Accepted Manuscript

Me₃P-catalyzed addition of hydrogen phosphoryl compounds P(O)H to electrondeficient alkenes: 1 to 1 *vs* 1 to 2 adducts

Tian-Zeng Huang, Tieqiao Chen, Yuta Saga, Li-Biao Han

PII: S0040-4020(17)31116-X

DOI: 10.1016/j.tet.2017.10.070

Reference: TET 29073

To appear in: Tetrahedron

Received Date: 4 October 2017

Revised Date: 26 October 2017

Accepted Date: 27 October 2017

Please cite this article as: Huang T-Z, Chen T, Saga Y, Han L-B, Me₃P-catalyzed addition of hydrogen phosphoryl compounds P(O)H to electron-deficient alkenes: 1 to 1 *vs* 1 to 2 adducts, *Tetrahedron* (2017), doi: 10.1016/j.tet.2017.10.070.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

Graphical Abstract

To create your abstract, type over the instructions in the template box below. Fonts or abstract dimensions should not be changed or altered.

Me₃P-catalyzed addition of hydrogen phosphoryl compounds P(O)H to electrondeficient alkenes: 1 to 1 vs 1 to 2 adducts

Leave this area blank for abstract info.

Tian-Zeng Huang,^{a,c} Tieqiao Chen,^{b,c*} Yuta Saga,^c Li-Biao Han^{a,c*} ^aDivision of Chemistry, Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8571, Japan ^bCollege of Materials and Chemical Engineering, Hainan University, Haikou, China

^cNational Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8568, Japan R¹

 $\begin{array}{ccc} O \\ Z^{1}-P-H \\ Z^{2} \end{array} + \begin{array}{c} R^{1} \\ R^{2} \end{array} \xrightarrow{\text{Cat. Me}_{3}P} \\ R^{2} \end{array} \xrightarrow{Cat. Me_{3}P} \\ Z^{1}-P \\ Z^{2} \end{array}$ \mathbb{R}^2 R^2 1 to 1 adduct 1 to 2 adduct

Tetrahedron journal homepage: www.elsevier.com

Me₃P-catalyzed addition of hydrogen phosphoryl compounds P(O)H to electrondeficient alkenes: 1 to 1 *vs* 1 to 2 adducts

Tian-Zeng Huang^{a,c}, Tieqiao Chen^{b,c,*}, Yuta Saga^c, and Li-Biao Han^{a,c,*}

^aDivision of Chemistry, Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8571, Japan ^bCollege of Materials and Chemical Engineering, Hainan University, Haikou, China ^cNational Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8568, Japan

ARTICLE INFO

Article history:

ABSTRACT

Trimethyl phosphine was used as an efficient catalyst for the addition of P(O)-H compounds to electron-deficient alkenes. The addition reactions were generally conducted using a catalytic amount of Me_3P under mild reaction conditions. Both 1 to 1 and 1 to 2 adducts were obtained.

2009 Elsevier Ltd. All rights reserved.

- Received Received in revised form Accepted Available online
- Keywords: Addition Alkenes Me₃P catalysis P(O)-H compounds Organophosphorus compounds

1. Introduction

It is well-known that, as insecticides and herbicides, organophosphoryl compounds bearing a phosphoryl group P(O) play an important role in agrochemistry.¹ Phosphorus compounds are also very useful starting materials in organic synthesis (the Horner-Wadsworth-Emmons reaction, for example) and ligands for transition metal catalysts.² Therefore, the development of new methods for their preparation is of current concern.

The nucleophilic addition of a hydrogen phosphonate to an electron-deficient alkene is a simple method for the preparation of phosphonates (eq 1). This reaction has been carried out in the presence of bases,³ Lewis acids,⁴ transition metals,⁵ microwaves,⁶ and radical initiators such as AIBN.⁷

$$(\text{RO})_2 P(O)H + \underbrace{\text{CWG}}_{\text{EWG}} (\text{RO})_2 P(O) \underbrace{\text{CWG}}_{\text{EWG}} (1)$$

$$EWG = \text{an electron-withdrawing group;}$$

$$\text{cat.} = \text{a base, Lewis acid, transition metal, radical initiator etc.}$$

Recently, we and others reported that phosphine can efficiently catalyze the addition of a variety of hydrogen phosphoryl compounds to electron-deficient alkenes to produce the corresponding phosphoryl compounds in high yields (eq 2).^{8,9} Enantiomerically pure P(O)-H starting chemicals also could be used in this reaction to give the corresponding phosphoryl compounds with retention of configuration at the phosphorus center. In addition to its high efficiency, the primary advantage

* e-mail: libiao-han@aist.go.jp

using Me_3P as a catalyst, compared with other catalysts such as the metal-catalysts,⁵ is the easy purification of the resulted products because the Me_3P catalyst (and the corresponding phosphine oxide $Me_3P(O)$) can be easily removed under *vacuum* from the products.

$$Z^{1}Z^{2}P(O)H + EWG \xrightarrow{\text{cat. } R_{3}P} {}^{2}Z^{1}ZP(O) \xrightarrow{\text{EWG}} EWG$$
(2)

$$EWG = P(O)Z^{3}Z^{4} COZ^{5} CN$$

A further study on the synthetic potential of this Me₃Pcatalyzed addition by changing the vinylphosphoryl compounds to other CH₂=CHEWG (α , β -unsaturated esters and nitriles etc.), interestingly revealed that, in addition to the expected 1 to 1 (one molecule P(O)H with one molecule olefin) adduct **1**, a novel 1 to 2 (one molecule P(O)H with two molecules olefin) adduct **1**' was also generated (eq 3). Noteworthy is that such an adduct **1**' has only been recognized as a trace amount of by-products of such addition reactions of P(O)H to an electron-deficient alkene.^{9a, 9d} Here below we report the details.

Tetrahedron

2. Results and discussion

To a mixture of (MeO)₂P(O)H (1.0 mmol) and acrylonitrile (2.0 mmol) in THF (1.0 mL) was added Me₃P (0.05 mmol, 1.0 mol/L in THF) at 0 °C. The cooling ice bath was then removed and the solution was stirred at room temperature for 1 h. GC analysis showed that 97% (MeO)₂P(O)H was consumed and the adduct 1 (1 to 1 adduct) by the addition of one molecule (MeO)₂P(O)H to one molecule acrylonitrile and 1' (1 to 2 adduct) by the addition of one molecule (MeO)₂P(O)H to two molecules acrylonitrile were generated in 69% and 28% yields, respectively (eq 4).¹⁰

$$(MeO)_2P(O)H \xrightarrow{f mol% Me_3P} (MeO)_2P(O) \xrightarrow{CN} + (MeO)_2P(O) \xrightarrow{CN} (4)$$

Although the formation of the 1 to 1 adduct **1** is somewhat a result within prediction, as mentioned above, the formation of the 1 to 2 adduct 1' was rather unexpected, i.e. it seems this is the first time to reveal its formation in such addition reactions of P(O)H compounds.³⁻⁷ In order to selectively obtain the two adducts, the reaction conditions were subsequently optimized.

