# Synthesis of Imidazoles and Pyrimidines Using Palladium-Catalyzed Decarboxylative Intramolecular Condensation of 1,2,4-Oxadiazol-5(4*H*)-ones

Takuya Shimbayashi, Kazuhiro Okamoto,\* Kouichi Ohe\*

Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan

Fax +81(75)3832499; E-mail: kokamoto@scl.kyoto-u.ac.jp; E-mail: ohe@scl.kyoto-u.ac.jp Received: 07.05.2014; Accepted after revision: 13.05.2014

**Abstract:** We found that 1,2,4-oxadiazol-5(4*H*)-ones acted as iminonitrene equivalents in the presence of a palladium catalyst and a stoichiometric amount of phosphine and that aza-Wittig-type condensation with the internal carbonyl moiety occurred to afford the corresponding imidazoles and pyrimidines.

Key words: imidazoles, palladium, decarboxylation, aza-Wittig reaction

1,3-Diaza-heteroaromatic compounds, such as imidazoles and pyrimidines, are known as one of the most important classes of compounds, because they are commonly found in a variety of natural products and pharmaceuticals. Because of the basicity and coordination ability of imidazoles, they have been applied to functional materials, such as chemical sensors and biologically active molecules.<sup>1</sup> For several decades, much attention has been paid to the development of transition-metal-catalyzed synthesis of these heteroaromatics as novel or alternative methods.<sup>2</sup>

Recently, we have studied the transition-metal-catalyzed reactions of nitrogen-containing heterocyclic compounds involving nitrenoid species as intermediates. We have found that isoxazol-5(4H)-ones (isoxazolones) act as equivalents of vinylnitrene species under palladium catalvsis (Scheme 1). Alkene-tethered isoxazolones efficiently underwent decarboxylative intramolecular aziridination by a palladium-phosphine catalyst to afford the corresponding fused aziridines (Scheme 1, a).<sup>3</sup> Isoxazolones also reacted with aldehydes in the presence of a palladium catalyst and a stoichiometric amount of triphenylphosphine (Ph<sub>3</sub>P) to afford the 2-aza-1,3-dienes as products<sup>4</sup> through intermolecular aza-Wittig-type condensation (Scheme 1, b).<sup>5,6</sup> We thus expected that 1,2,4-oxadiazol-5(4H)-ones (oxadiazolones), possessing two nitrogen atoms in their heteroaromatic ring, would serve as iminonitrene precursors (Scheme 1, c).<sup>7</sup> Herein, we report an efficient synthetic method for imidazoles and pyrimidines using palladium-catalyzed decarboxylative condensation reactions of oxadiazolones bearing tethered carbonyl moieties (Scheme 1, c).

*SYNLETT* 2014, 25, 1916–1920 Advanced online publication: 25.06.2014 DOI: 10.1055/s-0034-1378320; Art ID: st-2014-u0390-1 © Georg Thieme Verlag Stuttgart · New York (a) intramolecular aziridination







(c) this work



Scheme 1 Palladium-catalyzed decarboxylative transformation of nitrogen-containing five-membered molecules



Scheme 2

To confirm the generation of iminophosphorane species from oxadiazolones, the reactivity of a simple oxadiazolone toward a phosphine in the presence of a palladium catalyst was examined as an initial attempt. When a solution of oxadiazolone 1 and Pd(PPh<sub>3</sub>)<sub>4</sub> (25 mol%) in dioxane was reacted at 100 °C for 4 hours, 1 was almost fully converted, and the generation of iminophosphorane 2 was detected by NMR and mass spectrometry (Scheme 2). The formation of **2** did not occur at all either in the absence of  $Pd(PPh_3)_4$  or in the presence of only  $Ph_3P$  (without palladium), which indicates that iminophosphorane **2** was formed by the initial palladium-catalyzed decarboxylation of **1** followed by nitrene transfer from the generated nitrene-palladium species to  $Ph_3P$ .



