SnX (X = Cl, OEt), *Journal of Organometallic Chemistry* (2015), doi: 10.1016/j.jorganchem.2015.05.038.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

Graphical Abstract Synopsis

Phosphine-Free NiBr₂-Catalyzed Synthesis of Unsymmetrical Diaryl Ketones *via* Carbonylative Cross-Coupling of Aryl Iodides with Ph₃SnX (X = Cl, OEt)

Nasser Iranpoor*, Habib Firouzabadi*, Elham Etemadi-Davan

Department of Chemistry, College of Sciences, Shiraz University, Shiraz, Iran Corresponding author: Tel.: +98-711-2287600; fax: +98-711-2280926; E-mail: <u>iranpoor@chem.susc.ac.ir (</u>N. Iranpoor); <u>firouzabadi@chem.susc.ac.ir (</u>H. Firouzabadi)

The convenient nickel-catalyzed carbonylative coupling of aryl iodides with organostannanes for synthesis of unsymmetrical diaryl ketones under phosphine-free condition is reported. The reaction occurs efficiently applying $Cr(CO)_6$ as an easy handling solid source of carbon monoxide at atmospheric pressure in DMF to deliver the desired ketones in high yield.

+ $Cr(CO)_6$ + $Ph_3SnCl(A)$ + or $Ph_3SnOEt(B)$ $\frac{\text{NiBr}_2 (16.0 \text{ mol}\%)}{\text{K}_2 \text{CO}_3, \text{DMF}}$ Ri 100 °C air

Phosphine-Free NiBr₂-Catalyzed Synthesis of Unsymmetrical Diaryl Ketones *via* Carbonylative Cross-Coupling of Aryl Iodides with Ph₃SnX (X = Cl, OEt)

Nasser Iranpoor*, Habib Firouzabadi*, Elham Etemadi-Davan

Department of Chemistry, College of Sciences, Shiraz University, Shiraz, Iran Corresponding author: Tel.: +98-711-2287600; fax: +98-711-2280926; E-mail: <u>iranpoor@chem.susc.ac.ir (</u>N. Iranpoor); <u>firouzabadi@chem.susc.ac.ir (</u>H. Firouzabadi)

Abstract: The convenient nickel-catalyzed carbonylative coupling of aryl iodides with Ph_3SnCl or Ph_3SnOEt for synthesis of unsymmetrical diaryl ketones under phosphine-free condition is reported. The reaction occurs efficiently in the presence of $Cr(CO)_6$ as an easy handling solid source of carbon monoxide at atmospheric pressure and 100 °C in DMF under air to deliver the desired ketones in high yield.

Keywords:

 $Cr(CO)_6$

 $NiBr_2 \\$

Ph₃SnCl or Ph₃SnOEt

Unsymmetrical Ketone

Aryl halide

1. Introduction:

The catalytic cross-coupling reaction between aryl electrophiles and organometallic nucleophiles accompanied by insertion of carbon monoxide offers symmetrical or unsymmetrical diaryl ketones [1]. Typical strategies for synthesizing diaryl ketones includes the reaction of activated carboxylic acid derivatives with organostannanes and Grignard reagents[2]; cross-coupling of aromatic aldehydes with aryl halides [3]; and the Friedel-Crafts acylation [4]. The Friedel-Crafts acylation gives isomeric mixtures, and also requires more than stoichiometric amount of a Lewis acid to perform the reaction. In this regard, the reactions in which several bonds could be formed in one operation without the need for several steps of protection/deprotection or isolating the intermediates is of great importance [5]. Therefore, carbonylative cross-coupling is a cascade process and has the advantage of high chemoselectivity and high efficiency which eliminates the application of carboxylic acid derivatives as carbon electrophiles, thus delivers polyfunctionalized ketones [6].

