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Summary of main observation and conclusion  We describe the full details of our total synthesis of haliclonin A, a macrocyclic natural product suggested 
to originate from a common biosynthetic intermediate as sarain A. Central to our synthetic route is the strategic employment of nitromethane for several 
purposes: (1) as an umpolung surrogate of an aminomethyl group; (2) as an ideal nucleophile for the highly enantioselective catalytic asymmetric conjugate 
addition to forge the challenging all-carbon quaternary stereogenic center that was used to induce the formations of all other chiral centers of the molecule; 
and (3) as a C1N1 building block to form the 3-azabicyclo[3.3.1]nonane framework. The realization of this strategy relied on the development of a novel 
organocatalytic asymmetric conjugate addition of nitromethane to 3-alkenyl cyclohex-2-enone, and the first Pd-promoted intramolecular coupling of a 
thiocarbamate moiety onto an electron-deficient alkene (enone) to form the 3-azabicyclo[3,3,1]nonane core. The synthesis also features a SmI2-mediated 
intermolecular reductive coupling of an enone with an aldehyde, ring-closing alkene and alkyne metathesis reactions to build the two aza-macrocycles, and 
an unprecedented direct transformation of enol into enone. 

 

Background and Originality Content 
Containing more than 600 species, the marine sponge genus 

Haliclona represents one of the most prolific sources of natural 
products.[1] To date, more than 110 nitrogenous secondary 
metabolites have been isolated from classified and unclassified 
Haliclona sp.[1] Among them, the family of macrocyclic diamine 
metabolites derived from 3-alkylpyridine dimers[2] comprises 
structurally diverse groups as represented by manzamine A (1 in 
Figure 1),[3] nakadomarin A, madangamine A, and sarain A (2).[4,5] 
Following Baldwin’s seminal biosynthetic hypothesis in 1992,[6] it is 
now well recognized that these apparently different polycyclic 
alkaloids are closely related, with 3-alkyldihydropyridine dimer A 
as the common biosynthetic precursor (Figure 1).[5] This family of 
natural products exhibits a broad spectrum of bioactivities 
including anticancer,[3,7] anti-HIV-1,[8] and antibacterial action.[9] 
The intriguing structural features combined with the interesting 
bioactivities established their “celebrity” status within the 
synthetic community.[2a,5-13] However, their enantioselective total 
synthesis presents a formidable synthetic challenge, especially for 
sarain A.[11] Indeed, although tremendous efforts have been 
devoted to the synthesis of sarain A,[12] its total synthesis was not 
achieved until Overman et al.[13] published their results describing 
the first enantioselective total synthesis of sarain A. Moreover, this 
remains the only total synthesis to date.  

In 2009, Shin and coworkers reported the isolation of the 
macrocyclic alkaloid haliclonin A (3) from a marine sponge 
Haliclona sp. collected from Korean waters.[14] A preliminary 
assessment of bioactivity showed that haliclonin A exhibited 
moderate antibacterial activity against several Gram-positive and -
negative bacteria, and displayed moderate cytotoxicity against the 
K562 leukemia cell line, with an IC50 of 15.9 μg/mL (0.03 μmol). The 
structural elucidation of haliclonin A (3) turned out to be 
challenging because in the 13C and 1H NMR spectra, most of the 
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Figure 1 Biogenetic relationship within dimeric 3-alkyldihydropyridine 
natural products. 

 
proton and carbon signals were paired to each other. On the basis 
of spectral investigations, Shin et al. suggested that compound 3 
was a mixture of two rotamers with a ratio of 3:2. Moreover, the 
geometries of the skipped diene could not be determined because 
of the severe overlapping of the proton signals. A clever solution to 
this puzzle came from the hypothesis that haliclonin A might 
originate biosynthetically from 3-alkylpyridine dimers. Thus, 
whereas the structure of haliclonin A features the unprecedented 
3-azabicyclo[3.3.1]nonane framework with an enone-diamide 
functionality, Shin et al suggested a possible retrobiosynthetic 
pathway, which converges with that of sarain A on bispyridinium 
intermediate A (Figure 1). Hence, the stereochemistry of the 
skipped diene moiety in haliclonin A (3) was tentatively assigned by 
analogy with that of sarain A (2). The absolute configuration of 
haliclonin A is another puzzle: i.e., the assigned one 
(1E,3S,4R,6S,11S) is actually the antipode of that showed in Figure 
1.[14] Consequently, the challenges for the total synthesis of 

haliclonin A not only come from the unprecedented tetracyclic 
framework with delicate functionalities, but also from the 
uncertainty about the relative stereochemistry for the skipped 
diene moiety and about the absolute configuration. With our 
longstanding interests in the synthesis of N-containing 
compounds,[15,16] we have embarked on a synthetic study of 
haliclonin A (3),[17a,c,e,18] which has resulted in the first total 
synthesis of (−)-haliclonin A.[17d] In parallel[17a,b] with our own work, 
significant progress has been made by Yokoshima, Fukuyama, and 
coworkers, who very recently disclosed a racemic synthesis of 3-
azabicyclo[3.3.1]nonane skeleton with a bridge that forms the 17-
membered ring.[17f] Herein, we describe the full details of our 
efforts to explore this intriguing molecule.  