**Scheme 3** Palladium-catalyzed decarboxylative intramolecular aza-Wittig-type reaction of 1,2,4-oxadiazol-5-one **3** leading to imidazole **4**. The reactions were carried out with oxadiazolones **3** (0.20 mmol), Pd(PPh<sub>3</sub>)<sub>4</sub> (3.0 mol%), and Ph<sub>3</sub>P (1.1 equiv) in 1,4-dioxane (1.5 mL). Isolated yields are shown. <sup>a</sup> Conditions: 5 mol% of Pd(PPh<sub>3</sub>)<sub>4</sub> were used. <sup>b</sup> At 100 °C. <sup>c</sup> CpPd( $\eta^3$ -C<sub>3</sub>H<sub>3</sub>) (3 mol%) and tppms (1.2 equiv) were used instead of Pd(PPh<sub>3</sub>)<sub>4</sub> and Ph<sub>3</sub>P.

As a result of various investigations of inter- and intramolecular condensation reactions, we were pleased to find that oxadiazolone bearing a ketone moiety (**3a**) underwent intramolecular condensation in the presence of 3 mol% of Pd(PPh<sub>3</sub>)<sub>4</sub> and 1.1 equivalents of Ph<sub>3</sub>P to afford the corresponding imidazole **4a** quantitatively. This imidazoleforming reaction also occurred effectively when oxadiazolones bearing various substituents were used (Scheme 3).<sup>8</sup> para Substituents on the aromatic ring R<sup>1</sup>, such as methoxy, fluoro, acetyl, and methoxycarbonyl groups, did not affect the reaction efficiency (**4b–e**). A ketone moiety on the *meta* or *para* position remains intact during the reaction (4e and 4f). *ortho*-Substituted phenyl, 2-naphthyl, and 2-thienyl groups could be employed as substituent R<sup>1</sup> (4g–i). Oxadiazolones bearing various aromatic groups (4j–n) as well as primary, secondary, and tertiary alkyl groups (4o–q) attached on the R<sup>2</sup> position are also applicable to the present reaction. Secondary alkyl groups were also compatible at the R<sup>1</sup> position (4r and 4s). Triphenylimidazole (4t; R<sup>1</sup> = R<sup>2</sup> = R<sup>3</sup> = Ph) was also obtained in excellent yield.

The present reaction was expanded successfully to the gram-scale preparation of imidazoles, and the standard palladium loading was enough for the formation of 1.05 g of imidazole **4a** in 88% yield (Scheme 4). Moreover, *me*-*ta*- or *para*-phenylene-bridged bis(imidazole) derivatives could be readily prepared using this method. Because triphenylphosphine oxide (O=PPh<sub>3</sub>) was difficult to remove from the reaction mixture, we applied the conditions with the combination of CpPd( $\eta^3$ -C<sub>3</sub>H<sub>5</sub>) as a catalyst precursor and triphenylphosphanemonosulfonic acid sodium salt (tppms) as a condensation agent. The corresponding bis(imidazole) derivatives **4u** and **4v** were obtained in high yields (Scheme 5).



### Scheme 4

A proposed catalytic cycle for the present reaction is shown in Scheme 6. First, oxadiazolone 3 oxidatively adds to the low-valent palladium species to form palladacycle A.<sup>9-11</sup> Decarboxylation from A generates the palladium–iminonitrene complex  $\mathbf{B}$ .<sup>12</sup> Another possible active intermediate may be the four-membered diazapalladacycle B'. When enough Ph<sub>3</sub>P exists in this system, iminophosphorane C is preferentially formed by fast nitrene transfer from intermediate B or B' to phosphine and undergoes intramolecular aza-Wittig-type condensation accompanied with isomerization to afford imidazole 4 and triphenylphosphine oxide (path a).<sup>13,14</sup> Unlike the intermolecular condensation reaction starting from isoxazolones, iminophosphorane species generated from the combination of phosphine and more electron-deficient nitrene species are considered to be much more stable because the iminophosphorane species could be detected in the reaction of simple oxadiazolone. Although the direct intramolecular cyclization of intermediate B without the formation of iminophosphorane C (path b) is also a possible alternative pathway, path a will be the major pathway compared with path b for the above reason.<sup>15</sup>