2.1. Selective generation of 1.

As a model reaction, we started our optimization by conducting the addition of dimethyl phosphite to acrylonitrile in the presence of Me₃P catalyst (Table 1). The addition reaction at room temperature in MeCN took place rapidly to produce 98% total yield of 1/1' with a ratio of 1/1' = 70/30 (Table 1, entry 1) in an hour. Stirring the reaction mixture for a longer time (8 h) did not give difference in yields and ratios of the products, which indicates that both 1 and 1', once formed, are stable under current conditions (entry 2). The reaction could also be carried out using less Me₃P (1 mol%), albeit the yield of the adducts slightly

Table 1. Reaction condition optimization for the selective generation of 1^{a}

Scheration of 1.								
0 -PH +	$rac{5 \text{ m}}{25}$	$\sim 0^{1\%} \text{Me}_{3}\text{P}$ $\sim 0^{-1} \text{CN}^{+}$ $\sim 0^{-1} \text{CN}^{+}$	O 					
		1	1'					
Entry	Solvent	Total yield of 1 and 1' (%)	Ratio of 1/1'					
1	MeCN	98	70/30					
2^{b}	MeCN	97	70/30					
3^c	MeCN	65	68/32					
4^d	MeCN	54	76/24					
5^e	MeCN	96	69/31					
6 ^f	MeCN	97	70/30					
7	THF	97	71/29					
8^g	THF	93	67/33					
9^h	THF	84	60/40					
10^{i}	THF	81	57/43					
11	Toluene	95	81/19					
12	CH_2Cl_2	83	89/11					
13	EtOAc	83	73/27					
14	DMF	34	56/44					
15	DMSO	32	50/50					
16	Acetone	38	81/19					
17	EtOH	0	0/0					
18	t-BuOH	97	96/4					

^aReaction conditions: to a solution of dimethyl phosphite (1.0 mmol) and acrylonitrile (2.0 mmol) in solvent (1.0 mL) was added Me₃P (0.05 mmol, 1.0 mol/L in THF) at 0 °C. The reaction mixture was stirred at 25 °C for 1 h. Yield was determined by GC. ^b8 h. ^cMe₃P (0.01 mmol). ^d1.0 mmol acrylonitrile was used. e3.0 mmol acrylonitrile was used. f4.0 mmol acrylonitrile was used.^g at 0 °C.^h at -40 °C.ⁱ at -60 °C.

decreased (entry 3). Similarly, when 1.0 mmol acrylonitrile was used, a moderate yield of the adduct 54% (entry 4) was obtained. Interestingly, however, compared to entry 1, the use of more

Tetrahedron

ACCEPTED

ratio of the two products 1/1'. Thus, the selectivity to 1' constantly increased as the reaction temperature decreased (entries 7-10). The reaction also progressed rapidly in toluene, CH₂Cl₂ and EtOAc (entries 11-13). However, only low yields of the products were obtained in DMF, DMSO and acetone (entries 14-16). On the other hand, no addition products were observed when the reaction was conducted in EtOH. Surprisingly, however, 1 was selectively generated in a high yield when t-BuOH was used as the solvent (entry 18).

Next, in order to clarify the scope and limitations of this reaction, the additions of a variety of P(O)H compounds to electron-deficient alkenes under this optimized reaction condition (entry 18) were carried out. As shown in Table 2, all the dialkyl phosphites tested could produce the corresponding products in good yields with excellent selectivity to the 1 to 1 adduct 1 (Table 2, products 1-5). H-phosphinate isopropyl and phenylphosphinate secondary phosphine oxide diphenylphosphine oxide were also applicable to this reaction, generating the corresponding 1 to 1 adducts in high yield with high selectivity (products 6, 7). The electron-deficient methyl acrylate and tert-butyl acrylate were found as reactive as acrylonitrile to react with dimethyl phosphite, furnishing the expected products 1 in high yields (products 8, 9). The steric bulky methacrylonitrile and methyl methacrylate also worked well under the present reaction conditions and the desired products were given in high yields (products 10, 11).

Table 2. Selective 1 to 1 addition of a P(O)H compound to an electron-deficient alkene.^a

Z ₁ Z ₂ P(O)H +	R_1 R_2	at. Me₃P → Z ₁	$\begin{array}{ccc} 0 & R_1 \\ P & & \\ Z_2 & & \\ \end{array} \\ R_2 \\ \end{array}$
O O O CN	EtO O EtO CN	<i>i</i> -PrO P <i>p</i> <i>i</i> -PrO CN	<i>n</i> -BuO P CN
1, yield ^b : 84%	2 , yield: 91%	3 , yield: 86%	4 , yield: 86%
$\begin{array}{c} Ph \\ O \\ Ph \\ O' \\ O' \\ 5, yield: 92\% \end{array}$	<i>i</i> -PrO_p/ Ph 6, yield: 89%	Ph _ 0 Ph _ CN 7, yield: 98%	0, 0 -0' 0 8 , yield: 98%
O P OBu	-0 -0 -0 CN		
9, yield: 84%	10, yield: 82%	11, yield: 87%	

^aReaction conditions: phosphite (1.0 mmol), alkene (2.0 mmol), Me₃P (0.05 mmol), t-BuOH (1.0 mL), 25 °C, 1 h. ^bIsolated yield.

2.2. Attempted selective generation of 1'

Since the 1 to 1 addition product 1 was successfully generated selectively, we turned our attention to the selective generation of 1'. As described in Table 1, the selective generation of 1' was not achieved under the conditions of Table 1. Therefore, we decided to further optimize the conditions in order to selectively obtain 1' (Table 3). The addition also took place readily with methyl acrylate (entries 1 and 2). Similar to acrylnitrile, when 1.0 equivalence was used, 52% yield of the adducts with a ratio of 1/1' = 60/40 was obtained (entry 1). With 2.0 equivalents of methyl acrylate, 96% yield of the adducts was obtained, albeit the ratio of the adducts changed little (1/1' = 58/42) (entry 2). The addition also took place smoothly with the bulky diisopropyl phosphosite to give 88% yield of the adducts with 65/35 selectivity (entry 3). In addition to Me₃P, the reaction could also

be catalyzed efficiently by other trialkyl phosphines Et_3P , *n*- Bu_3P and even the very bulky t-Bu₃P and Cy₃P (entries 4-7). Dimethylphenylphosphine also well catalyzed the addition (entry 8). However, the bulky dicyclohexylphenylphoshine only gave a low yield of the products under similar conditions (entry 9). The catalytic activity of diphenylmethylphosphine was also low (entry 10), while triarylphosphines like Ph_3P , (*p*-MeC₆H₄)₃P, (*p*-MeO-C₆H₄)₃P all could not catalyze the addition reaction (entries 11-13). When we used triethylamine ($pK_b = 3.2$), which is a stronger base than triethylphosphine $(pK_b = 5.4)$,¹¹ as catalyst under similar conditions, the addition failed (entry 14), showing that basicity is important but is not the only factor for a catalyst. Very interestingly, however, with a combination of these inactive phosphine and Et₃N, the addition could also take place (entries 15 and 16). Thus, the combination of $(p-\text{MeOC}_6\text{H}_4)_3\text{P}$ gave 16% yield of the adducts (entry 15), and the combination of Cy₂PhP with Et₃N gave 42% yield of the adducts (entry 16). As expected, the triarylphsophine having an amino group $(p-Me_2NC_6H_4)_3P$ could also catalyze the reaction (entry 17). However, despite such an extensive study on the reaction, the selective formation of 1' has not been found yet.

Table 3. Reaction condition optimization for the selective generation of 1^{a} .

$\mathbf{R}_{1} \stackrel{\mathbf{H}}{\overset{\mathbf{H}}{\overset{\mathbf{H}}{\overset{\mathbf{H}}{\overset{\mathbf{H}}{\overset{\mathbf{H}}{\overset{\mathbf{H}}}}}}_{\mathbf{H}}} + \mathbf{R}_{2}$		5 mol%	cat. O		O_{\parallel} R_2
		² 25 ℃,	$1 h$ $R_1 \stackrel{r}{\underset{R_1}{\overset{l}{\underset{R_1}{\underset{R_1}{\underset{R_1}{\overset{l}{\underset{R_1}{R_1}{\underset{R_1}{\underset{R_1}{\underset{R_1}{\underset{R_1}{\underset{R_1}{\underset{R_1}{\underset{R_1}{\underset{R_1}{\underset{R_1}{\underset{R_1}{\underset{R_1}{\underset{R_1}{\underset{R_1}{\underset{R_1}{\underset{R_1}{\underset{R_1}{\atopR}{R_1}{\underset{R_1}{R_1}{\underset{R_1}{R_1}{R_1}{R_1}{R_1}{$	$R_2 + R_1 + R_2$	
			1, 3, 8		1', 3', 8'
Entry R	Ra	Cat	Yield	Ratio	
Entry	I.	R ₂	Cut.	$(\%)^{\prime\prime}$	$(1/1')^c$
$1^{d,e}$	MeO	COOMe	Me_3P	52	60/40
2^{e}	MeO	COOMe	Me_3P	96	58/42
3^e	<i>i</i> -PrO	CN	Me ₃ P	88	65/35
4^{f}	MeO	CN	Et ₃ P	92	70/30
5^{f}	MeO	CN	<i>n</i> -Bu ₃ P	86	70/30
6 ^f	MeO	CN	t-Bu ₃ P	84	70/30
7 ^f	MeO	CN	Cy ₃ P	72	66/34
8^{f}	MeO	CN	Me ₂ PhP	85	70/30
9 ^f	MeO	CN	Cy ₂ PhP	12	60/40
10 ^f	MeO	CN	MePh ₂ P	8	50/50
11^{f}	MeO	CN	Ph_3P	0	
12^{f}	MeO	CN	(p-MePh) ₃ P	0	-)
13 ^f	MeO	CN	(p-MeOPh) ₃ P	0	-
14^{f}	MeO	CN	Et ₃ N	0	-
15 ^f	MeO	CN	(p-MeOPh) ₃ P, Et ₃ N	16	46/54
16 ^f	MeO	CN	Cy ₂ PhP, Et ₃ N	42	52/48
17 ^f	MeO	CN	(p- Me ₂ NPh) ₃ P	58	58/42
an it		1 1 1	(1.0. 1) 11	10	1) 1 (0.0