Carbonylative Stille reaction is the three-component reaction of diverse organostannanes with aryl or vinyl electrophiles which have been applied in the presence of carbon monoxide to give unsymmetrical diaryl ketones [7]. Pd-catalyzed cross-coupling of various aryl, and vinyl electrophiles with organostannanes in the presence of carbon monoxide have been reported [8]. In this reaction, the stoichiometric amount of organnostanes with the molecular formula of RSnR'₃ (R : 2-naphthyl, Ph, pyrazinyl, alkenyl, alkynyl; R' : ^{*n*}Bu, Me) is needed for the reaction to be completed [9], therefore it is valuable to substitute the organostannanes with a compound that has the stoichiometric economy as a carbon nucleophile source. In addition, due to the difficulty of handling of gaseous CO, a suitable substituent for CO is of great interest [10]. In this regard, the application of metal carbonyls [11] and organic compounds [12] having carbonyl in their structure have been developed. Recently, Nilsson have applied a Pd-catalyzed procedure applying Mo(CO)₆ as the solid source of carbonyl in carbonylative Stille cross-coupling reaction for synthesizing unsymmetrical ketones [13]. They used more than equimolar amount of the Bu₃SnR as a carbon nucleophile for the cross-coupling with long reaction times (16 h). In addition, all of the mentioned reactions are Pd-catalyzed transformation except the Ni(acac)2catalyzed carbonylative Stille reaction of aryl tri-n-buthylstannates with aryliodonium tetraflouroborate as hypervalent iodine substrates[14].

Lately, we reported Ph_3SnCl as a new source of stoichiometric-economy carbon nucleophile group for coupling with phenols, amines, and thiols and also for the Stille coupling of aryl halides [15]. In continuation of our research on carbonylation reactions [16], we introduce a Nicatalyzed Stille carbonylative coupling of aryl halides with metal carbonyls as solid source of CO. In these reactions, Ph_3SnX (X= Cl, OEt) are used as stoichiometric-economy tin reagents.

2. Experimental:

Typical procedure for Ni-catalyzed Stille carbonylation of iodotoluene with Ph_3SnCl using $Cr(CO)_6$ in DMF at 100 °C:

4-Iodotoluene (1.0 mmol, 0.21 g) was added to a flask equipped with Ph₃SnCl (0.4 mmol, 0.15 g), NiBr₂ (16.0 mol%, 0.034g), K₂CO₃ (3.0 mmol, 0.29 g), and Cr(CO)₆ (1.0 mmol, 0.22g) in DMF (3.0 mL) and the resulting mixture was heated in an oil bath at 100 °C and stirred for 2.7 h. Progress of the reaction was monitored by TLC. After completion, the reaction mixture was cooled to room temperature, then H₂O (10 mL) was added and the mixture was transferred to a separatory funnel. The aqueous phase was further washed with EtOAc (3×10 mL) and the combined organic phases were dried over anhydrous Na₂SO₄ and then filtered. Column chromatography of the obtained residue on silica gel (*n*-hexane/EtOAc = 20:1) gave the desired ketone in 89% yield (0.11 g) (Table 4, entry 2).¹H-NMR (250 MHz, CDCl₃) δ (ppm):7.70-7.61 (4H, m), 7.47-7.44 (m, 1H), 7.40-7.34 (m, 2H), 7.24-7.16 (m, 2H), 2.33 (s, 3H); ¹³C-NMR (62.9 MHz, CDCl₃): δ 196.4, 143.2, 137.9, 133.6, 132.5, 129.9, 129.7, 128.9, 127.2, 21.0

3. Results and discussion:

To optimize the reaction condition, we run the reaction of 4-iodotoluene, NiCl₂, Cr(CO)₆, K_2CO_3 , and Ph₃SnCl in PEG400 at 100 °C without inert gas protection under the conditions shown in entry 1, Table 1. The corresponding diaryl ketone (1a) was obtained in low yield along with the formation of the Stille coupling product (2a) as the major product (Table 1, entry 1). Applying different bases in PEG400 did not have significant effect on the yield of 1a (Table 1, entry 5). Screening other solvents showed that the reaction is performed well in DMF (Table 1, entries 6-

