Formation of a P^{III}—C(sp²) bond by addition of diphenyl(trimethylsilyl)phosphine to activated acetylenes

A. N. Kochetkov,* I. V. Efimova,* I. G. Trostyanskaya, M. A. Kazankova, and I. P. Beletskaya

Department of Chemistry, M. V. Lomonosov Moscow State University, Leninskie Gory, 119899 Moscow, Russian Federation. Fax: +7 (095) 939 3618. E-mail: kazank@org.chem.msu.su

Diphenyl(trimethylsilyl)phosphine reacts with alkoxy(alkyl)acetylenes to give mixtures of addition products, (2-alkoxy-2-trimethylsilylalkenyl)diphenylphosphines and <math>(2-alkoxy-alkenyl)diphenylphosphines. The reaction is sensitive to the solvent; in MeCN, it gives only nonsilylated products. (1-Alkoxyethenyl)diphenylphosphines were obtained as the main products upon the reaction of Ph₂PSiMe₃ with terminal alkoxyalkynes, irrespective of the reaction conditions.

Key words: diphenyl(trimethylsilyl)phosphine, alkoxy(alkyl)acetylenes, alkoxyacetylenes, addition; (1-alkoxyalkenyl)- and (2-alkoxyalkenyl)diphenylphosphines.

The addition of fragments arising upon cleavage of an element—element bond to unsaturated substrates is a promising method for the formation of an element carbon bond in the synthesis of functionally substituted heteroorganic alkanes and alkenes that cannot be prepared using the most popular method involving organic derivatives of magnesium or lithium.

Previously we showed that noncatalytic addition of the P¹¹¹—Hal,^{1,2} Si—Hal, and Ge—Hal ^{3,4} fragments to alkoxy- or aminoacetylenes makes it possible to synthesize functionally substituted alkenyl halides, which are valuable intermediates for the synthesis of heteroorganic di- and polyunsaturated compounds.⁵

To continue the studies on the addition of P^{III} -heteroatom fragments to nucleophilic alkynes, in the present work, we studied the interaction of diphenyl(trimethylsilyl)phosphine (1) containing a P-Si bond with internal and terminal alkoxyacetylenes (2a-h).

The reaction of compound 1 with alkoxy(alkyl)acetylenes 2a,b (Scheme 1) occurs on keeping equimolar

Scheme 1

$$Ph_2PSiMe_3 + R^1 - C \equiv C - OR^2 \xrightarrow{70 \circ C}$$

$$\xrightarrow{Ph_2P}_{R^1}C = C \xrightarrow{OR^2}_{SiMe_3} + \xrightarrow{Ph_2P}_{R^1}C = C \xrightarrow{OR^2}_{H}$$
3a,b
4a,b

 $R^1 = Me, R^2 = Et (a); R^1 = R^2 = Et (b)$

Acety- lene	R ¹	R ²	Solvent	Reaction duration/h	Reaction temperature/°C	Major product	lsolated yield (%)	B.p./°C (<i>p</i> /Torr)
2a	Me	Et		60	7080	3a ^a	62	$160 (1.5 \cdot 10^{-2})$
2b	Et	Et		120	70-80	36 ⁶	65	$170(1.5 \cdot 10^{-2})$
2a	Me	Et	MeCN	48	7080	4 a	75	$125(2.5 \cdot 10^{-2})$
2h	Et	Et	MeCN	72	70-80	4b	73	$130(2 \cdot 10^{-2})$
2d	Me	Me	MeCN	36	70-80	4c	75	160 (1)
2e	Et	Me	MeCN	72	70-80	4d	68	$120(2 \cdot 10^{-2})$
21	Pri	Et	MeCN	88	7080	4e	77	$150(3 \cdot 10^{-2})$
20	н	Et		48	20	5ac	50	105 (0.1)
20	н	Et	MeCN	10	7080	5a	77	120-130 (0.1)
20	н	Me	MeCN	12	20	5b	68	$125(2.5 \cdot 10^{-2})$
2h	н	Bun	MeCN	14	7080	5c	72	140 (2 · 10 ⁻²)

Table 1. Conditions of the synthesis and yields and boiling points of the products for the reactions of diphenyl(trimethylsilyl) phosphine 1 with alkoxyacetylenes 2a-h

 a^{a} 4a is formed as a minor product (17%). b^{b} 4b is formed as a minor product (14%). c^{a} 3c is formed as a minor product (14%).