^aReaction conditions: phosphine (1.0 mmol), alkene (2 mmol), catalyst (0.05 mmol), solvent (1.0 mL), 25 °C, 1 h. ^bTotal GC yield of **1** and **1**'. ^cRatio of **1/1'** GC yield. ^d1 mmol alkene was used. ^cTHF as solvent. ^fMeCN as solvent.

As summarized in Table 4, in addition to $(MeO)_2P(O)H$, other dialkylphosphites $(RO)_2P(O)H$ (R = Et, *n*-Bu, *i*-Pr, PhCH₂) also reacted readily to give the products in high yields (Table 4, products **2-5** and **2'-5'**). Not limited to dialkyl phosphite, isopropyl phenylphosphinate (products **6** and **6'**), and diphenylphosphine oxide (products **7** and **7'**) could also be used as the substrates to give the corresponding adducts in high yields.

In addition to acrylonitrile, satisfactory results were also obtained in the reaction of $(MeO)_2P(O)H$ with several acrylates such as methyl acrylate (products **8** and **8'**), *tert*-butyl acrylate (products **9** and **9'**), methyl acrylonitrile (products **10** and **10'**), and methyl methacrylate (products **11** and **11'**), in 73% to 95% yields. Good results were also obtained with isopropyl phenylphosphinate and methyl acrylate (products **12** and **12'**). Diphenyl phosphine oxide also served well to react with acrylates, producing the products in high yields (products **13-16** and **13'-16'**). It is worth noting that under the reaction conditions, the 1 to

Table 4. Scope and limitations of the Me₃P-catalyzed reaction

3

^{*a*}Reaction conditions: P(O)-H compounds (1.0 mmol), alkene (2.0 mmol) Me₃P (0.05 mmol), THF (1.0 mL), 25 °C, 1 h. The yields in the table were isolated yields.

1 adduct **11** and **16** were obtained selectively (products **11** and **16**). Methyl vinylketone also could be used as the substrate to give the 1 to 1 adduct **17** and **18** predominantly. The two adducts could be separated and isolated in pure form by conventional techniques. All these compounds we obtained have been fully

characterized spectroscopically as shown in the experimental Maddition of (MeO)₂P(O)H to CH₂=CHCN is proposed (Scheme 2). Dimethylphosphite and trimethylphosphine may generate an section.

2.3. Mechanistic study.

To gain some insights into the reaction mechanism, a series of control experiments were carried out (Scheme 1). It was known acrylonitrile could dimerize to produce that 2methyleneglutaronitrile 19.12 Therefore, it was first thought that the addition of P(O)-H compounds to acrylonitrile should give the 1 to 1 adduct 1, while the addition to 19 should give the 1 to 2 adduct 1' (eq. 5). Indeed, a separate experiment using 19 confirmed that the addition did occur to produce 1' (eq. 6). However, as described below, this reaction path, although could not be completely excluded out, should not be the major path for the formation of 1' under the reaction conditions.

Scheme 1. Control experiments

1.0 mmol

Firstly, under the reaction conditions in the absence of (MeO)₂P(O)H, the dimerization product 19 from acrylonitrile in THF and t-BuOH, was obtained in only 5% and 10% yield, respectively (eq.s 7 and 8). Very surprisingly, the addition almost did not take place when (MeO)₂P(O)H was subsequently added to the mixtures. On the other hand, by the addition of another 5 mol% Me₃P, the addition took place rapidly to give the adducts in high yields (eq. 8). Therefore, it can be safely concluded that the combination of CH₂=CHCN with Me₃P can significantly deactivate the catalytic activity of Me₃P in the addition of (MeO)₂P(O)H to CH₂=CHCN. However, interestingly, such a deactivation of the catalyst Me₃P was not observed with the combination of (MeO)₂P(O)H with Me₃P, because the addition still took place readily when CH₂=CHCN was subsequently added to the mixture of (MeO)₂P(O)H with Me₃P (eq 9).

Scheme 2. A plausible mechanism for the Me₃P-catalyzed addition of (MeO)₂P(O)H to acrylonitrile.

Although a detailed mechanism is not clear, on the basis of the above results, a simplified mechanism for the Me₃P-catalyzed

intermediate I. This intermediate I adds to acrylonitrile, perhaps via an intermediate II, to give the 1 to 1 adduct 1. On the other hand, intermediate II may add to another molecule acrylonitrile to generated **III** which, *via* a subsequent protonation, will give the 1 to 2 adduct 1'. 1 to 1 adduct 1 was major product when t-BuOH as solvent since t-BuOH provides the proton which can quickly quench the intermediate II. Although the addition of Me₃P to acrylonitrile generating a zwitterionic species IV is also a long-proposed reasonable reaction, however, apparently, this is a dead path for the catalytic addition of (MeO)₂P(O)H to acrylonitrile as shown in eq.s 7-9.

3. Conclusion

In conclusion, we have disclosed a simple Me₃P-catalyzed addition of hydrogen phosphoryl compounds P(O)H to electrondeficient alkenes to give the very useful functional phosphoryl compounds. The reaction produced not only the 1 to 1 adduct 1 but also 1 to 2 adduct 1'. The generation of the 1 to 1 adduct 1 was selective. Although a selective generation of 1' was not achieved, this adduct could be isolated via conventional techniques. The workup of the reaction mixture is very simple compared with other methods since the catalyst can be easily removed from the product under vacuum.

4. Experimental section

General information: All materials were purchased and used without further purification. ¹H NMR spectra were recorded on JEOL JNM-ECS400 (400 MHz) FT NMR in CDCl₃ with Me₄Si as an internal standard. ¹³C NMR spectra were taken on JEOL JNM-ECS400 (100 MHz) FT NMR system in CDCl₃. ³¹P NMR spectra were taken on JEOL JNM-ECX400 (162 MHz) FT NMR system in CDCl₃ with 85% H₃PO₄ solution as an external standard. HPLC (recycle GPC) method for isolation was performed on JAPAN ANALYTICAL INDUSTRY LC-908 with JAIGEL-1H (polystyrene-based column). High resolution mass spectra were obtained on JEOL JMS700 at Kyoto-Nara Advanced Nanotechnology Network. Caution: trimethylphosphine has toxicity and high volatility. When trimethylphosphine is manipulated, ventilate the bench carefully.

General procedure for Me₃P catalyzed addition of P(O)-H compounds to electron-deficient alkenes: A glass schlenk tube was charged with P(O)-H compounds (1.0 mmol), electrondeficient alkenes (1.0 mmol) and 1.0 mL solvent. After the tube was cooled in an ice-water bath, Me₃P (1.0 mol/L in THF, 0.05 mL) was injected with a syringe. After stirring for 5 minutes, the ice bath was removed. The reaction mixture was warmed up to room temperature and stirred for 1 h. The solvent and PMe₃ was removed under reduce pressure. The crude product was purified by GPC to get the analytically pure samples.