8). Changing the catalyst to NiBr₂ increased the isolated yield of **1a** to 89% (Table 1, entry 9). When we performed the reaction in the presence of Ph₃P as ligand or pre-prepared NiCl₂(Ph₃P)₂, the result is almost the same as when we conducted the reaction under ligand-free conditions (Table 1, entry 16, 17). Consequently, the ligand is not essential for the reaction as the ligand-free conditions gave good yield of the product. Therefore, NiBr₂ was applied as the catalyst for this transformation. Applying different bases in DMF showed that the reaction worked well in the presence of K₂CO₃ (Table 1, entries 10-12). The efficient amount of Ph₃SnCl was found to be 0.4 equiv for 1.0 mmol of 4-iodotoluene. Decreasing the temperature to 70 °C showed the low conversion of 4-iodotoluene to **1a** which is due to the inefficient liberation of the carbon monoxide from Cr(CO)₆ (Table 1, entry 13). Decreasing the amount of NiBr₂ to 6.0 mol% required longer reaction time and decreased in the yield of the product (Table 1, entry14).

Table1

We also investigated on the application of other suitable organotin compounds such as Ph_3SnOH , Ph_3SnOEt , and Ph_4Sn for this transformation. As the results of Table 2 show, we surmised Ph_3SnOEt or Ph_3SnOEt as the promising organtin candidates for the reaction. We set up the reactions with 0.4 equiv of Bh_3SnCl or Ph_3SnOEt . This point revealed the stoichiometric-economy of these reagents with regard to the reported organotin reagents in literature for Stille and carbonylative Stille cross-coupling. In order to check the applicability of other carbon nucleophile instead of Ph_3SnCl (0.4 equiv), we performed the reaction with $PhB(OH)_2$ (1.2 equiv) and we observed that even after 5 h, the reaction did not go to completion (Table 2).

Table 2

In order to have a comparison between the efficiency of $Cr(CO)_6$ with other metal carbonyls, we replaced $Cr(CO)_6$ with other metal carbonyls such as $Mo(CO)_6$, $W(CO)_6$, $Fe(CO)_5$, and $Co_2(CO)_8$. From these reactions, it was found that the highest yield of **1a** was obtained in the

ACCEPTED MANUSCRIPT

presence of $Cr(CO)_6$. Therefore, $Cr(CO)_6$ was selected as the most suitable solid source of carbon monoxide for our further studies under the obtained optimized conditions (Table 3).

Table 3

When we employed the reaction for bromobenzene and phenyl triflate under the optimized reaction conditions of aryl iodides, the starting material was recovered after 24h. Performing the reaction of 4-iodotoluene in the presence of NiCl₂(dppf), NiCl₂(Ph₃P)₂, and NiCl₂(Ph₃P)₂/Ph₃P were also ineffective and 4-methylbenzophenone was obtained only in 17-20% yield.

We therefore applied our optimized conditions to various aryl iodides. It was observed that aryl iodides having electron-withdrawing or electron-donating groups give their corresponding unsymmetrical ketones in good yields (Table 4). In addition, electron-poor aryl iodides which are prone to give homo-coupling by-product reacted well under these conditions and produced their corresponding ketones in high yields. The substrate bearing -NO₂ functionality was converted to a mixture of side products due to the reduction of $-NO_2$ group. Sterically hindered substrates reacted efficiently under this condition and delivered the corresponding products in good yield.

Table 4

All the products were characterized with ¹H-NMR and ¹³C-NMR and were compared to known samples [17].

In order to understand the plausible reaction pass way, we study the UV-Vis spectrum of the three mixtures. A solution of NiBr₂ in DMF; $Cr(CO)_6$ and NiBr₂ in DMF; and reaction mixture were stirred separately at 100 °C. Comparison of the UV-Vis spectrum showed that the Ni(II) peaks at 415, 571, 616 nm which exist in a solution of NiBr₂ in DMF were vanished in the reaction mixture and also in the solution of NiBr₂ and $Cr(CO)_6$ in DMF. This observation elucidates that in the reaction mixture in the presence of $Cr(CO)_6$, Ni(II) can be reduced to Ni(0).