Translated from Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 9, pp. 1792-1796, September, 1998.

1066-5285/98/4709-1744 \$20.00 © 1998 Plenum Publishing Corporation

Com-	δН	δP	v(C=C)			
po- und	=CH or Me ₃ Si	0-R ²	RI	Ph (m)	-	/cm ⁻¹
3a	0.33 s	1.24 t; 3.70 q	1.60 d	7.32	-12.72	-
3b	0.33 s	1.15 t; 3.70 g	0.58 t; 2.10 t	7.24	-12.36	
3c	0.12 s; 5.25 d	1.20 t; 4.17 q	—	7.26	-15.20	-
4a	6.72 dq (15.6, 1.6)	1.27 t; 3.92 q	1.55 dd (2.4, 1.6)	7.50	-20.20	1630
4b	6.43 dt (14.0, <1)	0.84 t; 3.43 q	1.16 t; 2.41 m	7.25	-16.62	1620
4c	6.62 dq (15.8, 1.4)	3.67 s	1.49 dd (3.8, 1.4)	7.41	-19.50	1625
4d	6.69 dt (15.0, <1)	3.65 q	1.00 t; 2.10 m	7.30	-16.88	1625
4 e	6.72 br.d (11.6)	1.04 t; 3.72 q	1.20 d; 2.45 m (1.5)	7.48	-19.07	1620
5a	4.47 dd (8.3); 4.76 dd (24.5)	1.23 t; 3.81 q		7.48	-4.78	1605
5b	4.53 dd (8.4); 4.80 dd (24.4)	3.57 s		7.50	-4.60	1605
5c	4.35 dd (9.1); 4.60 dd (26.3)	0.72 t; 1.37 m; 3.61 t		7.34	-4.04	1610

Table 2. Parameters of the ¹H and ³¹P NMR and IR spectra of (1-alkoxyalkenyl)- and (2-alkoxyalkenyl)diphenylphosphines 3a-c, 4a-e, 5a-c

2-trimethylsilylalkenyl)diphenylphosphines (**3a,b**, δP -12.35 to -12.72) and Z-(2-alkoxyalkenyl)diphenylphosphines (**4a,b**, δP -18.08 to -18.38); the **3** : **4** ratio is (5 to 6) : 1 (Table 1). The transformation is quantitative, as indicated by the fact that the ³¹P NMR spectrum of the reaction mixture does not contain the signal of the starting silylphosphine **1** (δP -57.6), and the IR spectrum does not contain the v(C=C) absorption band (2300 cm⁻¹) corresponding to alkoxy(alkyl)acetylene **2**.

The structures of compounds 3 and 4 were established based on the data of ¹H and ¹³C NMR spectroscopy and confirmed by the IR and ³¹P NMR spectroscopy (see Experimental and Tables 2 and 3).

The reaction of silylphosphine 1 with a terminal alkyne, ethoxyacetylene 2c, follows a more complex pathway (Scheme 2). ³¹P NMR analysis of the mixture obtained after the reaction (48 h, 20 °C) indicates the formation of three compounds: two addition products, (1-ethoxyethenyl)diphenylphosphine (5a, $\delta P - 4.78$) and Z-diphenyl(2-trimethylsilyl-2-ethoxyethenyl)phosphine (3c, $\delta P - 15.2$), and the product of substitution of the acetylenic hydrogen atom by a phosphorus-containing residue, (2-ethoxyethenyl)diphenylphosphine (6, $\delta P - 23.5$). Before distillation, the 5a : 3c : 6 ratio is 4.0 : 1.5 : 0.5, and after distillation, only phosphine 5a can be isolated.