4.1. Dimethyl (2-cyanoethyl)phosphonate (1). Colorless oil; $\delta_{\rm H}$ (400 MHz, CDCl₃) 3.54 (6H, d, J 11.2 Hz), 2.40 (2H, td, J 8.0 Hz, J 15.2 Hz), 1.87 (2H, td, J 8.0 Hz, J 18.0 Hz); δ_C (100 MHz, CDCl₃) 117.96 (d, J 16.2 Hz), 52.23 (d, J 6.7 Hz), 21.03 (d, J 144.8 Hz), 10.84 (d, J 3.8 Hz); δ_P (162 MHz, CDCl₃) 29.48. This compound is known.

4.2. Dimethyl (2,4-dicyanobutyl)phosphonate (1'). Colorless oil; δ_H (400 MHz, CDCl₃) 3.74 (6H, d, J 11.2 Hz, d, J 10.8 Hz), 3.06~3.03 (1H, m), 2.76~2.46 (2H, m), 2.20~1.94 (2H, m); δ_C (100 MHz, CDCl₃) 119.04 (d, J 11.4 Hz), 117.70, 52.89 (d, J 6.6 Hz), 52.82 (d, J 8.6 Hz), 28.58 (d, J 10.5 Hz), 27.79 (d, J 143.9 Hz), 25.40 (d, J 3.8 Hz), 14.99; δ_P (162 MHz, CDCl₃) 27.54.

HRMS (ESI) Calcd for [M+H]⁺ C₈H₁₄N₂O₃P: 217.0742, Found: № J 2.9 Hz), 15.12; δ_P (162 MHz, CDCl₃) 25.88. HRMS (ESI) 217.0729.

4.3. Diethyl (2-cyanoethyl)phosphonate (2). Colorless oil; $\delta_{\rm H}$ (400 MHz, CDCl₃) 4.13~4.05 (4H, m), 2.63~2.55 (2H, m), 2.08~1.99 (2H, m), 1.30 (6H, td, J 1.6 Hz, J 7.6 Hz,); δ_C (100 MHz, CDCl₃) 118.37 (d, J 18.1 Hz), 62.34 (d, J 6.7 Hz), 22.844 (d, J 144.8 Hz), 16.41 (d, J 5.7 Hz), 11.59 (d, J 3.8 Hz); δ_P (162 MHz, CDCl₃) 26.62. This compound is known.¹³

4.4. Diethyl (2,4-dicyanobutyl)phosphonate (2'). Colorless oil; $\delta_{\rm H}$ (400 MHz, CDCl₃) 4.17~4.09 (4H, m), 3.13~3.03 (1H, m), 2.67~2.50 (2H, m), 2.22~2.12 (2H, m), 2.08~1.94 (2H, m), 1.33 (6H, t, J 7.2 Hz); δ_C (100 MHz, CDCl₃) 119.17 (d, J 11.5 Hz), 117.63, 62.59 (d, J 6.7 Hz), 62.56 (d, J 6.7 Hz), 28.91 (d, J 11.5 Hz), 28.70 (d, J 123.0 Hz), 25.67 (d, J 3.8 Hz), 16.37 (d, J 4.8 Hz), 15.15; δ_P (162 MHz, CDCl₃): δ (ppm) 24.63. HRMS (ESI) Calcd for [M+H]⁺ C₁₀H₁₈N₂O₃P: 245.1055, Found: 245.1079.

4.5. Diisopropyl (2-cyanoethyl)phosphonate (3). Colorless oil; $\delta_{\rm H}$ (400 MHz, CDCl₃) 4.71~4.63 (2H, m), 2.60~2.52 (2H, m), 2.03~1.94 (2H, m), 1.29 (12 H, dd, J 3.2 Hz, J 6.4 Hz); δ_C (100 MHz, CDCl₃) 118.49 (d, J 19.1 Hz), 71.09 (m, J 6.7 Hz), 23.95 (d, J 3.8 Hz), 23.89 (d, J 136.3 Hz), 11.68 (d, J 3.9 Hz); δ_P (162 MHz, CDCl₃) 24.33. HRMS (ESI) Calcd for $[M+H]^+$ C₉H₁₉NO₃P: 220.1102, Found: 220.111.

4.6. Diisopropyl (2,4-dicyanobutyl)phosphonate (3'). Colorless oil; $\delta_{\rm H}$ (400 MHz, CDCl₃) 4.77~4.67 (2H, m), 3.12~3.02 (1H, m), 2.67~2.50 (2H, m), 2.25~1.88 (4H, m), 1.33 (12H, dd, J 2.0 Hz, J 6.0 Hz); δ_C (100 MHz, CDCl₃) 119.32 (d, J 12.4 Hz), 117.64, 71.59 (d, J 6.7 Hz), 71.52 (d, J 6.6 Hz), 30.08 (d, J 129.6 Hz), 28.70 (d, J 6.7 Hz), 25.83 (d, J 3.8 Hz), 23.98 (d, J 3.8 Hz), 15.17; δ_P (162 MHz, CDCl_3): δ (ppm) 22.39. HRMS (ESI) Calcd for $[M+H]^+ C_{12}H_{22}N_2O_3P$: 273.1368, Found: 273.1389.

4.7. Dibutyl (2-cyanoethyl)phosphonate (4). Colorless oil; $\delta_{\rm H}$ (400 MHz, CDCl₃) 4.07~3.95 (4H, m), 2.61~2.54 (2H, m), 2.08~1.99(2H, m), 1.65~1.58 (4H, m), 1.40~1.31 (4H, m), 0.89 (6H, t, J 7.2 Hz); δ_C (100 MHz, CDCl₃) 118.33 (d, J 18.1 Hz), 65.99 (d, J 6.7 Hz), 32.42 (d, J 5.7Hz), 22.66 (d, J 144.8 Hz), 18.63, 13.48, 11.56 (d, J 3.8 Hz); δ_P (162 MHz, CDCl₃) 26.62. HRMS (ESI) Calcd for [M+H]⁺ C₁₁H₂₃NO₃P: 248.1415, Found: 248.1435.

4.8. Dibutyl (2,4-dicyanobutyl)phosphonate (4'). Colorless oil; $\delta_{\rm H}$ (400 MHz, CDCl₃) 4.12~4.00 (4H, m), 3.13~3.02(1H, m), 2.67~2.50 (2H, m), 2.23~2.13 (2H, m), 2.08~1.94 (2H, m), 1.69~1.62 (4H, m), 1.43~1.34 (4H, m), 0.92 (6H, t, J 7.2 Hz); δ_C (100 MHz, CDCl₃) 119.20 (d, J 12.4 Hz), 117.58, 66.36 (d, J 6.7 Hz), 66.34 (d, J 6.7 Hz), 32.49 (d, J 5.8 Hz), 32.47 (d, J 5.8 Hz), 28.89 (d, J 143.9 Hz), 28.86 (d, J 9.5 Hz), 25.75 (d, J 3.8 Hz), 18.71, 15.22, 13.57; δ_P (162 MHz, CDCl₃) 24.65. HRMS (ESI) Calcd for [M+H]⁺ C₁₄H₂₆N₂O₃P: 301.1681, Found: 301.1663.

4.9. Dibenzyl (2-cyanoethyl)phosphonate (5). Colorless oil; $\delta_{\rm H}$ (400 MHz, CDCl₃) 7.38~7.24 (10H, m), 5.08~4.92 (4H, m), 2.52~2.45 (2H, m), 2.05~1.94 (2H, m); δ_C (100 MHz, CDCl₃) 135.70 (d, J 5.7 Hz), 128.81 (d, J 6.7 Hz), 128.21, 118.25 (d, J 19.1 Hz), 67.95 (d, J 6.6 Hz), 23.38 (d, J 144.0 Hz), 11.42 (d, J 2.8 Hz); δ_P (162 MHz, CDCl₃): δ (ppm) 27.82. HRMS (ESI) Calcd for [M+H]⁺ C₁₇H₁₉NO₃P: 316.1102, Found: 316.1136.