In view of the confusions discussed above regarding the 
stereochemistries of natural haliclonin A, our adventure started 
with selecting the displayed 1E,3R,4S,6R,11R,13Z,16Z stereoisomer 
of haliclonin A (3 in Figure 1 and Scheme 1) as our synthetic target. 
Our initial retrosynthetic analysis of 3 is outlined in Scheme 1. We 
envisioned the formation of the Z-olefinic bond at C16–C17 and 
thus the 15-membered ring by a macrocyclic ring-closing alkyne 
metathesis (RCAM)[19] followed by a stereoselective Lindlar 
reduction. Fürstner[19] extensively explored the chemistry of RCAM 
from catalysts to reactions and its applications in the total synthesis 
of natural products. Next, after a retro-aldol disconnection of the 
side chain connected at C1, we anticipated the formation of the 
saturated 17-membered macrocycle by a ring-closing metathesis 
(RCM);[20] a methodology widely used for the construction of 
macrocycles.[5a,11,13,21] A disconnection at the α,β-C–C bond of the 
ketone is apparently simple and obvious, but the formation of this 
C–C bond in a regio- and stereoselective manner might be 
problematic. Hence the aldol reaction of 7 with 6b was envisioned 
as a stepwise alternative. Given that the 3-
azabicyclo[3.3.1]nonanone scaffold 7 contains a 1,4-dicarbonyl 
motif, an umpolung method is required for its construction. We 
thought that Bachi’s radical lactamization method[22] might suit this 
need, which implied olefinic isocyanide 8 as an umpoled precursor. 
Finally, as the key to our strategy, we opted for nitromethane as 
both an umpolung surrogate of an aminomethanide[23] and a 
pronucleophile for the envisioned catalytic enantioselective 
conjugate addition to forge the challenging all-carbon quaternary 
stereogenic center.[24,25] The established first chiral center was 
expected to induce the formations of all the other three chiral 
centers in haliclonin A. 

 
Scheme 1 Initial retrosynthetic analysis of haliclonin A (3) 
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Results and Discussion 
Synthesis of racemic 3-azabicyclo[3.3.1]nonane framework (7) 

Radical approach. The synthesis started with commercially 
available 3-ethoxycyclohex-2-enone (11) (Scheme 2). Addition of 
Grignard reagent followed by acidic work-up afforded the desired 
3-(hex-5-enyl)cyclohex-2-enone (10) in 84% yield. To test the 
viability of our strategy, racemic substrate 9 was prepared and used 
for our initial investigation. For the conjugate addition of 
nitromethane to enone[23,26] 10, attempts using both organic bases 
(NEt3, DBU, TMG) and inorganic bases (KF/Al2O3, NaOH) as well as 
t-BuOK in THF failed to yield any adduct. Under Hanessian’s 
asymmetric conjugate addition conditions[26a] except that racemic 
proline was used as a catalyst, the desired adduct (±)-9 was 
obtained in 15% yield, along with 84% of the recovered starting 
material. After optimization of reaction conditions, the yield was 
increased to 81% (98% BRSM, based on the recovered starting 
material). Nicolaou’s method[27] was adopted for the 
transformation of cyclohexanone into the corresponding enone. 
Under the optimized conditions consisting of employing 4.0 equiv. 
of N-methyl-morpholine N-oxide (IBX·NMO) complex in DMSO for 
3 days at room temperature, the desired enone (±)-13 was 
obtained in 60% yield. Acetalization of (±)-13 under Hwu’s 
conditions[28] unexpectedly led to the olefinic bond migrated acetal 
(±)-14 as the major product. At the time of our investigation, we 
were unaware of this unexpected result, and proceeded to the 
subsequent transformations.[18] Although this result did not allow 
us to access the desired tropinone ring system, it offered us the 
opportunity to examine Bachi’s lactamization method for our 
synthesis.[22] Under Bachi’s conditions (with minor modification 
employing 1,1′-azobis(cyclohexanecarbonitrile) as a radical 
initiator), the reaction of isocyanide (±)-16, formed in situ by the 
dehydration of formamide (±)-15 with POCl3, proceeded smoothly 

to afford the bicyclic lactam (±)-17 in 80% yield.[18] 

 
Scheme 2 Unanticipated formation of the hexahydro-1H-isoindole- 1,5(4H)-

dione 
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To circumvent the deconjugation of enone (±)-13 during the 

subsequent transformations, an alternative route was investigated. 
Thus, (±)-13 was subjected to sequential chemoselective Luche’s 
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reduction[29] of the enone (NaBH4, CeCl3·H2O, MeOH) and nitro 
reduction (Zn, HCl, MeOH). N-formylation followed by oxidation of 
the allylic alcohol with MnO2 afforded compound (±)-20 in 73% 
overall yield from (±)-13. Treatment of (±)-20 with POCl3 yielded 
isocyanide (±)-21, which was used without purification in the 
Bachi’s reaction. To our disappointment, after many trials, the 
desired cyclization product (±)-7a was always obtained in low yields 
(15–25%).  

 
Scheme 3 Attempted construction of the 3-azabicyclo[3.3.1]nonane 
skeleton by Bachi’s lactamization 
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Considering that all successful Bachi’s reactions involve 

substrates bearing an electron-rich olefin,[18,22] the observed low 
yield in the formation of (±)-7a can be attributed to the electron-
deficient nature of the alkene (i.e., enone) in (±)-21. Thus, we had 
to modify our strategy by developing another method to access the 
3-azabicyclo[3.3.1]nonane framework 7. 

Pd-mediated Heck-type reductive cyclization approach. 
Although many methods have been developed for the synthesis of 
the 3-azabicyclo[3.3.1]nonane framework,[30] asymmetric variants 
are rare. Our new approach for the construction of 7 is outlined in 
Scheme 4. The new design called for a radical[31] or a Pd-catalyzed 
intramolecular coupling of thiocarbamate moiety onto an enone 
(22) in a conjugate addition manner. While similar couplings using 
vinyl or aryl halides as a coupling partner are well documented[32,33] 
and a palladium-catalyzed cyclization of a carbamoyl chloride or a 
S-phenyl carbamothioate onto electron-rich alkenes[34] has been 
reported, a combination of the two partners, i.e., the coupling of a 
carbamoyl chloride or a S-phenyl carbamothioate with an enone, 
is, to our knowledge, without precedent. Nevertheless, this 
transformation was crucial for our approach; therefore, we decided 
to explore this chemistry. 

 
Scheme 4 Modified retrosynthetic analysis for the 3-
azabicyclo[3.3.1]nonane skeleton 
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The synthesis of precursor (±)-22a is outlined in Scheme 5. 
Reduction of the nitro group in (±)-14 with LiAlH4, followed by 
reductive alkylation of the crude amine with anisaldehyde and 
NaBH(OAc)3 in CH2Cl2 (room temperature, 4 h) furnished the 
desired PMB-protected product (±)-23 in 82% yield over the two 
steps. The latter was exposed to S-phenyl chlorothioformate, 
prepared by Xu’s protocol,[35] to yield (±)-24. Deacetalization of 24 
by PPTS-catalyzed hydrolysis in MeCN/H2O, followed by treating 
the resulted β,γ-cyclohexenone with DBU (1.0 equiv) in CH2Cl2 (4 h, 
room temperature) afforded the reconjugated enone (±)-22a in 83% 
yield.  