Scheme 2

amounts of the reactants without a solvent at 70 °C for 60-120 h and gives (according to ³¹P NMR spectroscopy) a product mixture consisting of *E*-(2-alkoxy-

We showed previously⁶ that alkoxyethynylphosphine 6 is relatively unstable and rearranges spontaneously to ketenylidenephosphorane 7.

Table 3. Parameters of the ${}^{13}C$ NMR spectra of (1-alkoxyalkenyl)- and (2-alkoxyalkenyl)diphenylphosphines 3a--c, 4a--e, 5a--c

Com-	δ (J _{PC} /Hz)						
pound	= <u>C</u> -0	<u>C</u> =	0- <u>C</u>	0C- <u>C</u>	<u>R</u> ⁱ -C=		
3a	168.80 (12.9)	105.00 (17.7)	67.15	15.25	16.80		
3b	153.55 (14.3)	110.30 (15.9)	66.50	15.30	15.12; 23.30		
3c	159.10 (67.2)	97.60 (<1)	65.00	18.19	-		
4a	153.55 (19.9)	105.41 (15.3)	68.72	15.73	16.95 (2.3)		
4b	152.39 (15.9)	113.32 (16.2)	67.98	15.14	15.26; 24.98 (>1)		
4c	154.60 (18.7)	104.62 (13.1)	60.17		16.56 (4.3)		
4d	153.61 (19.7)	111.55 (16.3)	59.91		14.48; 24.03 (>1)		
4e	151.90 (5.9)	117.06 (18.7)	68.31	15.29	24.26 (5.2); 31.81 (15.4)		
5a	164.06 (8.7)	97.27 (31.5)	64.23 (3.0)	14.44			
5b	164.02 (6.8)	96.12 (29.9)	55.50	1. 1 	· · · · · ·		
5c	166.32 (7.4)	99.85 (32.7)	71.13	16.13; 21.93; 33.70			

$$Ph_2PC \equiv COEt \longrightarrow Ph_2P(Et)=C=C=O$$

6 7

The structures of compounds 5a and 3c were determined using ¹H, ¹³C, and ³¹P NMR spectroscopy. Phosphine 5a is responsible for the characteristic low-field doublet of quartets ($\delta H_{trans} 4.76$, ³ $J_{PH} = 24.5$ Hz; δH_{cis} 4.47, ³ $J_{PH} = 8.3$ Hz, ² $J_{HH} = 2.1$ Hz) in the ¹H NMR spectrum. The ¹³C NMR spectrum contains two doublets for vinylic carbon atoms ($\delta C 97.27$, ² $J_{PC} = 31.5$ Hz and $\delta C 164.06$, ¹ $J_{PC} = 8.7$ Hz). The ¹H NMR spectrum of compound 3c exhibits signals for the trimethylsilyl group ($\delta H 0.12$) and the vinylic proton ($\delta H 5.25$, ² $J_{PH} = 11.2$ Hz), and the ¹³C NMR spectrum contains signals for the vinylic carbon atoms ($\delta C 97.60$, ¹ $J_{PC} <$ 1 Hz and $\delta C 159.10$, ² $J_{PC} = 67.2$ Hz).

We suggested that nonsilvated products are formed due to the rigorous conditions of the reaction (prolonged heating); therefore, we attempted to conduct this process under catalytic conditions by using either radical initiators or palladium complexes as the catalysts. However, the introduction of these catalysts changed neither the process duration nor the structure or the ratio of the products formed.

However, the reaction carried out in a polar solvent, acetonitrile, was substantially accelerated and, in the case of internal alkoxyacetylene, gave (2-alkoxy-alkenyl)diphenylphosphines 4a-e as the major products (Scheme 3).