4.10. Dibenzyl (2,4-dicyanobutyl)phosphonate (5'). Colorless oil; $\delta_{\rm H}$ (400 MHz, CDCl₃) 7.35 (10H, b), 5.10~4.92 (4H, m), 3.00~2.89 (1H, m), 2.55~2.36 (2H, m), 2.17~2.00 (2H, m), 1.96~1.85 (2H, m); δ_C (100 MHz, CDCl₃) 135.57 (d, J 5.7 Hz), 135.51 (d, J 4.7 Hz), 128.96, 128.92, 128.84, 128.80, 128.45, 128.37, 119.08 (d, J 12.4 Hz), 117.52, 68.31 (d, J 6.6 Hz), 68.20 (d, J 6.7 Hz), 29.53 (d, J 143.9 Hz), 28.68 (d, J 8.6 Hz), 25.59 (d,

Calcd for $[M+H]^+ C_{20}H_{22}N_2O_3P$: 369.1368, Found: 369.1387.

4.11. Isopropyl (2-cyanoethyl)(phenyl)phosphinate (6). Colorless oil; δ_H (400 MHz, CDCl₃) 7.66~7.61 (2H, m), 7.45~7.41 (1H, m), 7.37~7.33 (2H, m), 4.46~4.34 (1H, m), 2.56~2.33 (2H, m), 2.17~1.92 (2H, m), 1.24 (3H, d, J 6.0 Hz), 1.03 (3H, d, J 6.4 Hz); δ_C (100 MHz, CDCl₃) 132.52 (d, *J* 1.9 Hz), 131.30 (d, *J* 10.4 Hz), 130.29 (d, J 126.8 Hz), 128.55 (d, J 12.4 Hz), 118.21 (d, J 18.1 Hz), 70.28 (d, J 6.6 Hz), 26.41 (d, J 101.0 Hz), 24.14 (d, J 2.8 Hz), 23.55 (d, J 4.8 Hz), 10.31, δ_P (162 MHz, CDCl₃) 38.70. HRMS (ESI) Calcd for $[M+H]^+$ C₁₂H₁₇NO₂P: 238.0996, Found: 238.0994.

4.12. Isopropyl (2,4-dicyanobutyl)(phenyl)phosphinate (6'). Colorless oil; $\delta_{\rm H}$ (400 MHz, CDCl₃) 7.76~7.71 (2H, m), 7.57~7.52 (1H, m), 7.49~7.44 (2H, m), 4.55~4.45 (1H, m), 3.29~3.16 (0.6H, m), 3.03~2.92 (0.4H, m), 2.62~2.45 (2H, m), 2.38~1.91 (4H, m,), 1.36 (3H, d, J 6.4 Hz, d, J 6.4 Hz), 1.13 (3H, d, J 6.0 Hz, d, J 6.4 Hz); δ_C (100 MHz, CDCl₃) 133.01 (d, J 2.8 Hz), 132.91 (d, J 1.9 Hz), 131.63 (d, J 9.5 Hz), 131.51 (d, J 10.5 Hz), 131.04 (d, J 127.8 Hz), 130.31 (d, J 127.7 Hz), 128.92 (d, J 12.4 Hz), 128.86 (d, J 12.4 Hz), 119.33 (d, J 11.6 Hz), 119.14 (d, J 12.4 Hz), 117.65, 70.98 (d, J 5.7 Hz), 70.95 (d, J 5.8 Hz), 32.76 (d, J 100.1 Hz), 32.39 (d, J 100.0 Hz), 28.85 (d, J 7.6 Hz), 28.56 (d, J 6.7 Hz), 24.96 (d, J 6.7 Hz), 24.89 (d, J 3.8 Hz), 24.43 (d, J 2.9 Hz), 24.35 (d, J 2.8 Hz), 23.77 (d, J 2.8 Hz), 23.73 (d, J 2.9 Hz), 15.07, 14.97; δ_P (162 MHz, CDCl₃) 37.68 (s), 37.01. HRMS (ESI) Calcd for $[M+H]^+$ C₁₅H₂₀N₂O₂P: 291.1262, Found: 291.1226.

4.13. 3-(diphenylphosphoryl)propanenitrile (7). White solid; $\delta_{\rm H}$ (400 MHz, CDCl₃) 7.74~7.69 (4H, m), 7.58~7.47 (6H, m), 2.67~2.56 (4H, m); δ_{C} (100 MHz, CDCl₃) 132.57 (d, J 2.8 Hz), 131.48 (d, J 101.1 Hz), 130.80 (d, J 9.5 Hz), 129.11 (d, J 11.4 Hz), 118.64 (d, J 18.1 Hz), 26.63 (d, J 69.6 Hz), 10.47; δ_P (162 MHz, CDCl₃) 30.04. This compound is known.¹

2-((diphenylphosphoryl)methyl)pentanedinitrile 4.14. (7'). Colorless oil; $\delta_{\rm H}$ (400 MHz, CDCl₃) 7.79~7.70 (4H, m), 7.61~7.47 (6H, m), 3.20~3.11 (1H, m), 2.78~2.70 (1H, m), 2.63~2.44 (3H, m), 2.37~2.29 (1H, m), 2.08~1.98 (1H, m); δ_C (100 MHz, CDCl₃) 132.79 (d, J 2.8 Hz), 132.66 (d, J 2.9 Hz), 132.48 (d, J 101.9 Hz), 131.03 (d, J 9.5 Hz), 130.83 (d, J 100.0 Hz), 130.53 (d, J 9.5 Hz), 129.23 (d, J 12.4 Hz), 129.17 (d, J 12.4 Hz), 119.28 (d, J 11.4 Hz), 117.61, 32.48 (d, J 67.7 Hz), 28.97 (d, *J* 4.8 Hz), 25.16 (d, *J* 1.9 Hz), 15.24; δ_P (162 MHz, CDCl₃) 28.72. HRMS (ESI) Calcd for $\left[M{+}H\right]^{+}C_{18}H_{17}N_2OP{:}$ 308.1078, Found: 308.1080.

4.15. Methyl 3-(dimethoxyphosphoryl)propanoate (8). Colorless oil; δ_H (400 MHz, CDCl₃) 3.67 (9H, d, J 10.4 Hz, s), 2.57~2.50 (2H, m), 2.07~1.99 (2H, m); δ_C (100 MHz, CDCl₃) 172.41 (d, J 18.1 Hz), 52.48 (d, J 6.7 Hz), 51.99, 27.17 (d, J 3.8 Hz), 20.69 (d, J 143.9 Hz); δ_P (162 MHz, CDCl₃) 33.39. HRMS (ESI) Calcd for [M+H]⁺ C_{.6}H₁₄O₅P: 197.0578, Found: 197.0554. This compound is known.

4.16. Dimethyl 2-((dimethoxyphosphoryl)methyl)pentanedioate (8'). Colorless oil; $\delta_{\rm H}$ (400 MHz, CDCl₃) 3.69~3.62 (12 H, m), 2.80~2.70 (1H, m), 2.31~2.15 (3H, m), 1.96~1.77 (3H, m); $\delta_{\rm C}$ (100 MHz, CDCl₃) 174.33 (d, J 8.6 Hz), 172.79, 52.55 (d, J 6.6 Hz), 52.46 (d, J 6.7 Hz), 52.05, 51.69, 39.05 (d, J 3.8 Hz), 31.19, 28.42 (d, J 12.4 Hz), 27.65 (d, J 142.0 Hz); δ_P (162 MHz, CDCl₃) 31.77. HRMS (ESI) Calcd for [M+H]⁺ C₁₀H₂₀O₇P: 283.0946, Found: 283.0927.

4.17. tert-butyl 3-(dimethoxyphosphoryl)propanoate (9). Colorless oil; $\delta_{\rm H}$ (400 MHz, CDCl₃) 3.69 (6H, d, J 10.8 Hz), 2.48~2.41 (2H, m,), 2.03~1.94 (2H, m), 1.39 (9H, s); δ_{C} (100 MHz, CDCl₃) 171.08 (d, *J* 18.1 Hz), 80.90, 52.38 (d, *J* 6.7 Hz), M 28.41 (d, *J* 3.8 Hz), 27.94, 20.68 (d, *J* 143.0 Hz); δ_P (162 MHz, CDCl₃) 33.99. HRMS (ESI) Calcd for $[M+H]^+$ C₉H₂₀O₅P: 239.1048, Found: 239.1076.