When we examined the reactivity of substrate **5**, in which the oxadiazolone moiety and the ketone moiety are linked with the vinylene tether, we found that the condensation reaction proceeds under similar conditions to form the



Scheme 5



Scheme 6 Proposed catalytic cycle for the palladium-catalyzed intramolecular condensation of oxadiazolone 3

corresponding pyrimidine **6** in 70% isolated yield (Scheme 7). This result indicates the possibility that this reaction can be expanded to the general synthesis of various 1,3-diazaheterocyclic compounds.



Scheme 7

In conclusion, we have developed a palladium-catalyzed novel transformation reaction of readily available 1,2,4-oxadiazol-5(4H)-ones as starting materials with triphe-nylphosphine, leading to N-unprotected imidazole derivatives and a pyrimidine derivative. Because the present reaction proceeds under mild and neutral conditions, var-

ious functionalized imidazoles as well as bis(imidazole) derivatives could be obtained efficiently. Further investigations to improve efficiency in terms of catalytic activity and substrate scope are in progress.

## Acknowledgment

This work was supported financially by Grant-in-Aid for Scientific Research from JSPS, Japan. K. Okamoto also thanks Toray Award in Synthetic Organic Chemistry, Japan.

**Supporting Information** for this article is available online at http://www.thieme-connect.com/products/ejournals/journal/10.1055/s-00000083.

# **References and Notes**

 For selected examples on the material or medicinal application of imidazoles, see: (a) Fabbrizzi, L.; Francese, G.; Licchelli, M.; Perotti, A.; Taglietti, A. *Chem. Commun.* **1997**, 581. (b) Zhang, Y.; Yang, R. H.; Liu, F.; Li, K. A. *Anal. Chem.* **2004**, *76*, 7336. (c) Zeng, Q.; Cai, P.; Li, Z.; Qin, J.; Tang, B. Z. Chem. Commun. 2008, 1094.
(d) Berezin, M. Y.; Kao, J.; Achilefu, S. Chem. Eur. J. 2009, 15, 3560. (e) Anderson, E. B.; Long, T. E. Polymer 2010, 51, 2447. (f) Kulhánek, J.; Bureš, F. Beilstein J. Org. Chem.
2012, 8, 25. (g) Zhang, L.; Peng, X.-M.; Damu, G. L. V.; Geng, R.-X.; Zhou, C.-H. Med. Res. Rev. 2014, 34, 340.