Figure 1

For the plausible reaction mechanism, it is suggested that the Ni(II) pre-catalyst is first reduced by the generated CO to Ni(0). Oxidative addition of the carbon-iodide bond to the generated Ni(0) generates the intermediate (I) which followed by CO insertion to generate the intermediate (II). Attack of base to Ph₃SnX followed by migration of a phenyl group generates the intermediate (III) which after the reductive elimination, the corresponding unsymmetrical diaryl ketones and Ni(0) are produced. In addition, a base such as K_2CO_3 or OH⁻ reacts with Ph₃SnCl to migrate a Ph group (Scheme 1).

Scheme 1

4. Conclusion:

In conclusion, we have introduced the efficient Nickel-catalyzed reaction of Ph_3SnCl and Ph_3SnOEt as new sources of stoichiometric-economy phenyl nucleophile with aryl iodides for the cabonylative Stille cross-coupling to synthesize unsymmetrical diaryl ketones under mild conditions. This methodology excludes the use of any ligand. More importantly, this protocol is microwave-free and employ $Cr(CO)_6$ as a solid source of CO which makes it applicable especially for the laboratory scale. Consequently, application of Ni-catalyst over Pd-catalyst has the advantage of being cheaper, easily available and less toxic.

Acknowledgments

We gratefully acknowledge the financial support of this study by the Shiraz University Research Council and a grant from Iran National Elite Foundation. Thanks also to Mr. Arash Nematollahi for his help during this study.

References

[1] A. Brennfuhrer, H. Neumann, M. Beller Angew. Chem. Int. Ed. 48 (2009) 4114-4133

[2] (a) X.-J. Wang, L. Zhang, X. Sun, Y. Xu, D. Krishnamurthy, C. H. Senanayake Org. Lett. 7
(2005) 5593-5595; (b) G. F. Silbestri, R. Bogel-Masson, M. T. Lockhart, A. B. Chopa J. Organomet. Chem. 691 (2006) 1520-1524; (c) W. R. Neuman, H. Hillgartner, K. M. Baines, R. Dicke, K. Vorspohl, U. Kobs, U. Nussbeutel Tetrahedron 45 (1989) 951-960; (d) J. W. Labadie, J. K. Stille J. Am. Chem. Soc. 105 (1983) 6129-6137; (e) S. Nahm, S. M. Weinreb Tetrahedron Lett. 22 (1981) 3815-3818

[3] (a) M. Pucheault, S. Darses, J.-P. J. Am. Chem. Soc. 126 (2004) 15356-15357; (b) S. Ko, B. Kang, S. Chang Angew. Chem. Int. Ed. 44 (2005) 455-457; (c) Y.-C. Huang, K. K. Majumdar, C.-H. Cheng Org. Lett. 2 (2000) 1682-1684; (d) Y. C. Huang, K. K. Majumdar, C. -H. Cheng J. Org. Chem. 67 (2002) 1682-1684

[4] (a) H. Firouzabadi, N. Iranpoor, F. Nowrouzi Tetrahedron 60 (2004) 10843-10850; (b) M. H.
Sarvari, H. Sharghi J. Org. Chem. 69 (2004) 6953-6956; (c) C. W. Schellhammer in Methoden der Organischen Chemie (Houben-Weyl) (Ed.: E. Muller), Themie, Stuttgart, 1973, vol. 7/2a, pp.15-379

[5] Q. Liu, H. Zhang, A. Lei Angew. Chem. Int. Ed. 50 (2011) 10788-10799

[6] K. Kobayashi, Y. Nishimura, F. Gao, K. Gotoh, Y. Nishihara, K. Takagi J. Org. Chem. 76 (2011) 1949-1952

[7] Stille J. K. Angew. Chem. Int. Ed. Engl. 25 (1986) 508-524

[8] (a) J. K. Stille Pure & Appl. Chem. 57 (1985) 1771-1780; (b) P. Caldirola, R. Chowdhury, A.M. Johansson, U. Hacksell Organometallics14 (1995) 3897-3900