 
Scheme 5 Synthesis of the racemic cyclization precursor 22a as a model 
compound 
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Racemic (±)-22a was used for screening the reaction conditions. 

We first attempted the intramolecular radical cyclization 
reaction.[31] When the (Me3Si)3SiH/ AIBN combination was used 
(toluene, 110 °C), the starting material (±)-22a remained intact, 
whereas the more reactive Bu3SnH/ AIBN combination led to 
complex products. Therefore, we focused on transition metal-
mediated cyclization reactions.[32,33] After unsuccessful trials using 
Pd(OAc)2 or Pd(dppb)Cl2 as a catalyst (cf. Table 1, entries 1, and 2), 
we found that, in the presence of 20 mol% of Pd(Ph3P)4, the 
reaction of (±)-22a in toluene at 110 °C for 12 h produced (±)-7 in 
12% yield, along with 4% of the decarbonylative cyclization side-
product (±)-25, and 70% of recovered starting material (±)-22a 
(Table 1, entry 3). The reaction was not improved by adding 
triethylamine as an additive or ammonium formate as a reductant 
(Table 1, entry 4). However, to our delight, the yield of the desired 
product was improved by increasing the catalyst loading. 
Meanwhile, an increased amount of the decarbonylative side-
product (±)-25 was obtained (Table 1, entries 5 and 6).  

These results indicated that no catalytic cycle was established 
during the reaction. A plausible mechanism for this unprecedented 
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Heck-type Pd-mediated cyclization reaction is depicted in Scheme 
6. The first step involves an oxidative addition of compound (±)-22a 
with Pd(0) to give Pd-complex M1, from which two pathways are 
possible. Path A is the desired one involving the intramolecular 
insertion reaction leading to Pd-complex M2. However, because 
the subsequent syn-β-elimination[35] from M2 would lead to an 
anti-Bredt bridgehead enone[36] (±)-26, moreover, Pd and H are in 
a trans-disposition, the syn-β-elimination is impossible. Hence Pd-
complex M2 can only undergo hydrolysis via its tautomer M2′ to 
yield (±)-7 as the major product. Due to a lack of a syn-β-
elimination to regenerate and recycle the Pd(0) catalyst, a 
stoichiometric amount of the catalyst is required for completion of 
the reaction. In path B, Pd-complex M1 undergoes a 
decarbonylation to give Pd-complex M3, which goes through an 
intramolecular insertion reaction to give M4. Protolysis of Pd-
complex M4 produces the side-product (±)-25.  

On the basis of these considerations, we conceived that by 
introducing a bidentate ligand, such as diphosphine dppp [1,3-
bis(diphenylphosphino)pro-pane)], and running the reaction in a 
donor solvent, such as MeCN, one would be able to inhibit the 
decarbonylation of the presumed Pd-complex M1 to give Pd-
complex M3, and thus prevent the formation of the side-product 
(±)-25. Indeed, in the presence of 1.0 equiv of dppp, the ratio of 
(±)-7/ (±)-25 was improved slightly (Table 1, entry 7). However, 
because the polarity of the product is similar to that of the by-
product triphenylphosphine oxide (Ph3PO), their separation was 
frustrating. To circumvent this problem, further optimization aimed 
at a replacing of Pd(Ph3P)4 with Pd(OAc)2 was undertaken (Table 1, 
entries 8–10). We were pleased to find that when a combination of 
1.0 equiv of Pd(OAc)2 and 2.0 equiv of dppp was used as a source 
of Pd(0), and MeCN as a chelating solvent, the reaction proceeded 
smoothly at 100 °C to yield the desired product (±)-7 in 79%. In 
such a manner, the side reaction leading to (±)-25 was almost 
totally inhibited (Table 1, entry 10). 

 
Table 1 Optimization of the Pd-mediated cyclization of carbamothioate-
enone 22a 

conditions
+

(±)-25

N
PMB

O
O

(±)-22a
O

N
PMB

PhS
O

N PMB
O

(±)-7  

Entry Conditions Yield (%)a 

1 
Pd(OAc)2 (0.2 equiv), Bu4NCl, HCOONH4, 

DMF, 120 °C 
NRb 

2 
Pd(dppb)Cl2 (0.2 equiv), PhMe, DPPB, 110 

°C 
NRb 

3 Pd(Ph3P)4 (0.2 equiv), PhMe, 110 °C 
(±)-7 (12%), (±)-25 
(4%), (±)-22a (70%) 

4 
Pd(Ph3P)4 (0.2 equiv), Et3N or HCOONH4, 

PhMe, 100 °C 
Low yield 

5 Pd(Ph3P)4 (0.5 equiv), PhMe, 110 °C 
(±)-7 (28%), (±)-25 

(10%), (±)-22a (45%) 

6 Pd(Ph3P)4 (1.0 equiv), PhMe, 110 °C 
(±)-7 (50%), (±)-25 

(28%) 

7 
Pd(Ph3P)4 (1.0 equiv), PhMe, DPPP (1.0 

equiv), 110 °C 
(±)-7 (58%), (±)-25 

(15%) 

8 
Pd(OAc)2 (1.0 equiv), DPPP (1.5 equiv), 

CH3CN, rt − 90 °C 
NRb 

9 
Pd(OAc)2 (1.0 equiv), DPPP (1.5 equiv), 

CH3CN, 100 °C 
(±)-7 (75%), (±)-25 

(5%) 

10 
Pd(OAc)2 (1.0 equiv), DPPP (2.0 equiv), 

CH3CN, 100 °C 
(±)-7 (79%), (±)-25 

(trace) 
a Isolated yield; b No Reaction. DMF = N,N-Dimethylformamide; 
DPPB = 1,3-bis(diphenylphosphino) butane; DPPP = 1,3-
bis(diphenylphosphino) propane; Ac = acetyl. 