- (2) For transition-metal-catalyzed synthesis of imidazoles and pyrimidines, see: (a) Xi, N.; Huang, Q.; Liu, L. Comprehensive Heterocyclic Chemistry III; Joule, J., Ed.; Vol. 4, 281. (b) Rewcastle, G. W. Comprehensive Heterocyclic Chemistry III; Aitken, R. A., Ed.; Vol. 8, 191. (c) Kamijo, S.; Yamamoto, Y. Chem. Asian J. 2007, 2, 568. (d) Gulevich, A. V.; Dudnik, A. S.; Chernyak, N.; Gevorgyan, V. Chem. Rev. 2013, 113, 3084.
- (3) Okamoto, K.; Oda, T.; Kohigashi, S.; Ohe, K. Angew. Chem. Int. Ed. **2011**, *50*, 11470.
- (4) Okamoto, K.; Shimbayashi, T.; Tamura, E.; Ohe, K. *Chem. Eur. J.* **2014**, *20*, 1490.
- (5) For reviews on aza-Wittig reactions, see: (a) Fresneda, P. M.; Molina, P. *Synlett* 2004, 1. (b) Palacios, F.; Alonso, C.; Aparicio, D.; Rubiales, G.; de los Santos, J. M. *Tetrahedron* 2007, 63, 523. (c) Palacios, F.; Alonso, C.; Aparicio, D.; Rubiales, G.; de los Santos, J. M. *Organic Azides: Syntheses* and Applications; Bräse, S.; Banert, K., Eds.; John Wiley and Sons: Chichester, 2009, Chap. 15, 439-46.
- (6) As a related chemistry, catalytic carbene transfer reactions via phosphorus ylides have been reported by some groups. See: (a) Mirafzal, G. A.; Cheng, G.; Woo, L. K. J. Am. Chem. Soc. 2002, 124, 176. (b) Cheng, G.; Mirafzal, G. A.; Woo, L. K. Organometallics 2003, 22, 1468; and references cited therein. (c) Aggarwal, V. K.; Fulton, J. R.; Sheldon, C. G.; de Vicente, J. J. Am. Chem. Soc. 2003, 125, 6034. (d) Miki, K.; Washitake, Y.; Ohe, K.; Uemura, S. Angew. Chem. Int. Ed. 2004, 43, 1857.
- (7) Oxadiazolones are easily prepared in a few steps from abundant molecules. See: (a) Takács, K.; Harádnyi, K. *Chem. Ber.* **1970**, *103*, 2330. (b) Charton, J.; Cousaert, N.; Bochu, C.; Willand, N.; Déprez, B.; Déprez-Poulain, R. *Tetrahedron Lett.* **2007**, *48*, 1479.
- (8) General Procedure for the Catalytic ReactionsA solution of Pd(PPh<sub>3</sub>)<sub>4</sub> (6.9 mg, 6.0 μmol) and oxadiazolone 3 (0.20 mmol) in 1,4-dioxane (1.5 mL) was stirred at 80 °C for 24 h. The reaction mixture was filtered through a pad of Florisil<sup>®</sup>, and the filtrate was concentrated under vacuum. The residue was subjected to column chromatography on Florisil<sup>®</sup> (hexane–EtOAc = 4:1) to afford imidazole 4. Imidazole 4a

White solid (43.8 mg, 0.20 mmol, 99% yield; mp 160.1– 160.5 °C). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  = 7.22–7.45 (m, 7 H), 7.75 (d, *J* = 7.4 Hz, 2 H), 7.87 (d, *J* = 7.3 Hz, 2 H). <sup>13</sup>C NMR (100 MHz, acetone-*d*<sub>6</sub>):  $\delta$  = 114.3, 125.4, 125.9, 127.2, 129.0, 129.3, 129.5, 131.8, 135.6, 142.6, 147.4. HRMS– FAB: *m/z* calcd for C<sub>15</sub>H<sub>13</sub>N<sub>2</sub> [M + H]<sup>+</sup>: 221.1079; found: 221.1069.

### Imidazole 4c

White solid (46.0 mg, 0.19 mmol, 97% yield; mp 65.0–66.1 °C). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  = 7.08 (dd,  $J_{\rm HH}$  = 8.8 Hz,  $J_{\rm HF}$  = 8.8 Hz, 2 H), 7.27 (t, J = 7.3 Hz, 1 H), 7.37 (s, 1 H), 7.39 (t, J = 7.3 Hz, 2 H), 7.74 (d, J = 7.3 Hz, 2 H), 7.82 (dd,  $J_{\rm HH}$  = 8.3 Hz,  $J_{\rm HF}$  = 4.9 Hz, 2 H). <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  = 115.7 (d,  $J_{\rm CF}$  = 21.7 Hz), 117.7, 125.0, 126.4 (d,  $J_{\rm CF}$  = 3.1 Hz), 127.2, 127.3, 127.5 (d,  $J_{\rm CF}$  = 8.0 Hz), 128.8, 132.4, 146.7, 163.0 (d,  $J_{\rm CF}$  = 248 Hz). HRMS–FAB: *m/z* calcd for C<sub>15</sub>H<sub>12</sub>FN<sub>2</sub> [M + H]<sup>+</sup>: 239.0985; found: 239.0990. **Imidazole 4i** 