[9] (a) J. Sun, X. Feng, Z. Zhao, Y. Yamamoto, M. Bao Tetrahedron 70 (2014) 7166-7171; (b) J.
Lindh, A. Fardost, M. Almeida, P. Nilsson Tetrahedron Lett. 51 (2010) 2470-2472

[10] M. Iizuka, Y. Kondo Eur. J. Org. Chem. (2007) 5180-5182

[11] X. Wu, R. Ronn, T. Gossas, M. Larhed J. Org. Chem. 70 (2005) 3094-3098

[12] S. Cacchi, G. Fabrizi, A. Goggiamani J. Comb. Chem. 6 (2004) 692-694

[13] J. Savmarker, J. Lindh, P. Nilsson Tetrahedron Lett. 51 (2010) 6886-6889

ACCEPTED MANUSCRIPT

[14] S. -K. Kang, H. -C. Ryu, S.-W. Lee J. Chem. Soc., Perkin Trans., 1 (1999) 2661-2663

[15] N. Iranpoor, H. Firouzabadi, E. Etemadi-Davan, A. Rostami, A. Nematollahi J. Organomet. Chem. 740 (2013) 123-130

[16] (a) N. Iranpoor, H. Firouzabadi, S. Motevalli J. Mol. Catal. A: Chem. 355 (2012) 69-74; (b)
N. Iranpoor, H. Firouzabadi, S. Motevalli, M. Talebi Tetrahedron 69 (2013) 418-426; (c) N.
Iranpoor, H. Firouzabadi, Z. Tavangar Rizi, S. Erfan RSC Adv. 4 (2014) 43178-43182

[17] (a) F. Jafarpour, P. Rashidi-Ranjbar, A. O. Kashani Eur. J. Org. Chem. (2011) 2128-2132;
(b) Y. Zhong, X. Gong, X. Zhu, Z. Ni, H. Wang, J. Fua, W. Han RSC Adv. 4 (2014) 63216-63220;
(c) D. Lee, T. Ryu, Y. Park, P. H. Lee Org. Lett. 16 (2014) 1144-1147;
(d) W. -B. Sheng,
Q. Jiang, W. -P. Luo, C. -C. Guo J. Org. Chem. 78 (2013) 5691-5693;
(e) L. Meng, J. Su, Z. Zha,
L. Zhang, Z. Wang Chem. Eur. J. 19 (2013) 5542-5545;
(f) K. Kunchithapatham, C. C. Eichman,
J. P. Stambuli Chem. Commun., 47 (2011), 12679-12681

Supplementary Section:

Spectral data of carbonylative Stille reaction of iodoarenes:

Benzophenone (Table 4, entry 1). ¹H-NMR (CDCl₃, 250 MHz): δ 7.74-7.70 (m, 4H), 7.51-7.48 (m, 2H), 7.43-7.37 (m, 4H); ¹³C-NMR (CDCl₃, 62.9 MHz): δ 196.7, 137.5, 132.4, 130.0, 128.2

4-Methylbenzophenone (Table 4, entry 2). ¹H-NMR (CDCl₃, 250 MHz): δ 7.78 (d, *J* = 8.2 Hz, 2H), 7.72 (d, *J* = 7.1 Hz, 2H), 7.54-7.50 (m, 1H), 7.49-7.46 (m, 2H), 7.27 (d, *J* = 7.5 Hz, 2H),

2.43 (s, 3H); ¹³C-NMR (CDCl₃, 62.9 MHz): δ 195.5, 143.2, 137.9, 134.8, 132.1, 130.3, 130.1, 128.9, 128.2, 21.6

4-Methoxybenzophenone (Table 4, entry 3). ¹H-NMR (CDCl₃, 250 MHz): δ 7.87-7.85 (m, 2H), 7.77-7.74 (m, 2H), 7.53-7.51 (m, 1H), 7.45-7.42 (m, 2H), 6.80 (d, *J* = 8.5 Hz, 2H), 3.60 (s, 3H); ¹³C-NMR (CDCl₃, 62.9 MHz): δ 195.1, 163.0, 137.9, 132.0, 131.3, 129.7, 129.0, 127.8, 112.8, 54.2