Scheme 3

 $Ph_{2}PSiMe_{3} + R^{1}-C \equiv C-OR^{2} \xrightarrow[70-80]{Ph_{2}P} C = C \xrightarrow[H]{Ph_{2}P} C = C \xrightarrow[H]{Ph_{2}P} Aa-e$

 $R^1 = Me$ (2a,d, 4a,c); Et (2b,e, 4b,d); Prⁱ (2f, 4e) $R^2 = Me$ (2d,e, 4c,d); Et (2a,b,f, 4a,b,e)

The yields of phosphines $4\mathbf{a}-\mathbf{e}$ determined by ³¹P NMR spectroscopy were 85–90%. After distillation, compounds $4\mathbf{a}-\mathbf{e}$ were isolated in 68–77% yields (see Table 1). It can be seen from Table 1 that the reaction duration depends on the nature of the radical R¹, decreasing in the series Pr¹ > Et > Me.

The formation of a nonsilvlated compound as the only product in acetonitrile may be due to the fact that the reaction follows a radical pathway (Scheme 4) in which the arising alkenyl radical (A) is stabilized by abstracting a hydrogen atom from, for example, a solvent molecule (SolvH).

The possibility of radical cleavage of the P—Si bond was confirmed by performing the addition of silylphosphine 1 in toluene. In the case of relatively Scheme 4

nonreactive ethoxy(ethyl)acetylene **2b** at 20 °C, the ³¹P NMR spectrum of the reaction mixture recorded after 72 h, apart from the signal of the initial phosphine 1, contained only one signal with δP –41 corresponding to diphenylphosphine 8. The addition of silylphosphine 1 to a more reactive alkoxyacetylene, namely ethoxy-acetylene 2c, in toluene at room temperature affords both nonsilylated product 5a and compound 3c containing a trimethylsilyl group.

The reaction presented in Scheme 3 is stereoselective, and phosphine (4a-e) is formed as a single geometrical isomer, whose configuration was determined based on the criterion proposed in our previous study,^{7,8} namely, the magnitude of the geminal spin-spin coupling constant (${}^{2}J_{PC}$) of the phosphorus atom with the vinylic carbon atom attached to the alkoxy group. For compounds 4a-e, this constant is 5.9–19.9 Hz, *i.e.*, it falls into the range typical of the *cis*-arrangement of the P atom and the alkoxy group; hence, the isomer formed upon the addition is characterized by the Z-configuration of the double bond.

Unlike alkoxy(alkyl)acetylenes, terminal alkoxyacetylenes 2c,g,h react with silylphosphine 1 in acetonitrile under mild conditions; the reactions occur at room temperature over a period of 24-72 h (Scheme 5).

Scheme 5

$$Ph_2PSiMe_3 + HC \equiv COR^2 \qquad \frac{MeCN}{20 \circ C} \qquad H_2C = C < \frac{OR^2}{pph_2}$$
1 2c,g,h 5a-c

 $R^2 = Me (2g, 5b); Et (2c, 5a); Buⁿ (2h, 5c)$

The main products of these reactions are phosphines 5a-c, which also contain no trimethylsilyl groups, but the regioselectivity of the addition differs from that observed with internal alkoxyacetylenes. This difference between the regiochemistry of the reactions of terminal and internal alkoxyacetylenes (see

Schemes 3 and 5) can be due either to different stabilities of the corresponding radical intermediates (kinetic or thermodynamic control) or to the formation of a bridged radical of type **B**.

In the ¹H NMR spectra of phosphines 5a-c, the vinylic protons are responsible for two doublets of doublets, typical of an ABX system, with ${}^{3}J_{PH} = 8.3-9.1$ Hz for the *cis*-proton and ${}^{3}J_{PH} = 24.4-26.3$ Hz for the *trans*-proton.

Since Ph_2PSiMe_3 slowly reacts with internal alkoxyacetylenes without a solvent, we attempted to reduce the reaction time by conducting the process at a higher temperature (130-140 °C). In the case of ethoxy-(ethyl)acetylene, this gave the only product with δP -4.93, which was identified based on the data of ¹H and ¹³C NMR spectroscopy as *E*-diphenyl(1-trimethylsilyloxybut-1-en-1-yl)phosphine (9). The formation of this product can be explained by assuming that at 140 °C, ethoxy(ethyl)acetylene eliminates ethylene, being thus converted into ethyl ketene 10 (Scheme 6).