 
A concept for developing Pd-catalyzed Heck-type reductive 

cyclization. In an effort to develop a catalytic version of the Pd-
catalyzed cyclization reaction, α-substituted cyclohexenone (±)-33 
was conceived in the hope that the methylene would provide a 
proton enabling a syn-β-elimination on the envisioned Pd 
intermediate (cf. M5 and 7b in Scheme 8).[17e] For this purpose, 
racemic substrate (±)-33 was prepared. The synthesis started from 
the Morita–Baylis–Hillman reaction[37] of enone (±)-13 and 
aldehyde 6b. Exposing a mixture of (±)-13 and 6b to Bu3P and 
BINOL in THF (r.t., 7 days) resulted in the formation of adduct (±)-
27 in 85% yield. This result implied that the reaction conditions are 
mild enough to avoid two possible competing side reactions; i.e., a 
Henry reaction between the nitroalkane moiety and aldehyde, and 
a bimolecular self-conjugate addition of the former with the enone 
group. 

Mesylation of (±)-27 with MsCl/ NEt3 followed by treating the 
resultant mesylate with DBU afforded the elimination product (±)-
28 in 81% yield over two steps. In TFA, dienemide (±)-28 was 
reduced with Et3SiH to produce α-substituted enone (±)-29 in 85% 
yield. Sequential Luche’s reduction[29] and reduction of the nitro 
group yielded amino cyclohexenol (±)-30, which was subjected to 
reductive N-benzylation to yield benzylamine (±)-31. 

Scheme 6 Plausible mechanisms of the Pd-mediated cyclization 
of carbamothioate-enone 22a 
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Temporary in situ protection of the hydroxyl group (TMSCl, TEA, 
DMAP), followed by carbamation with PhSC(O)Cl and regeneration 
of the hydroxyl group (HCl aq.) afforded (±)-32 in one pot. As such, 
(±)-32 was prepared from (±)-29 in an overall yield of 70%. Finally, 
oxidation of the allylic alcohol with MnO2 in CH2Cl2 furnished the 
desired cyclohexenone (±)-33 in 95% yield. To our dismay, when a 
mixture of (±)-33 was treated with 5 mol% of Pd(PPh3) or Pd(OAc)2 
and dppp in a sealed tube, no reaction took place. Even using a 
stoichiometric amount of Pd(OAc)2/dppp, no desired cyclization 
product (±)-34 was observed and only a trace amount of reductive 
Heck-type coupling product (±)-35 was detected. The failure was 
attributed to steric hindrance of the substrate. Notably, although 
our efforts to develop a catalytic Pd-promoted intramolecular 
Heck-type reaction was discontinued to focus on the total synthesis 
of haliclonin A, both the stoichiometric reaction[17c,d] and the 
concept for a catalytic reaction[17e] have inspired and prompted 
Yang’s group to develop a catalytic version for related ring systems 
(Scheme 8), which enabled them to accomplish the total synthesis 
of lyconadins A–E.[38] 

Given that we have succeeded in building the tropinone ring 
system 7 by the Pd-promoted intramolecular Heck-type reaction, 
the radical cyclization of 22b (Scheme 4) was not investigated. It is 
worth mentioning that during the revision of this manuscript, this 
chemistry has been elegantly realized by Ishihara and coworkers in 
a tandem manner, which led them to achieve a formal total 
synthesis of (−)-haliclonin A based on our total synthesis.[17g]

Scheme 7 Concept for developing a new Heck-type Pd-catalyzed cyclization of carbamothioate-enone 
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Catalytic asymmetric total synthesis of haliclonin A.  
Organocatalytic construction of the quaternary stereogenic 

carbon center. To develop a catalytic asymmetric synthesis of 
haliclonin A (3), the first reaction that we needed to investigate was 
the catalytic asymmetric conjugate addition of nitromethane to 3-
(hex-5-enyl)-cyclohex-2-enone (10). Considering the high acidity of 
the α-protons of nitromethane, metal-catalyzed asymmetric 
conjugate addition[39] would not be suitable for our reaction. A 
survey of literature showed that only very few examples of highly 
enantioselective organocatalytic conjugate addition of nitroalkanes 
to β-substituted cyclic enones have been reported.[26b-d,f] These 
include one example by Ley,[26b,c] the method of Ye,[26d] and 
Kwiatkowski’s[26f] high-pressure (10 kbar) enhanced method. In 
these methods, 5-pyrrolidin-2-yltetrazole (cat-2, Figure 2), the 
primary amine-thiourea catalyst containing both a 1,2-
diaminocyclohexane and a cinchona alkaloid moiety (cat-3),[26d] 
and 9-amino-9-deoxy-epi-cinchonine (cat-4),[26e] were utilized as 
the organocatalyst, respectively (Figure 2).[40] 

 
Scheme 8 Recently realized Pd-catalyzed cyclization of carbamothioate-
enone by Yang’s group[38] 
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We first focused on investigating the organocatalytic 

asymmetric conjugate addition of nitromethane to enone 10. 
When Hanessian’s conditions were used [L-proline/B (trans-2,5-
dimethylpiperazine) in CHCl3], the desired adduct 9 was formed in 
81% yield, 25% ee (Table 2, entry 1). Switching solvent to EtOAc 
only resulted in a drop in yield (72%). With Ley’s catalytic system 
cat-2/B, (R)-9 was obtained in 70% yield and 89% ee. Running the 
reaction at 0 °C, the ee was increased to 92%; however, the yield 
dropped to 45%. Three bifunctional amine-squaramides (cat-5, cat-
6, and cat-7)[41] were also examined, but all were ineffective 
producing adduct 9 in less than 10% yield. We next turned our 
attention to primary amine thiourea-type organocatalysts.[42] In 
this context, Wang and coworkers demonstrated that trans-1,2-
diaminocyclohexane-based primary amine thiourea cat-8 afforded 
interesting results in catalyzing the nitromethane addition to 
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acyclic substrate 4-phenylbut-3-en-2-one (36% yield, 93% ee). They 
further showed that by using ditrifluoromethyl derivative (S,S)-cat-
9,[26e] both the yield, and enantioselectivity were improved. 
However, Ye and coworkers had reported that primary amine 
thiourea cat-8 was inefficient (15% conversion) in catalyzing the 
asymmetric addition of nitromethane to cyclohex-2-enone.[26d] In 
view of the fact that cat-9[43] has not yet been used in the addition 
of nitroalkanes to cyclohex-2-enones, we decided to examine the 
(R,R)-cat-9-catalyzed asymmetric conjugate addition of 
nitromethane to β-substituted cyclohexanone 10. Initial attempts 
at running the reaction in the presence of 20 mol% of (R,R)-cat-9 in 
CH2Cl2 for 48 h at r.t. produced the desired adduct (R)-9 in only 15% 