White solid (30.1 mg, 0.13 mmol, 67% yield; mp 168.5– 171.0 °C). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  = 7.08 (dd, J = 5.1, 3.9 Hz, 1 H), 7.27 (t, J = 7.3 Hz, 1 H), 7.34 (d, J = 5.1 Hz, 1 H), 7.35 (s, 1 H), 7.39 (d, J = 8.1 Hz, 2 H), 7.41 (d, J = 3.7 Hz, 1 H), 7.72 (br s, 2 H). <sup>13</sup>C NMR (100 MHz, acetone- $d_6$ ):  $\delta = 116.4$ , 124.1, 125.2, 126.3, 127.0, 128.2, 129.0, 134.4, 135.2, 140.5, 143.1. HRMS–FAB: m/z calcd for C<sub>13</sub>H<sub>11</sub>N<sub>2</sub>S [M + H]<sup>+</sup>: 227.0643; found: 227.0639. Imidazole 4j

Pale yellow solid (35.0 mg, 0.14 mmol, 70% yield; mp 124.3–126.2 °C). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  = 3.84 (s, 3 H), 6.93 (d, *J* = 8.8 Hz, 2 H), 7.27 (d, *J* = 8.5 Hz, 2 H), 7.35 (t, *J* = 7.6 Hz, 1 H), 7.42 (t, *J* = 7.8 Hz, 2 H), 7.67 (d, *J* = 8.5 Hz, 2 H), 7.87 (d, *J* = 7.1 Hz, 2 H). <sup>13</sup>C NMR (100 MHz, acetone-*d*<sub>6</sub>):  $\delta$  = 55.3, 114.6, 125.7, 125.8, 126.6, 128.7, 129.3, 129.9, 131.1, 131.8, 146.9, 159.4. HRMS–FAB: *m/z* calcd for C<sub>16</sub>H<sub>15</sub>N<sub>2</sub>O [M + H]<sup>+</sup>: 251.1184; found: 251.1181.

**Imidazole 40** White solid (29.7 mg, 0.19 mmol, 94% yield; mp 180.5–181.6 °C). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  = 2.29 (s, 3 H), 6.82 (s, 1 H), 7.31 (t, *J* = 6.4 Hz, 1 H), 7.37 (t, *J* = 6.8 Hz, 2 H), 7.81 (d, *J* = 7.8 Hz, 2 H). <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  = 12.0, 119.4, 125.0, 128.2, 128.8, 130.4, 132.1, 146.0. HRMS–FAB: *m/z* calcd for C<sub>10</sub>H<sub>11</sub>N<sub>2</sub> [M + H]<sup>+</sup>: 159.0922; found: 159.0923.