4.19. Dimethyl (2-cyanopropyl)phosphonate (10). Colorless oil; $\delta_{\rm H}$ (400 MHz, CDCl₃) 3.72~3.68(6H, d, J 10.8 Hz, d, J 11.2 Hz), 2.99~2.87 (1H, m), 2.16~2.05 (1H, m), 1.93~1.83 (1H, m), 1.39~1.37 (3H, d, J 7.2 Hz, d, J 6.0 Hz); $\delta_{\rm C}$ (100 MHz, CDCl₃) 121.56 (d, J 12.4 Hz), 52.72 (d, J 6.7 Hz), 52.59 (d, J 6.6 Hz), 29.97 (d, J 142.9 Hz), 20.39 (d, J 3.8 Hz), 19.28 (d, J 9.5 Hz); $\delta_{\rm P}$ (162 MHz, CDCl₃) 28.65. HRMS (ESI) Calcd for [M+H]⁺ C₆H₁₃NO₃P: 178.0633, Found: 178.0646.

4. 20. Dimethyl (2,4-dicyano-2-methylpentyl)phosphonate (**10**'). Colorless oil; $\delta_{\rm H}$ (400 MHz, CDCl₃) 3.76 ~3.72 (6H, m), 2.88~2.80 (1H, m), 2.31~1.98 (4H, m), 1.63~1.59 (3H, s, s,), 1.41~1.39 (3H, d, J 7.2 Hz, d, J 6.8 Hz,); $\delta_{\rm C}$ (100 MHz, CDCl₃) 122.24, 122.13, 121.98 (d, J 11.4 Hz), 121.80 (d, J 11.4 Hz), 52.91 (d, J 6.6 Hz), 52.84 (d, J 7.7 Hz), 52.71 (d, J 5.7 Hz), 43.11 (d, J 7.7 Hz), 42.93 (d, J 7.7 Hz), 36.09 (d, J 142.9 Hz), 33.78 (d, J 142.0 Hz), 33.37 (d, J 2.9 Hz), 33.07 (d, J 2.9 Hz), 26.28 (d, J 5.7 Hz), 25.20 (d, J 7.6 Hz), 22.09 (d, J 26.6 Hz), 19.59 (d, J 16.2 Hz); $\delta_{\rm P}$ (162 MHz, CDCl₃) 26.48. HRMS (ESI) Calcd for [M+H]⁺ C₁₀H₁₈N₂O₃P: 245.1055, Found: 245.1067.

4.21. Methyl 3-(dimethoxyphosphoryl)-2-methylpropanoate (11). Colorless oil; $\delta_{\rm H}$ (400 MHz, CDCl₃) 3.68~3.64 (9H, m), 2.84~2.72 (1H, m), 2.28~2.18 (1H, m), 1.81~1.70 (1H, m), 1.25 (3H, d, J 8.0 Hz); $\delta_{\rm C}$ (100 MHz, CDCl₃) 175.58 (d, J 12.4 Hz), 52.36 (d, J 4.8 Hz), 52.00, 34.30 (d, J 2.9 Hz), 28.95 (d, J 141.1 Hz), 18.67 (d, J 9.6 Hz); $\delta_{\rm P}$ (162 MHz, CDCl₃) 32.55. HRMS (ESI) Calcd for [M+H]⁺ C₇H₁₆O₅P: 211.0735, Found: 211.0764.

4.22. Methyl 3-(isopropoxy(phenyl)phosphoryl)propanoate (12). Colorless oil; $\delta_{\rm H}$ (400 MHz, CDCl₃) 7.67~7.62 (2H, m), 7.42~7.31 (3H, m), 4.59~4.34 (1H, m), 3.47 (3H, s), 2.53~2.31 (2H, m), 2.17~1.95 (2H, m), 1.24 (3H, d, J 6.4 Hz), 1.02 (3H, d, J 6.4 Hz); $\delta_{\rm C}$ (100 MHz, CDCl₃) 172.36 (d, J 17.2 Hz), 132.08 (d, J 1.9 Hz), 131.45 (d, J 123.9 Hz), 131.41 (d, J 9.5 Hz), 128.38 (d, J 12.3 Hz), 69.59 (d, J 5.8 Hz), 51.62, 26.38, 25.79 (d, J 102.0 Hz), 24.31 (d, J 2.9 Hz), 23.71 (d, J 4.8 Hz); $\delta_{\rm P}$ (162 MHz, CDCl₃) 41.79. HRMS (ESI) Calcd for [M+H]⁺ C₁₃H₂₀O₄P: 271.1099, Found: 271.1080.

4.23. Dimethyl 2-((isopropoxy(phenyl)phosphoryl)methyl)pentanedioate *(12')*. Colorless oil; $\delta_{\rm H}$ (400 MHz, CDCl₃) 7.74~7.67 (2H, m), 7.49~7.38 (3H, m), 4.48~4.37 (1H, m), 3.56 (6H, d, J 12.4 Hz, d, J 65.2 Hz), 2.84~2.67 (1H, m), 2.42~2.18 (3H, m), 2.00~1.77 (3H, m), 1.28 (3H, d, J 6.0 Hz, d, J 5.6 Hz), 1.05 (3H, d, J 5.2 Hz, d, J 6.0 Hz); δ_C (100 MHz, CDCl₃) 174.42 (d, J 6.6 Hz), 174.21 (d, J 7.6 Hz), 172.77, 172.70, 132.20, 132.08 (d, J 124.9 Hz), 131.75 (d, J 10.4 Hz), 131.72 (d, J 123.9 Hz), 131.63 (d, J 10.5 Hz), 128.50 (d, J 12.4 Hz), 128.43 (d, J 12.4 Hz), 69.88 (d, J 6.7 Hz), 69.82 (d, J 6.6 Hz), 51.80, 51.68, 51.54, 38.48, 38.44, 32.86 (d, J 101.0 Hz), 32.65 (d, J 101.1 Hz), 31.16, 28.71 (d, J 12.4 Hz), 28.51 (d, J 11.4 Hz), 24.46 (d, J 2.9 Hz), 24.38 (d, J 2.8 Hz),

23.82 (d, J 4.8 Hz); δ_P (162 MHz, CDCl₃) 40.71, 40.29. HRMS (ESI) Calcd for [M+H]⁺ C₁₇H₂₆O₆P: 357.1467, Found: 357.1477.

4.24. Methyl 3-(diphenylphosphoryl)propanoate (13). Colorless oil; $\delta_{\rm H}$ (400 MHz, CDCl₃) 7.86~7.63 (4H, m), 7.45~7.36 (6H, m), 3.53 (3H, s), 2.59~2.47 (4H, m); $\delta_{\rm C}$ (100 MHz, CDCl₃) 172.63 (d, *J* 16.2 Hz), 132.51 (d, *J* 99.1 Hz), 131.82 (d, *J* 2.8 Hz), 130.63 (d, *J* 9.6 Hz), 128.63 (d, *J* 11.5 Hz), 51.84, 26.11 (d, *J* 1.9 Hz), 25.24 (d, *J* 72.9 Hz); $\delta_{\rm P}$ (162 MHz, CDCl₃) 32.02. This compound is known.¹⁵

4.25. Dimethyl 2-((diphenylphosphoryl)methyl)pentanedioate (13'). Colorless oil; $\delta_{\rm H}$ (400 MHz, CDCl₃) 7.69~7.64 (4H, m), 7.46~7.36 (6H, m), 3.53 (3H, s), 3.35 (3H, s), 2.91~2.72 (2H, m), 2.32~2.21 (3H, m), 1.97~1.92 (2H, m); $\delta_{\rm C}$ (100 MHz, CDCl₃) 174.32 (d, *J* 6.7 Hz), 172.63, 133.51 (d, *J* 99.2 Hz), 132.34 (d, *J* 98.1 Hz), 131.77 (d, *J* 3.8 Hz), 131.73 (d, *J* 2.8 Hz), 130.94 (d, *J* 9.5 Hz), 130.48 (d, *J* 8.6 Hz), 128.63 (d, *J* 11.5 Hz), 128.48 (d, *J* 12.4 Hz), 51.73, 51.51, 38.16 (d, *J* 2.9 Hz), 32.11 (d, *J* 70.5 Hz), 31.18, 29.90 (d, *J* 9.5 Hz); $\delta_{\rm P}$ (162 MHz, CDCl₃) 30.11. This compound is known.¹⁶