yield; however, an excellent enantioselectivity of 98% ee was 
observed. After many trials, it was found that by using 
nitromethane as solvent, running the reaction at 45 °C for 7 days, 
(R)-9 was formed in 80% yield and 97% ee. Importantly, even at a 
10 mmol scale, both the high enantioselectivity (97% ee) and yield 
of (R)-9 (88% based on the recovery of starting material, 20%) were 
retained. By converting (R)-9 into indole derivative (R)-38, we were 
able to obtain a single crystal, X-ray diffraction analysis of which 
showed that, fortunately, the absolute configuration of 38 and thus 
9 is R, which is the one that we need for the enantioselective total 
synthesis of haliclonin A (3). 
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Figure 2 Some reported organocatalysts that were screened in this work for the asymmetric conjugate addition of nitromethane to cyclic enones 

 
 

Table 2 Screening of organocatalysts and conditions for the asymmetric 
conjugate addition to β-substituted cyclohexenone 

O

10 O
9

conditions
O2N

 
Entry Conditionsa ([equiv]) Yield (%)b ee (%)c 

1 Cat-1 (0.40), B (1.5), CHCl3, 50 °C, 7 d 81 26 

2 Cat-1 (0.40), B (1.5), EtOAc, 50 °C, 7 d 72 25 

3 Cat-2 (0.15), B (1.5), CH2Cl2, r.t., 7 d 70 89 

4 Cat-2 (0.15), B (1.5), CHCl3, 50 °C, 4 d 75 80 

5 Cat-2 (0.15), B (1.5), CH2Cl2, 0 °C, 7 d 45 92 

6 Cat-5 (0.20), CH2Cl2, CH3NO2, r.t. to 40 °C, 7 d <10 NDd 

7 Cat-6 (0.20), CH2Cl2, CH3NO2, r.t. to 40 °C, 7 d <10 NDd 

8 Cat-7 (0.20), CH2Cl2, CH3NO2, r.t. to 40 °C, 7 d <10 NDd 

9 Cat-9 (0.20), CH2Cl2, r.t., 48 h 15 98 

10 Cat-9 (0.20), CH3NO2e, 45 °C, 5 d 80 97 

11 Cat-9 (0.20), CH3NO2e, 45 °C, 7 d 70 (88)f 97 
a Unless otherwise specified, the reaction of 10 (0.5 mmol) with 

CH3NO2 (2.0 mmol) was carried out in 2 mL of solvent; b Isolated 
yield; c Determined by chiral HPLC analysis; d Not detected. e CH3NO2 
as solvent; f The reaction was carried out on a 10 mmol scale, yield 
in parentheses is based on recovered starting material.  

 
Enantioselective synthesis of 3-azabicyclo[3.3.1]nonane 

framework (1S,5R)-7. After securing a robust method to access (R)-
9 in high enantioselectivity, its transformation into enone (R)-13 
was investigated (Scheme 9). Although in the racemic series, this 
was realized by a modification of Nicolaou’s method (Scheme 2), 
this protocol presents severe limitations. First, the use of a large 
excess of IBX⋅NMO complex (4.0 equiv.) not only resulted in low 
atom-efficiency, but also introduced difficulties with respect to 
work-up and product purification. Second, the reaction can only be 
run on a small scale (0.5 mmol). To develop a scalable protocol to 
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ensure our total synthesis, an alternative method was investigated. 
Considering that nitroketone (R)-9 contains two types of acidic α-
protons, with those α- to the nitro group being much more acidic, 
to enable an efficient conversion of the ketone to enone, it is 
necessary to prevent possible deprotonation of nitro α-H that may 
cause side reaction and may consume reagents. To tackle this 
problem, a one-pot, two-step protocol involving chemoselective 
ketone silyl enol ether (SEE) formation was envisioned. In this 
regard, Nicolaou and coworkers have developed another method 
for ketone dehydration via the intermediacy of SEEs by using a 4-
methoxypyridine-N-oxide (IBX⋅MPO) complex.[44] The authors have 
elegantly proved that the oxidation of SEE involves a single electron 
transfer. It occurred to us that this would be the method of choice 
for our substrate. Considering the high price of MPO, in particular 
for a large-scale synthesis, we opted for N-methylmorpholine N-
oxide (NMO) as a less-expensive alternative. In the event, 
nitroketone (R)-9 was treated with TMSOTf and triethylamine (0 °C, 
2 h), and the SEE formed in situ was added to a solution of IBX⋅NMO 
complex in DMSO (50 °C, 8 h). In this manner, only 2.5 equiv. of 
IBX⋅NMO complex was used, and the desired enone was obtained 
in 72% yield. Further modification by replacing NMO with pyridine-
N-oxide (PNO) improved the yield to 79%. It is worth noting that 
attempted Saegusa oxidation[45] with Pd(OAc)2 led to a complex 
mixture of products. 