Scheme 6

A special experiment showed that ethoxy(ethyl)acctylene actually decomposes at temperatures above 100 °C with evolution of ethylene. At 140 °C, decomposition occurs quantitatively over a period of 10 h, as indicated by the disappearance of the absorption band due to the triple bond, $v(C \equiv C)$ 2300 cm⁻¹, from the IR spectrum. Thus, adduct 9 results from the addition of silylphosphine to the ketene formed *in situ*; the addition occurs similarly to the known⁹ reactions of trimethylsilyldiethylphosphine with ketene and diphenyl ketene.

An interesting result was obtained in the reaction of silylphosphine 1 with methoxy(trimethylsilyl)acetylene 2i in acetonitrile.

$$1 + Me_3SiC \equiv COMe \xrightarrow{MeCN} Ph_2PMe + (Me_3Si)_2C = C = O$$
2i 11 12

The ³¹P NMR spectrum recorded after completion of the reaction contained only one signal with $\delta P - 27.9$. Fractionation of the reaction mixture afforded methyldiphenylphosphine (11, yield 82%) and bis(trimethylsilyl) ketene (12, yield 65%), which were identified by comparison of their physicochemical parameters with the published data;^{10,11} the structures of these products were confirmed by spectroscopy. A four- or six-membered transition state can be proposed for this transformation (Scheme 7).

The unusual pathway of this reaction of silylphosphine can be due to the large size of the substituent at the β -C atom in compound **2i**, which prevents the addition to the triple bond as shown in Scheme 3.

Experimental

All reactions and operations associated with the synthesis and isolation of compounds of tricoordinated phosphorus were carried out under dry argon using anhydrous solvents.

All the stable reagents used in the reactions were freshly distilled. The purity of the alkoxyacetylenes used was checked by spectroscopy (IR, ¹H NMR). IR spectroscopy (in thin films) and ¹H, ¹³C, and ³¹P NMR spectroscopy were used to monitor the course of the reactions and to identify the reaction products.

IR spectra were recorded on an IKS-22 spectrometer (NaCl). ¹H NMR spectra were measured on Tesla BS-467 and Varian VXR-400 instruments (60 and 400 MHz, respectively) using Me₄Si and HMDS as internal standards. ³¹P NMR spectra were run on a Varian FT-80A instrument (32.2 MHz) using 85% H₃PO₄ as the external standard. ¹³C NMR spectra were recorded on a Varian VXR-400 spectrometer (100.6 MHz) with dichloromethane-d₂ and chloroform-d₁ as internal standards. The chemical shifts are given in the δ scale in relation to Me₄Si (¹H, ¹³C) or 85% H₃PO₄ (³¹P).

The reactions with diphenyl(trimethylsilyl)phosphine 1 were carried out until its signal ($\delta P = 57.6$) disappeared from the ³¹P NMR spectrum of the reaction mixture.

Reaction of diphenyl(trimethylsilyl)phosphine (1) with alkoxyacetylenes and alkoxy(alkyl)acetylenes (general procedure). A mixture of alkoxyacetylene 2a-h (0.01 mol) and compound I (0.01 mol), neat or in MeCN, was held in a sealed tube at room temperature or at 70-80 °C. After completion of the reaction, the mixture was kept at 20 °C under a pressure of 0.1 Torr for 1 h, and the remaining oil was distilled. The reaction conditions and the yields and boiling points of the products are listed in Table 1, and the spectral data are presented in Tables 2 and 3.