4-Cholorobenzophenone (Table 4, entry 4). ¹H-NMR (CDCl₃, 250 MHz): δ 7.72-7.70 (m, 2H), 7.60-7.55 (m, 2H), 7.45-7.41 (m, 1H), 7.38-7.33 (m, 4H); ¹³C-NMR (CDCl₃, 62.9 MHz): δ 195.3, 139.2, 136.9, 135.5, 132.3, 131.0, 129.4, 128.0, 127.8

4-Bromobenzophenone (Table 4, entry 5). ¹H-NMR (CDCl₃, 250 MHz): δ7.75 (d, *J* = 8.1 Hz, 2H), 7.69-7.67 (m, 2 H), 7.63-7.59 (m, 3 H), 7.46-7.44 (m, 2 H); ¹³C-NMR (CDCl₃, 62.9 MHz): δ 195.4, 137.0, 136.3, 131.9, 131.5, 130.5, 129.5, 128.7, 127.4

4-Fluorobenzophenone (Table 4, entry 6). ¹H-NMR (CDCl₃, 250 MHz): δ 7.85-7.77 (m, 4H), 7.58-7.50 (m, 3H), 7.26-7.16 (m, 2H); ¹³C-NMR (CDCl₃, 62.9 MHz): δ 195.4, 166.0 (d, *J* = 252.0 Hz), 137.3, 133.5, 133.0 (d, *J* = 7.2 Hz), 132.7, 129.5, 128.0, 115.7 (d, *J* = 20.6 Hz)

4-Trifluoromethylbenzophenone (Table 4, entry 8). ¹H-NMR (CDCl₃, 250 MHz): δ 8.10 (d, *J* = 7.8 Hz, 2H), 7.98-7.97 (m, 2H), 7.71-7.69 (m, 2H), 7.32-7.30 (m, 1H), 7.28-7.27 (m, 2H); ¹³C-NMR (CDCl₃, 62.9 MHz): δ 196.0, 140.9, 137.0, 132.9 (q, *J* = 32.3 Hz), 132.3, 130.0, 129.7, 128.3, 125.1 (q, *J* = 3.6 Hz), 123.1 (q, *J* = 272.7 Hz)

1-Naphthylphenone (Table 4, entry 9). ¹H-NMR (CDCl₃, 250 MHz): δ 8.07 (d, *J* = 8.1 Hz, 1H), 8.03 (d, *J* = 8.0 Hz, 1H), 7.87-7.83 (m, 1H), 7.78-7.75 (m, 2H), 7.47-7.38 (m, 2 H), 7.35-7.27 (m, 5 H); ¹³C-NMR (CDCl₃, 62.9 MHz): δ 195.7, 138.2, 136.3, 133.6, 133.2, 131.2, 130.7, 130.0, 128.4, 128.3, 127.8, 127.2, 126.5, 125.6, 124.3

2-Methylbenzophenone (Table 4, entry 10). ¹H-NMR (CDCl₃, 250 MHz): δ 7.82-7.78 (m, 2H), 7.58-7.55 (m, 1H), 7.48-7.38 (m, 3H), 7.30-7.21 (m, 3H), 2.29 (s, 3H); ¹³C-NMR (CDCl₃, 62.9 MHz): δ 198.6, 138.6, 137.7, 136.7, 133.1, 131.4, 130.9, 130.2, 130.1, 128.5, 125.1, 19.9

3-Methylbenzophenone (Table 4, entry 11). ¹H-NMR (CDCl₃, 250 MHz): δ 7.82-7.80 (m, 2H), 7.65-7.64 (m, 1H), 7.63-7.58 (m, 2H), 7.50-7.45 (m, 2H), 7.41-7.35 (m, 2H), 2.40 (s, 3H); ¹³C-NMR (CDCl₃, 62.9 MHz): δ 197.1, 138.3, 137.7, 137.5, 133.3, 132.2, 130.7, 130.0, 128.3, 128.0, 127.2, 21.5