After sequential reduction of the ketone and nitro groups in (R)-
13, the resulting amino alcohol 18 was subjected to reductive 
alkylation [PMPCHO, NaBH(OAc)3] to give N-PMB derivative 39. The 
latter was converted into S-phenyl thiocarbamate 40a in a one-pot 
reaction by sequential in situ protection of the hydroxyl group, 
reaction with S-phenyl chlorothioformate, and chemoselective 
removal of the silyl group. Note that only one chromatographic 
purification was needed from compound (R)-13 to 40a (a 73% 
overall yield of compound 40a was obtained). Oxidation of 40a with 
MnO2 afforded enone (R)-22a in 95% yield, followed by the newly 
developed Pd-mediated Heck-type cyclization reaction to afford 
the desired product (1S,5R)-7 in 79%. To avoid the high toxicity and 
repulsive odor of both benzenethiol and the corresponding S-
phenyl chlorothioformate, the reagents used for the preparation of 
S-phenyl carbamothioate (R)-22a, we envisioned the use of 4-
methylbenzenethiol as a safer surrogate of benzenethiol. To our 
delight, the corresponding S-(p-tolyl)carbamothioate (R)-22c was 
prepared in a similar yield (75–82%), and the cyclization of (R)-22c 
proceeded similarly. With the success in cyclization by Heck-type 
reaction, the radical cyclization reactions[31] of (R)-22a, (R)-22b and 
(R)-22c were not pursued. 

 
Scheme 9 Construction of the azabicyclo[3.3.1]nonane skeleton based on 
catalytic asymmetric conjugate addition and Pd-mediated cyclization 
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Construction of the tricyclic core. Having developed a seven-

step enantioselective synthesis of the 3-azabicyclo[3.3.1] nonane 
framework (1S,5R)-7 from 10, in which the key Heck-type 
cyclization of (R)-22a,c can be run on a gram-scale, we then 
pursued the total synthesis of halichonin A (3). Our next task was 
the regioselective introduction of a side chain at the less-hindered 
α-position of the ketone. The failure to achieve a direct 
deprotonation–alkylation in a related ring system[18] prompted us 
to investigate an indirect aldol addition-based method (cf. Scheme 
1). Preliminary investigation on racemic 7[17c] allowed optimal 
reaction conditions to be defined. Thus, TiCl4/ Hünig base-
mediated aldol addition[46] of (1S,5R)-7 with aldehyde 6b[18] gave 
adduct 41 in 82% yield as a single regio- and diastereoisomer, the 
stereochemistry of which has been confirmed previously[17c] 
(Scheme 10). Subjecting diene 41 to the RCM reaction using Grubbs’ 
first generation catalyst[20] and high dilution technique (0.0003 
mol/L in CH2Cl2, 40 °C, 24 h)[17c] produced cyclized product 42 as an 
inseparable mixture of geometric isomers in 92% yield. The lack of 
diastereoselectivity in this reaction is of no consequence since the 
alkene will be saturated in a subsequent step. The subsequent 
mesylation and elimination with DBU merit comments. Initial 
attempts at mesylation of the geometric isomers 42 followed by 
treatment of the resultant mesylate with 2.0 equiv of DBU afforded 
a mixture of α,β-enone 43a and β,γ-enone 43b in a ratio of 1:1. 
Although the two diastereomers are inseparable by flash 
chromatography on silica gel, the observed characteristic coupling 
constant (J = 14.6 Hz) in the 1H NMR spectrum allowed the E-
geometry of the enesulfonamide moiety in 43b to be deduced. The 
mixture of 43a and 43b was subjected to Pd-catalytic 
hydrogenation to give a mixture of 44a and 44b in a 1:1 ratio. We 
suspected that 44a and 44b were generated from 43a and 43b, 
respectively. To confirm this hypothesis, an in situ monitoring by 1H 
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NMR was undertaken. It was observed that the isolated olefinic 
bond was saturated within 4 h, while that of enesulfonamide 
required about 7 days. We also observed that solvent has a 
profound impact on the reaction: in EtOAc, whereas the yield was 
only 20%, in a 1:1 (v/v) mixture of EtOAc and MeOH, the yield was 
50%. When the reaction was run in anhydrous THF, the yield was as 
high as 95%, even on a gram scale. Interestingly, 44a was efficiently 
converted into 44b upon treatment with t-BuOK in THF (95% yield). 
1H NMR monitoring of the elimination reaction with DBU showed 
that prolonging the reaction time also resulted in a conversion of 
44a into 44b. Based on these findings, we developed a 
chemoselective transformation of 42 into 43b that was achieved 
simply by using 8.0 equiv of DBU for the elimination step (r.t., 16 h, 
yield: 85%). Catalytic hydrogenation of 43b afforded 44b in 92% 
yield with the desired aza-macrocycle in place. 

To install an alkynyl group on the amide nitrogen, the PMB 
group in 44b was oxidatively cleaved with CAN in a mixture of 
MeCN/H2O solvents to give 45. We observed that the yield was 
highly dependent on the ratio of mixed solvent. A 4: 1 (v/v) mixture 
of MeCN/H2O produced 45 in 60% yield, along with imide 46 in 20% 
yield, whereas with a 1: 1 (v/v) mixture of MeCN/H2O, the yield 
dropped to 40%. A high yield of 88% was obtained when a 10: 1 
(v/v) mixture of MeCN/H2O was used. Attempted direct N-
alkylation of 45 using alkynyl iodide 48 formed compound 50 in a 
low yield (10%). Thus the ketone group was first protected to give 
47 in 95% yield. N-Deprotonation with KHMSD followed by 
alkylation with 48 gave the desired product 49 in 65% yield (80% 
BRSM). An excellent yield of 90% was obtained when KH was used 
as the base for the deprotonation. 
Scheme 10  Stereoselective formation of the 17-membered macrocycle to 
forge the tricyclic core 
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Construction of the multifunctional 15-membered ring. To 

undertake an aldol reaction to introduce the side-chain for RCAM, 
the acetal in 49 was cleaved with a 3 M HCl in acetone (r.t., 3 days), 
which afforded keto-lactam 50 in 99% yield (Scheme 11). 
Unexpectedly, under a variety of conditions, the aldol reaction of 
50 with n-butanal used as a model aldehyde was unsuccessful. 
Considering that the failure may be due to steric hindrance, the N-
phenylsulfonyl group in 49 was replaced with a formyl group (54) 
via a three-step protocol consisting of desulfonylation (Mg, MeOH, 
ultrasonic irradiation),[47] formylation (HCO2Et, TEA, reflux), and 
deacetylation (3 M HCl). To our disappointment, an attempted 
aldol reaction of functionalized ketone 54 was also unsuccessful. 