4.26. tert-butyl 3-(diphenylphosphoryl)propanoate (14). Colorless oil; $\delta_{\rm H}$ (400 MHz, CDCl₃) 7.74~7.69 (4H, m), 7.51~7.42 (6H, m), 2.57~2.47 (4H, m), 1.36 (9H, s); $\delta_{\rm C}$ (100 MHz, CDCl₃) 171.61 (d, *J* 17.2 Hz), 132.85 (d, *J* 101.9 Hz), 131.85, 130.79 (d, *J* 8.6 Hz), 128.73 (d, *J* 11.4 Hz), 81.02, 27.97, 27.43 (d, *J* 1.9 Hz), 25.36 (d, *J* 72.5 Hz); $\delta_{\rm P}$ (162 MHz, CDCl₃) 32.35. This compound is known.¹⁷

4.27. 5-((diphenylphosphoryl)methyl)-2,2,10,10tetramethylundecane-4,8-dione (**14'**). Colorless oil; $\delta_{\rm H}$ (400 MHz, CDCl₃) 7.72~7.64 (4 H, m), 7.45~7.36 (6H, m), 3.55 (3H, d), 3.43 (3H, d). 2.83~2.76 (1H, m), 2.51~2.41 (2H, m), 2.30~2.24 (1H, m), 2.16~2.05 (1H, m), 1.24 (3H, d), 1.02 (3H, d); $\delta_{\rm C}$ (100 MHz, CDCl₃) 169.33 (d, J 6.7 Hz), 167.74, 129.91 (d, J 101.1 Hz), 128.90 (d, J=98.2 H), 127.67, 127.02 (d, J 9.5 Hz), 126.60 (d, J 8.6 Hz), 124.63 (d, J 8.6 Hz), 124.51 (d, J 8.6 Hz), 77.05, 76.26, 34.90, 28.74, 27.81 (d, J 70.5 Hz), 25.48 (d, J 8.6 Hz), 23.97, 23.83; $\delta_{\rm P}$ (162 MHz, CDCl₃) 30.62. HRMS (ESI) Calcd for [M]⁺ C₂₆H₃₅O₅P: 458.2222, Found:458.2246.

4.28. 3-(diphenylphosphoryl)-2-methylpropanenitrile (15). Colorless oil; $\delta_{\rm H}$ (400 MHz, CDCl₃) 7.74~7.66 (4H, m), 7.50~7.38 (6H, m), 3.10~3.05 (1H, m), 2.73~2.65 (1H, m), 2.46~2.37 (1H, m), 1.36 (3H, d, J 7.6 Hz); $\delta_{\rm C}$ (100 MHz, CDCl₃) 132.86 (d, J 100.0 Hz), 132.23 (d, J 2.9 Hz), 132.10 (d, J 2.9 Hz), 131.46 (d, J 100.0 Hz), 130.76 (d, J 9.5 Hz), 130.34 (d, J 9.6 Hz), 128.79 (d, J 11.4 Hz), 121.76 (d, J 12.4 Hz), 34.09 (d, J 68.6 Hz), 19.63 (d, J 1.9 Hz), 19.51 (d, J 5.7 Hz); $\delta_{\rm P}$ (162 MHz, CDCl₃) 28.79. HRMS (ESI) Calcd for [M]⁺ C₁₁H₁₆NOP: 269.0969, Found: 269.0947.

4.29. 2-((diphenylphosphoryl)methyl)-2,4dimethylpentanedinitrile (**15**'). Colorless oil; $\delta_{\rm H}$ (400 MHz, CDCl₃) 7.83~7.71 (4H, m), 7.51~7.44 (6H, m), 2.93~2.67 (3H, m), 2.31~1.96 (2H, m), 1.57 (3H, d, J 2.4 Hz), 1.35 (3H, t, J 7.2 Hz); $\delta_{\rm C}$ (100 MHz, CDCl₃) 133.34 (d, J 101.0 Hz), 133.17, 132.71 (d, J 100.1 Hz), 132.19, 130.77 (8.6 Hz), 130.57 (d, J 8.6 Hz), 130.52 (d, J 3.8 Hz), 130.43 (d, J 2.9 Hz), 128.90 (d, J 11.5 Hz), 128.86 (d, J 11.5 Hz), 122.40 (d, J 11.5 Hz), 121.72 (d, J 11.5 Hz), 121.61 (d, J 8.5 Hz), 43.34 (d, J 4.7 Hz), 43.02 (d, J 3.8 Hz), 39.05 (d, J 67.6 Hz), 37.04 (d, J 67.6 Hz), 34.79 (d, J 3.8 Hz), 22.14 (d, J 18.2 Hz), 19.51 (d, J 17.2 Hz); $\delta_{\rm P}$ (162 MHz, CDCl₃) 26.78, 26.34. HRMS (ESI) Calcd for [M]⁺ C₂₀H₂₁N₂OP: 336.1391, Found: 336.1416.

6

4.30. Methyl 3-(diphenylphosphoryl)-2-methylpropanoate (16). M 3. (a) Pudovik, N.; Konovalova, I. V. Synthesis 1979, 81; (b) Enders, D.; Colorless oil; δ_{H} (400 MHz, CDCl₃) 7.75~7.71 (4H, m), 7.50~7.42 (6H, m), 3.47 (3H, s), 3.01~2.82 (2H, m), 2.33~2.25 (1H, m), 1.27 (3H, d, J 6.8 Hz); δ_C (100 MHz, CDCl₃) 175.85 (d, J 10.5 Hz), 134.00 (d, J 99.1Hz), 132.73 (d, J 98.2 Hz), 131.75, 131.00 (d, J 9.6 Hz), 130.61 (d, J 9.6 Hz), 128.70 (d, J 12.4 Hz), 128.62 (d, J 11.4), 51.91, 33.69 (d, J 92.5 Hz), 33.67 (d, J 20.0 Hz), 19.24 (d, J 7.7 Hz); δ_P (162 MHz, CDCl₃) 30.66. This compound is known.⁶

4.31. Dimethyl (3-oxobutyl)phosphonate (17). Colorless oil; $\delta_{\rm H}$ (400 MHz, CDCl₃) 3.69 (6H, d, J 11.2 Hz), 2.72~2.65 (2H, m), 2.13 (3H, s), 2.01~1.92 (2H, m). $\delta_{\rm C}$ (100 MHz, CDCl₃) 205.65 (d, J 14.3 Hz), 52.43 (d, J 6.7 Hz), 36.11 (d, J 3.8 Hz), 29.60, 18.93 (d, J 14.4 Hz). δ_P (162 MHz, CDCl₃) 34.98. This compound is known.¹⁸

4.32. Dimethyl (2-acetyl-5-oxohexyl)phosphonate (17'). Colorless oil; δ_H (400 MHz, CDCl₃) 3.66~3.62 (6H, m), 2.93~2.83 (1H, m), 2.45~2.29 (2H, m), 2.25~2.14 (4H, m), 2.08 (3H, d), 1.94~1.85 (1H, m), 1.78~1.60 (2H, m). $\delta_{\rm C}$ (100 MHz, CDCl₃) 209.43 (d, J 5.8 Hz), 207.20, 52.51 (d, J 7.6 Hz), 52.43 (d, J 6.7 Hz), 45.20 (d, J 2.9 Hz), 39.69, 30.05, 29.32, 26.05 (d, J 3.8 Hz), 25.92 (d, J 132.5 Hz). δ_P (162 MHz, CDCl₃) 32.95. HRMS (ESI) Calcd for $\left[M{+}H\right]^+$ $C_{10}H_{20}O_5P{:}$ 251.1048, Found: 251.1030.