	I + Ph ₃ SnO	Cl + Cr(CO) ₆	[M], P(III) base, solvent temperature	►	+		<u>}</u>
			air M : Ni	1	a	2a	
Entry	[Ni]	Solvent	Base	Temp (°C)	Time (h)	1a (%)	2a(%)
1	NiCl ₂	PEG400	K ₂ CO ₃	100	3.5	45	50
2	NiCl ₂	PEG400	Et ₃ N	100	5	40	55
3	NiCl ₂	PEG400	KOAc	100	4.5	40	55
4	NiCl ₂	PEG400	K_3PO_4	100	7	33	60
5	NiCl ₂	DMF	K_2CO_3	100	3	82	10
6	NiCl ₂	Dioxane	K ₂ CO ₃	100	10	-	40
7	NiCl ₂	Diglyme	K ₂ CO ₃	100	10	20	30
8	NiCl ₂	CH ₃ CN	K ₂ CO ₃	90	10	15	35
9	NiBr ₂	DMF	K ₂ CO ₃	100	2.7	89	8
10	NiBr ₂	DMF	Et ₃ N	100	4	10	40
11	NiBr ₂	DMF	KOAc	100	5	65	40
12	NiBr ₂	DMF	DABCO	100	8	25	50
13	NiBr ₂	DMF	K ₂ CO ₃	70	7	70	20
14	NiBr ₂ ^b	DMF	K ₂ CO ₃	100	8.5	60	15
15	-	DMF	K ₂ CO ₃	100	10	0	0
16	NiCl ₂ /Ph ₃ P	DMF	K ₂ CO ₃	100	3.2	85	10
17	NiCl ₂ (Ph ₃ P) ₂	DMF	K ₂ CO ₃	100	3.0	88	8

Table 1. Optimization of different parameters for the reaction of 4-iodotoluene with Ph₃SnCl.^a

^a All the reactions were performed under air. Recation condition: iodotoluene (1.0 mmol), Cr(CO)₆ (1.0 mmol), Ph₃SnCl (0.4 mmol), [Ni]: (16.0 mol%), base (3.0 mmol), solvent (3 mL). ^b NiBr₂ (6.0 mol%).

Table 2. The effect of organotin reagents on the carbonylative Stille reaction of 4-iodotoluene.^a

organotin : Ph₃SnCl, Ph₃SnOEt, Ph₃SnOH, Ph₄Sn

Entry	Nucleophile	Time (h)	Yield of 1a (%)
1	Ph ₃ SnCl	2.7	89
2	Ph ₃ SnOH	5	70
3	Ph ₃ SnOEt	3	85
4	Ph ₄ Sn	5	10
5	PhB(OH) ₂	5	60

^aRecation condition: iodotoluene (1.0 mmol), $Cr(CO)_6$ (1.0 mmol), organotin (0.4 mmol), $NiBr_2$: (16.0 mol%), K_2CO_3 (3.0 mmol), DMF (3 mL) at 100 °C.

^ I		O II
+ $Ph_{Sp}Cl + M(CO)$	NiBr ₂ (16.0 mol%)	
i i i i i i i i i i i i i i i i i i i	K ₂ CO ₃ , DMF	
	air, 100 °C	

	M(CO) _n : M	Io(CO) ₆ , Cr(CO) ₆ , V	W(CO) ₆ , Fe(CO) ₅ , Co ₂ (CO) ₈
Entry	M(CO) _n	Time (h)	Yield of 1a (%)
1	Mo(CO) ₆	4	85
2	Cr(CO) ₆	2.7	89
3	W(CO) ₆	5	10
4	Fe(CO) ₅	5	0

Table 3. The effect of metal carbonyl on the carbonylative Stille reaction of 4-iodotoluene.^a

^aRecation condition: iodotoluene (1.0 mmol), $M(CO)_n$ (1.0 mmol), Ph_3SnCl (0.4 mmol), NiBr₂: (16.0 mol%), K₂CO₃ (3.0 mmol), DMF (3 mL) at 100 °C.