 
Scheme 11  Attempted direct aldol addition reactions 
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At this stage, a stepwise tactic employed by Li and Nicolaous in 

the total syntheses of anominine and tubingensin A attracted our 
attention.[48] Inspired by Li’s work,[49] an indirect approach was 
pursued. Thus ketone 50 was treated with TESOTf/DBU, and the 
resulting SEE was subjected to the Sc(OTf)3-promoted[48,49] 
Mukaiyama aldol reaction with formaldehyde to give the presumed 
α-hydroxymethylation product 55 (Scheme 12). We were unable to 
isolate 55 in its pure form because partial epimerization and 
elimination of 55 into 56 occurred during purification by column 
chromatography. To our delight, subjecting the diastereomeric 
mixture 55 to mesylation and elimination with DBU produced 56 in 
70% overall yield from 50. Enone 56 and aldehyde 57a were 
reductively coupled using SmI2 (Kagan’s reagent).[50] To our surprise, 
the major product appeared to be enol 58. Although the lability of 
enol 58 prevented its isolation in pure form, its structure was 
tentatively assigned on the basis of an analysis of the mass 
spectrum and 1H/13C NMR spectra of the crude material. The 
following experimental evidence support this hypothesis. First, 
when O-TES protected aldehyde 57b was successively subjected to 
the SmI2-mediated reductive coupling with enone 56, and to O-
silylation of the resulting product with TESOTf, tris-O-TES-protected 
SEE 59 was obtained as a separable mixture of two diastereomers 
in a 2: 1 ratio. Second, in our previous effort to undertake a direct 
aldol reaction of 50 (Scheme 11), we have observed the formation 
of SEE 60 from the corresponding ketone 50 upon treatment with 
TESOTf/DBU, and TESOTf/TEA was ineffective for this 
transformation. These observations allowed us to deduce that SEE 
59 was formed by silylation of the corresponding enol. Although 
labile, the direct observation of the enol form of an unactivated 
ketone is a rare phenomenon,[51] which turned out to be crucial for 
us to achieve the total synthesis of haliclonin A (3) (vide infra).  

To simplify product isolation and characterization, a protocol 
was developed to allow the isolation of the product in pure ketone 
form. The protocol comprised the SmI2-mediated reductive 
coupling with aldehyde 57a, O-silylation of the crude material with 
TBSOTf, selective mono-desilylation of the primary silyl ether with 
Olah’s reagent (HF⋅Pyr.) in THF, and a basic work-up with a 15% 
aqueous solution of NaOH. In such a manner, two separable 

diastereomeric ketones, 61a and 61b, were obtained in 45% and 
22% overall yield, respectively, from 56. It is noteworthy that 
although intramolecular reductive coupling of enones[50] with 
aldehydes is known, the intermolecular version of the latter 
reaction is unprecedented. The stereochemistries of the two newly 
formed stereogenic centers were not determined at this stage, but 
deduced from compound 67 at a later stage (vide infra). The major 
diastereomer 61a was employed for the total synthesis. 

 
Scheme 12  Introduction of the chiral side-chain 
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To introduce the enyne moiety, required for the RCAM[19] 
reaction, diastereoisomer 61a was subjected to successive Dess-
Martin oxidation and Wittig reaction with ylide generated in situ 
from 62[52] to afford enediyne 63a in 75% yield over two steps 
(Scheme 13). Under Fürstner’s alkyne metathesis conditions using 
Fürstner’s catalyst generated in situ from precursor 64 and MnCl2, 
RCAM of compound 63a proceeded smoothly to give the tetracyclic 
framework of haliclonin A (65a) in 70% yield.[53] Controlled 
hydrogenation of the alkynyl group in 65a using Lindlar catalyst 
afforded tetracyclic diene (13Z,16Z)-66a in 95% yield.[54] It is worth 
noting that over-reduction is a common problem in the Lindlar 
reduction. We tackled this problem by using a mixed solvent system 
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EtOAc/1-hexene (1:1, v/v). Following the same sequence, the 
minor diastereoisomer 61b was converted into 66b in a similar 
overall yield. However, this diastereoisomer (65b) is less reactive 
towards Lindlar reduction, which required the use of 300% w.t. of 
Lindlar catalyst and a 3:1 (v/v) EtOAc/1-hexene solvent system. 
Compound 65a was hydrogenated to give 67 to confirm its 

structure by single-crystal X-ray diffraction analysis. The result 
indicates that the configuration at C11 is R, and the relative 
stereochemistry around the tetracyclic core is in agreement with 
that reported for the natural product. The determined absolute 
configuration 3R,4S,6R,11R is consistent with the displayed 
structure, but opposite to that descibed in the text of ref. 14. 

Scheme 13  Formation of the 15-membered macrocycle to build the tetracyclic core 
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Completion of the total synthesis of (−)-haliclonin A: The end 
game. Although we were very close to the target, the last battle, 
the dehydration of ketone to form the enone moiety turned out to 
be quite challenging. After many unsuccessful attempts for a direct 
dehydration of 66a using IBX,[27] Pd(TFA)2,[55] DDQ, etc., we 
investigated an indirect method via silyl enol ethers. To our surprise, 
compound 66a was reluctant to deprotonation with a strong base 
(LDA, KH) at –78 °C, whereas at a temperature higher than –30 °C, 
the substrate was destroyed. An alternative method utilizing 
TMSOTf-TEA combination was also unrewarding. Finally, we were 
pleased to find that compound 66a could be quantitatively 
converted into the corresponding SEE 68 by exposure to TMSI/ 
HMDS in refluxing MeCN,[56] as confirmed by 1H NMR spectroscopic 
analysis. Attempts to purify the product by flash chromatography 
on SiO2 resulted in partial decomposition to give the corresponding 
enol 69, possibly stabilized by H-bonding with the nitrogen atom of 
the lactam. For the subsequent oxidation of SEE to enone, as shown 
in Table 3, more than fifteen methods and conditions[30,44,17e,57] 
were tried, but all failed to yield the desired enone 70. 
Nevertheless, careful analysis of the results gave us useful 
information. As can be seen from entries 1, 14, and 15, although 
the oxidation with Pd(OAc)2[45] and AZADO+BF4 (Iwabuchi’s 
oxidant)[57] failed to give any product, a combination of the two 
reagents led to the formation of enone 70, albeit in only 5% yield. 