The reactions without a solvent gave the following compounds: from ethoxy(methyl)acetylene 2a, E-(1-methyl-2trimethylsilyl-2-ethoxyethenyl)diphenylphosphine (3a) and Z-(1-methyl-2-ethoxyethenyl)diphenylphosphine (4a) in 5 : 1 ratio; from ethoxy(ethyl)acetylene 2b, E-diphenyl(2-trimethylsilyl-1-ethyl-2-ethoxyethenyl)phosphine (3b) and Z-(1-ethyl-2-ethoxyethenyl)diphenylphosphine (4b) in 6 : 1 ratio; fromethoxyacetylene 2c, (1-ethoxyethenyl)diphenylphosphine (5a)(65%), Z-diphenyl(2-trimethylsilyl-2-ethoxyethenyl)phosphine(3c) (20%), and (2-ethoxyethyl)diphenylphosphine (6) (15%);distillation of the mixture gave a mixture of compounds 3c and5a in 6 : 1 ratio (yield 50%).

The reactions in MeCN gave the following products: from ethoxyacetylene 2c, (1-ethoxyethenyl)diphenylphosphine (5a) (found (%): C, 74.35; H, 6.48; C₁₄H₁₇OP; calculated (%): C, 74.99; H, 6.69); from methoxyacetylene 2g, (1-methoxyethenyl)diphenylphosphine (5b); from butoxyacetylene 2h, (1-butoxyethenyl)diphenylphosphine (5c); from methoxy(methyl)acetylene 2d, Z-(1-methyl-2-methoxyethenyl)diphenylphosphine (4c); from ethoxy(methyl)acetylene 2a. Z-(1-methyl-2-ethoxyethenyl)diphenylphosphine (4a) (by passing air through a benzene solution of phosphine 4a for 24 h at 70 °C, this compound was converted into Z-(1-methyl-2-ethoxyethenyl)diphenylphosphine oxide, whose ³¹P NMR spectrum contained a signal with δP 28.0; found (%): C, 71.70; H, 7.26; C₁₇H₁₉O₂P; calculated (%): C, 71.32; H, 6.69); from ethoxy(ethyl)acetylene 2b, Z-(1-ethyl-2-ethoxyethenyl)diphenylphosphine (4b); from ethyl(methoxy)acetylene 2e, Z-(2methoxy-1-ethylethenyl)diphenylphosphine (4d); from ethoxy(isopropyl)acetylene 2f, Z-(1-isopropyl-2-ethoxyethenyl)diphenylphosphine (4e) (found (%): C, 76.08; H, 8.06; C₁₉H₂₃OP; calculated (%): C, 76.49; H, 7.77)

Reaction of diphenyl(trimethylsilyl)phosphine (1) with ethoxy(ethyl)acetylene 2b. A mixture of ethoxy(ethyl)acetylene 2b (0.01 mol) and phosphine 1 (0.01 mol) was placed in a 25-mL two-neck flask equipped with a reflux condenser and an inlet for argon and heated for 15 h at 130-140 °C. The gas evolved during the reaction was passed through a solution of Br₂ (0.01 mol) in CCl₄ (10 mL), which became colorless by the instant the reaction was completed. Vacuum distillation gave E-diphenyl(1-trimethylsilyloxybut-1-en-1-yl)phosphine (9), yield 79%, b.p. 145 °C (5 · 10⁻² Torr). ³¹P NMR (MeCN), δ: -4.93. 1R, v/cm⁻¹: 1620 (C=C). ¹H NMR (CD₂Cl₂), δ: 0.06 (s, 9 H, (CH₃)₃Si); 0.95 (t, 3 H, CH₃); 2.36 (m, 2 H, CH₂); 5.42 (t, 1 H, HC=, J = 6 Hz); 8.0 (m, 10 H, Ph). ¹³C NMR (CD₂Cl₂), δ: 1.60 ((CH₃)₃Si); 14.79 (CH₂CH₃); 20.52 (d, CH_2CH_3 , J = 4.2 Hz); 126.32 (d, C=C=0, J = 23.5 Hz); 151.56 (d, $C=\underline{C}-O$, J = 8.3 Hz); 136.78 (d, C_{ipso} , J =10.7 Hz).