4.33. 4-(diphenylphosphoryl)butan-2-one (18). White solid; $\delta_{\rm H}$ (400 MHz, CDCl₃) 7.69~7.64 (4H, m), 7.48~7.38 (6H, m), 2.73~2.67 (2H, m), 2.51~2.44 (2H, m), 2.05 (3H, s); δ_{C} (100 MHz, CDCl₃) 206.20 (d, J 13.4 Hz), 132.88, 131.93 (d, J 2.0 Hz), 130.75 (d, J 9.6 Hz), 128.80 (d, J 11.5 Hz), 35.24 (d, J 1.9 Hz), 29.75, 23.68 (d, J 73.4 Hz); δ_P (162 MHz, CDCl₃) 33.11. This compound is known.¹⁹

4.34. 3-((diphenylphosphoryl)methyl)heptane-2,6-dione (18'). Colorless oil; $\delta_{\rm H}$ (400 MHz, CDCl₃) 7.69~7.58 (4H, m), 7.45, 7.33 (6H, m), 2.97~2.79 (2H, m), 2.43~2.24 (2H, m), 2.12~2.04 (1H, m), 1.99 (3H, s), 1.93~1.84 (4H, m), 1.73~1.64 (1H, m); $\delta_{\rm C}$ (100 MHz, CDCl₃) 209.41 (d, J 4.8 Hz), 207.20, 133.56 (d, J 87.7 Hz), 132.36 (d, J 86.7 Hz), 131.79 (d, J 2.0 Hz), 130.81 (d, J 9.5 Hz), 130.44 (d, J 8.6 Hz), 128.65 (d, J 11.5 Hz), 128.54 (d, J 12.3 Hz), 44.22 (d, J 1.9 Hz), 39.58, 30.25 (d, J 71.4 Hz), 29.81, 28.99, 26.33 (d, J 8.6 Hz); δ_P (162 MHz, CDCl₃) 31.51. HRMS (ESI) Calcd for $[M+H]^+ C_{20}H_{24}O_3P$: 343.1463, Found: 343.1440.

4.35. 2-methylenepentanedinitrile (19). Colorless oil; $\delta_{\rm H}$ (400 MHz, CDCl₃) 6.02 (1H, s), 5.91 (1H, s), 2.64~2.56 (4H, m); δ_{C} (100 MHz, CDCl₃) 133.38, 119.00, 117.46, 117.09, 30.35, 16.03. This compound is known.¹²

Acknowledgments

T.H. thanks a scholarship from China Scholarship Council (CSC) (20153022) through the CGGSOS program.

References and notes

- 1. (a) Toy, A. D. F.; Walsh, E. N. Phosphorus Chemistry in Everyday Living, ACS, Washington, DC, 1987. (b) Corbridge, D. E. C. PhosPhorus: chemistry, biochemistry and technology, CRC Press, Boca Raton, 6th edn, 2013. (c) Quin, L. D. A Guide to Organophosphorus Chemistry, Wiley Interscience, New York, 2000. (d) Hendlin, D.; Stapley, E. O.; Jackson, M.; Wallick, H.; Miller, A. K.; Wolf, F. J.; Miller, T. W.; Chaiet, L.; Kahan, F. M.; Foltz, E. L.; Woodruff, H. B.; Mata, J. M.; Hernandez, S.; Mochales, S. Science 1969, 166, 122. (e) John, F. N-phosphonomethylglycine phytotoxicant compositions. U.S. Patent 3799758, 1974; (f) Hoerlein, G. Rev. Environ. Contam. Toxicol. 1994, 138, 73.
- (a) Phosphorus Ligands in Asymmetric Catalysis, A. Börner, ed. Wiley-VCH, Weinheim, 2008. (b) Tang, W.; Zhang, X. Chem. Rev. 2003, 103, 3029; (c) Grushin, V. V. Chem. Rev. 2004, 104, 1629.

- Saint-Dizier, A.; Lannou, M. I.; Lenzen, A. Eur. J. Org. Chem. 2006, 29. (c) Miller, R. C.; Bradley, J. S.; Hamilton, L. A. J. Am. Chem. Soc. 1956, 78, 5299. (d) Bodalski, R.; Pietrusiewicz, K. Tetrahedron Lett. 1972, 13, 4209. (e) Simoni, D.; Invidiata, F. P.; Manferdini, M.; Lampronti, I.; Rondanin, R.; Roberti, M.; Pollini, G. P. Tetrahedron Lett. 1998, 39, 7615.
- (a) Green, K. Tetrahedron Lett. 1989, 30, 4807. (b) Hindersinn, R. R.; 4. Ludington, R. S. J. Org. Chem. 1965, 30, 4020.
- (a) Shulyupin, M. O.; Kazankova, M. A.; Beletskaya, I. P. Org. Lett. 5. 2002, 4, 761. (b) Xu, Q.; Han, L.-B. Org. Lett. 2006, 8, 2099.
- Stockland, Jr. R. A.; Taylor, R. I.; Thompson, L. E.; Patel, P. B. Org. Lett. 6. 2005, 7, 851.
- 7. (a) Semenzin, D.; Etemad-Moghadam, G.; Albouy, D.; Diallo, O.; Koenig, M. J. Org. Chem. 1997, 62, 2414. (b) Han, L.-B.; Zhao, C.-Q. J. Org. Chem. 2005, 70, 10121.
- 8. For examples with Me₃P: (a) Saga, Y.; Han, D.; Kawaguchi, S.-I.; Ogawa, A.; Han, L.-B. Tetrahedron Lett. 2015, 56, 5303. (b) Saga, Y.; Mino, Y.; Kawaguchi, S.-I.; Han, D.; Ogawa, A.; Han, L.-B. Tetrahedron Asymmetry 2017, 28, 84.
- 9. For eamples with other phosphines: (a) Kim, S. H., Kim, S. H., Kim, H. J., Kim, J. N. Bull. Korean Chem. Soc., 2013, 34, 989; (b) Salin, A. V., Il'in, A. V., Shamsutdinova, F. G., Fatkhutdinov, A. R., Galkin, V. I., Islamov, D. R., Kataeva, O. N., Tetrahedron Lett., 2015, 56, 6282; (c) Il'in, A. V., Fatkhutdinov, A. R., Salin, A. V., Phosphorus Sulfur Silicon Relat. Elem. 2016, 186, 1628; (d) Salin, A. V., Il'in, A. V., Shamsutdinova, F. G., Fatkhutdinov, A. R., Islamov, D. R., Kataeva, O. N., Galkin, V. I., Curr. Org. Synthesis, 2016, 13, 132.
- 10. Considering the total yield of 1a and 1a', other adducts, even generated, are omittable. ³¹P NMR spectra of the crude mixture also support this conclusion.
- 11. Henderson, W. A.; Streuli, C. A. J. Am. Chem. Soc. 1960, 82, 5791.
- 12. (a) Yu, L.; Wang, J.; Zhang, X.; Cao, H.; Wang, G.; Ding, K.; Xu, Q.; Lautens, M. RCS Adv. 2014, 4, 19122; (b) Aroyan, C. E., Dermenci, A., Miller, S. J., Tetrahedron, 2009, 65, 4069.
- 13. Strappaveccia, G.; Bianchi, L.; Ziarelli, S.; Santoro, S.; Lanari, D.; Pizzo, F.; Vaccaro, L. Org. Biomol. Chem. 2016, 14, 3521.
- 14. Hirai, T.; Han; L.-B. Org. Lett. 2007, 9, 53.
- 15. Aoki, H.; Mukaiyama, T. Chem. Lett. 2006, 35, 456.
- 16. Harsanyi K.; Domany G.; Greiner I.; Forintos H.; Keglevich G. Heteroatom Chem. 2005, 16, 562.
- 17. Lamas, M.-C.; Studer, A. Org. Lett. 2011, 13, 2236.
- 18. Chudasama, V.; Akhbar, A. R.; Bahou, K. A.; Fitzmaurice, R. J.; Caddick, S. Org. Biomol. Chem., 2013, 11, 7301.
- 19. Goryunov, E. I.; Matveeva, A. G.; Safiulina, A. M.; Goryunova, I. B.; Bodrin, G. V.; Brel, V. K. Russ. J. Gen. Chem. 2016, 86, 629.