 
Table 3 Attempted conversion of SEE 68 into enone 70 

N O

N
PhO2S

TMSO

TBSO

68

H

conditions

N O

N
PhO2S

O

TBSO

70

H

 

Entry Conditions (equiv.) Yield (%)a 

1 Pd(OAc)2 (5.0), CH3CN, r.t. 0b 

2 Pd(OTFA)2 (5.0), CH3CN, r.t. Decomposed 

3 Pd(OAc)2 (5.0), DMSO, r.t. 0 

4 Pd(OAc)2 (5.0), DMSO, 80 °C Decomposed 

5 Pd2(dba)3 (0.2), 71c (5.0), CH3CN, reflux NRd 

6 PhSeCl (2.0), DCM, –78 °C to –20 °C NR 

7 PhSeCl (1.1), DCM, r.t. 0 

8 IBX (2.5), PNO (2.6), DMSO, r.t. NR 

9 IBX (2.5), PNO (2.6), DMSO, 80 °C Decomposed 

10 DDQ (4.0), CH3CN, r.t. NR 

11 DDQ (4.0), CH3CN, reflux Decomposed 

12 CAN (2.5), DMF, 0 °C Decomposed 

13 72e (1.5), DCM, r.t. NR 
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14 72 (1.5), CH3CN, r.t. NR 

15 72 (1.5), Pd(OAc)2 (2.0), CH3CN, r.t. 5b,f 

a Crude yield determined by 1H NMR spectroscopic analysis; b 

Compound 68 partially decomposed; c 71: Diallyl carbonate; d No 
reaction; e 72: AZADO+BF4– (Iwabuchi’s oxidant); f Enone 70 is labile. 

 
Considering the lability of SEE 68, we supposed that Pd(OAc)2 

might play the role of promoting the cleavage of SEE 68 to give enol 
69, and the latter was oxidized by AZADO+BF4. To test this idea, SEE 
68 was treated with HOAc/ SiO2, which gave enol 69 in 86% yield 
from 66a. Enol 69 is sufficiently stable to allow a chromatographic 
purification. To our delight, oxidation of enol 69 with AZADO+BF4– 
(72) at 0 °C furnished the desired enone 70 in 63% yield. 

 
Scheme 14 Conversion of ketone 66a into enone 70 
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To complete the total synthesis, compound 66a was 
desulfonylated by reaction with Mg in methanol under ultrasonic 
irradiation,[47] and the resulting crude amine was formylated with 
ethyl formate/ pyridine to give diamide 73 in 82% yield over two 
steps (Scheme 15). Ketone 73 was treated with TMSI-HMDS in 
refluxing acetonitrile[56] to yield enol 75, and the latter was exposed 
to HOAc/ silica gel to give enol 75. Oxidation of enol 75 produced 
the desired enone 76 in 68% yield. The geometry of the enone 76 
was not determined at this stage, but deduced from the final 
product 3. To the best of our knowledge, this represents the first 
example of direct conversion of an enol into an enone. Finally 
desilylation of 76 with tris(dimethylamino)sulfonium 
difluorotrimethylsilicate (TASF)[58] afforded (–)-haliclonin A (3) in 82% 
yield. The sense of optical rotation and spectral (1H and 13C NMR, 
the ratio of rotamers = 3: 2) data of our synthetic compound fully 
matched those reported for the natural haliclonin A (3), but a 
difference exists for the values of specific rotation {synthetic 1: 
[α]D20 –42.1 (c 1.0, MeOH); natural 1: [α]D20 –23.6 (c 0.14, 
MeOH)[14]}. The fact that the synthetic compound displayed the 
same sign of optical rotation as that of the natural product implies 
that the absolute configuration of natural (–)-haliclonin A (3) is 
3R,4S,6R,11R, which is in agreement with the structure displayed 
in Figure 1 of ref. 14 (cf. Figure 1), but different from that suggested 
in the text of ref. 14 (3S,4R,6S,11S).

 
Scheme 15 Completion of the total synthesis of (–)-haliclonin A 

N O

N

O

HO H

15

17

N O

N
PhO2S

O

TBSO

66a

a) Mg, MeOH

b) HCO2Et, Pyr.
N O

N
OHC

O

TBSO

73

c) TMSI 
HMDS

N O

N
OHC

TMSO

TBSO

74

d) AcOH
SiO2

N O

N
OHC

HO

TBSO

75

N O

N
OHC

O

TBSO

76

f) TASF

(
−
)-haliclonin A (3)

NO

BF4
e)

72

H HH

H H

82% (2 steps)

68% 82%

85%
(from 66a)

H

O

 

 

Conclusions 
We have accomplished the catalytic enantioselective total 

synthesis of (–)-haliclonin A (3). Through this campaign, the 
structure of natural haliclonin A (3) including the stereochemistry 
of the skipped diene moiety has been confirmed, and its absolute 
configuration was clarified as 1E,3R,4S,6R,11R,13Z,16Z. This 
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conclusion in turn confirmed Shin’s hypothesis about the 
biosynthetic relationship between haliclonin A and sarain A. In the 
course of this work, some new chemistries have been developed, 
which include the thiourea (R,R)-cat-9-catalyzed asymmetric 
conjugate addition of nitromethane with 3-substituted cyclohex-2-
enone, Pd-promoted intramolecular coupling of thiocarbamate 
moiety with an enone in a conjugate addition manner, SmI2-
mediated bimolecular reductive coupling of enone with aldehyde, 
and direct transformation of enol into enone. The value of these 
methods and/ or concepts is highlighted by the development of a 
catalytic version of the Pd-catalyzed intramolecular coupling of 
thiocarbamates with enones developed by Yang and coworkers. 

Experimental 
The general procedure and all the characterization data of the 

synthetic intermediates as well as the procedures used to prepare 
them are listed in the Supporting Materials online. Known 
compounds were recorded in the previous report.[17c,d,18] 

Crystallographic data for compounds 38 (CCDC 1442504) and 
67 (CCDC 1442503) have been deposited at the Cambridge 
Crystallographic Data Centre. 
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