6

40

 $Co_2(CO)_8$

5

Table 4

Ni-catalyzed stille carbonylative cross-coupling of aryl iodides with Ph_3SnCl or Ph_3SnOEt in DMF at 100 $^\circ\text{C}$

R	I + Cr(CO) ₆ +	Ph ₃ SnCl (A) or Ph ₃ SnOEt (B)	$\frac{\text{NiBr}_2 (16.0 \text{ mol}\%)}{\text{K}_2\text{CO}_3, \text{DMF}} \mathbb{R} \stackrel{\text{II}}{\underset{100 ^\circ\text{C}}{\overset{\text{air}}{\overset{\text{II}}}{\overset{\text{II}}{\overset{\text{II}}{\overset{\text{II}}{\overset{\text{II}}{\overset{\text{II}}}{\overset{\text{II}}{\overset{\text{II}}{\overset{\text{II}}}{\overset{\text{II}}{\overset{\text{II}}{\overset{\text{II}}{\overset{\text{II}}{\overset{\text{II}}{\overset{\text{II}}{\overset{\text{II}}}{\overset{\text{II}}{\overset{\text{II}}{\overset{\text{II}}{\overset{\text{II}}{\overset{\text{II}}}{\overset{\text{II}}{\overset{\text{II}}}{\overset{\text{II}}{\overset{\text{II}}}{\overset{\text{II}}}{\overset{\text{II}}{\overset{\text{II}}}{\overset{\text{II}}}{\overset{\text{II}}{\overset{\text{II}}}{\overset{\text{II}}{\overset{\text{II}}}{\overset{\text{II}}{\overset{\text{II}}}{\overset{\text{II}}}{\overset{\text{II}}}{\overset{\text{II}}}{\overset{\text{II}}}{\overset{\text{II}}}{\overset{\text{II}}}{\overset{\text{II}}{\overset{\text{II}}}{\overset{\text{II}}{\overset{\text{II}}}{\overset{\text{II}}{\overset{\text{II}}}{\overset{\text{II}}}{\overset{\text{II}}}{\overset{\text{II}}}{\overset{\text{II}}}{\overset{\text{II}}}{\overset{\text{II}}}{\overset{\text{II}}}{\overset{II}}}{\overset{II}}{\overset{II}}{\overset{II}}{\overset{II}}{\overset{II}}}{\overset{II}}{\overset{II}}{\overset{II}}{\overset{II}}{\overset{II}}}{\overset{II}}{\overset{II}}{\overset{II}}}{\overset{II}}{\overset{II}}{\overset{II}}}}{\overset{II}}{\overset{II}}{\overset{II}}}{\overset{II}}{\overset{II}}}{\overset{II}}}}}}}}$	
Entry	Aryl iodide	Time (h)	Product	Yield (%)
1		A : 2.4 B : 2.4		A : 87 B :82
2		A : 2.7 B : 3.0		A : 89 B : 85
3		A : 3.5 B : 3.3		A : 80 B : 83
4	CI	A : 2.8 B : 3	CI	A : 85 B : 85
5	Br	A : 2.5 B : 2.5	Br	A : 85 B : 80
6	F	A : 2 B : 2	F	A : 80 B : 78
7	O ₂ N	A : 3 B : 3	-	A : - B : -

^aRecation condition: aryl iodide (1.0 mmol), $Cr(CO)_6$ (1.0 mmol), Ph_3SnCl (0.4 mmol), $NiBr_2$: (16.0 mol%), K_2CO_3 (3.0 mmol), DMF (3 mL) at 100 °C under air.

ACCEPTED MANUSCRIPT

Figure 1. UV-Vis spectrum

Scheme 1. The plausible mechanism for the carbonylative Stille reaction of aryl iodides

Highlights

- Ph₃SnX (X : Cl, OEt) used for the carbonylative Stille reaction
- NiBr₂ as the catalyst and phosphine-free condition were applied
- Cr(CO)₆ employed as the solid source of CO