Reaction of diphenyl(trimethylsilyl)phosphine (1) with methoxy(trimethylsilyl)acetylene (2i). A mixture of methoxy(trimethylsilyl)acetylene 2i (0.01 mol) and compound 1 (0.01 mol) in 4 mL of MeCN was kept for 48 h at room temperature. The v(C=C) absorption band at 2100 cm⁻¹ disappeared from the IR spectrum, and the v(C=C=O) band at 2030 cm⁻¹ appeared instead. Fractionation gave methyldiphenylphosphine (11), yield 82%, b.p. 138-140 °C (1 Torr) and bis(trimethylsilyl) ketene (12), yield 65%, b.p. 60 °C (30 Torr). Compound 11. ³¹P NMR (MeCN), 5: -27.90. ¹H NMR (CD₂Cl₂), 5: 6.80 (d, 3 H, CH₃, J = 1.1 Hz); 7.30 (m, 10 H,

PPh₂). ¹³C NMR (CDCl₃), δ : 12.63 (d, CH₃, J = 5.1 Hz); 140.80 (d, C_{ipso}, J = 5.1 Hz); 134.50 (d, C_o, J = 14.0 Hz); 128.66 (C_m); 128.77 (C_p). Published data:^{10 31}P NMR (C₆D₆), δ : 27.90. <u>Compound 12</u>, 1R, v/cm⁻¹: 2030 (C=C=O). ¹H NMR (CDCl₃), δ : 0.12 (s, Me₃Si). The spectral parameters of compound 12 correspond to the published data.¹¹

This work was financially supported by the Russian Foundation for Basic Research (Project No. 97-03-33035), the "Leading Scientific School" grant (No. 96-15-97484), and by the program "Integration of Higher School with the Academy of Sciences" (Grant No. 234).

References

- M. A. Kazankova and E. V. Luzikova, Zh. Obshch. Khim., 1996, 66, 1637 [Russ. J. Gen. Chem., 1996, 66 (Engl. Transl.)].
- M. A. Kazankova and E. V. Luzikova, Zh. Obshch. Khim., 1996, 66, 1652 [Russ. J. Gen. Chem., 1996, 66 (Engl. Transl.)].
- M. A. Kazankova and I. F. Lutsenko, Vestn. Mosk. Univ., Ser. 2: Khimiya, 1983, 24, 315 [Bull. Moscow Univ., Ser. 2: Chem., 1983, 24 (Engl. Transl.)].
- V. Efimova, M. A. Kazankova, B. E. Kalganov, and I. F. Lutsenko, *Zh. Obshch. Khim.*, 1985, 55, 708 [J. Gen. Chem. USSR, 1985, 55 (Engl. Transl.)].
- V. Efimova, A. A. Golyavin, M. A. Kazankova, and I. P. Beletskaya, *Zh. Org. Khim.*, 1996, 32, 330 [*Russ. J. Org. Chem.*, 1996, 32 (Engl. Transl.)].
- O. I. Artyushin, N. V. Lukashev, M. A. Kazankova, and I. F. Lutsenko, Zh. Obshch. Khim., 1984, 54, 2391 [J. Gen. Chem. USSR, 1984, 54 (Engl. Transl.)].
- E. I. Lazhko, I. G. Trostyanskaya, M. A. Kazankova, Yu. A. Ustynyuk, and I. F. Lutsenko, *Zh. Obshch. Khim.*, 1986, 56, 1504 [J. Gen. Chem. USSR, 1986, 56 (Engl. Transl.)].
- E. I. Lazhko, E. V. Luzikova, Yu. G. Mikhailov, M. A. Kazankova, and Yu. A. Ustynyuk, *Zh. Obshch. Khim.*, 1988, 58, 1247 [*J. Gen. Chem. USSR*, 1988, 58 (Engl. Transl.)].
- 9. C. Couret, F. Couret, and J. Satge, J. Organomet. Chem., 1973, 47, 67.
- 10. G. Fritz, Angew. Chem., Int. Ed. Engl., 1966, 5, 53.
- R. Appel and K. Geisler, J. Organomet. Chem., 1976, 112, 61.

Received March 24, 1998; in revised form May 20, 1998