- (9) For reviews, see: (a) Kitamura, M.; Narasaka, K. Chem. Rec.
   2002, 2, 268. (b) Narasaka, K.; Kitamura, M. Eur. J. Org. Chem. 2005, 4505.
- (10) For recent examples, see: (a) Zaman, S.; Kitamura, M.; Abell, A. D. Org. Lett. 2005, 7, 609. (b) Gerfaud, T.; Neuville, L.; Zhu, J. Angew. Chem. Int. Ed. 2009, 48, 572. (c) Tan, Y.; Hartwig, J. F. J. Am. Chem. Soc. 2010, 132, 3676. (d) Kitamura, M.; Moriyasu, Y.; Okauchi, T. Synlett 2011, 643. (e) Faulkner, A.; Bower, J. F. Angew. Chem. Int. Ed. 2012, 51, 1675. (f) Faulkner, A.; Scott, J. S.; Bower, J. F. Chem. Commun. 2013, 49, 1521. (g) Race, N. J.; Bower, J. F. Org. Lett. 2013, 15, 4616. (h) Hong, W. P.; Iosub, A. V.; Stahl, S. S. J. Am. Chem. Soc. 2013, 135, 13664.
- (11) For recent examples of N-O bond cleavage of oxime esters or ethers in catalytic reactions using metals other than palladium, see: (a) Too, P. C.; Wang, Y. F.; Chiba, S. Org. Lett. 2010, 12, 5688. (b) Yoshida, Y.; Kurahashi, T.; Matsubara, S. Chem. Lett. 2011, 40, 1140. (c) Too, P. C. Chua, S. H.; Wong, S. H.; Chiba, S. J. Org. Chem. 2011, 76, 6159. (d) Ren, Z.-H.; Zhang, Z.-Y.; Yang, B.-Q.; Wang, Y.-Y.; Guan, Z.-H. Org. Lett. 2011, 13, 5394. (e) Qi, X.; Jiang, Y.; Park, C.-M. Chem. Commun. 2011, 47, 7848. (f) Nakamura, I.; Iwata, T.; Zhang, D.; Terada, M. Org. Lett. 2012, 14, 206. (g) Jiang, Y.; Chan, W. C.; Park, C.-M. J. Am. Chem. Soc. 2012, 134, 4104. (h) Yoshida, Y.; Kurahashi, T.; Matsubara, S. Chem. Lett. 2012, 41, 1498. (i) Wei, Y.: Yoshikai, N. J. Am. Chem. Soc. 2013, 135, 3756. (j) Shi, Z.; Koester, D. C.; Boultadakis-Arapinis, M.; Glorius, F. J. Am. Chem. Soc. 2013, 135, 12204. (k) Nakamura, I.; Onuma, T.; Zhang, D.; Terada, M. Tetrahedron Lett. 2014, 55, 1178. (1) Tang, X.; Huang, L.; Xu, Y.; Yang, J.; Wu, W.; Jiang, H. Angew. Chem. Int. Ed. 2014, 53, 4205. (m) Nakamura, I.; Ishida, Y.; Terada, M. Org. Lett. 2014, 16, 2562.
- (12) Xie, H.; Lin, F.; Yang, L.; Chen, X.; Ye, X.; Tian, X.; Lei, Q.; Fang, W. J. Organomet. Chem. 2013, 745-746, 417.
- (13) For the mechanism of aza-Wittig reactions, see: Cossío, F. P.; Alonso, C.; Lecea, B.; Ayerbe, M.; Rubiales, G.; Palacios, F. J. Org. Chem. 2006, 71, 2839.
- (14) For examples on the intramolecular aza-Wittig-type reactions giving N-heterocyclic compounds: (a) Hickey, D. M. B.; MacKenzie, A. R.; Moody, C. J.; Rees, C. W. J. Chem. Soc., Perkin Trans. 1 1987, 921. (b) Kennedy, M.; Moody, C. J.; Rees, C. W.; Vaquero, J. J. J. Chem. Soc., Perkin Trans. 1 1987, 1395. (c) Takeuchi, H.; Yanagida, S.-

i.; Ozaki, T.; Hagiwara, S.; Eguchi, S. J. Org. Chem. 1989, 54, 431. (d) Chen, J.; Forsyth, C. J. Org. Lett. 2003, 5, 1281.
(e) Marsden, S. P.; McGonagle, A. E.; Mckeever-Abbas, B. Org. Lett. 2008, 10, 2589.

(15) Only 15% of imidazole **4a** was obtained in the reaction of the stoichiometric amount of  $Pd_2(dba)_3$  with oxadiazolone **3a** (Scheme 8). This result indicates that the reaction pathway bypassing the iminophosphorane intermediate (path b) also exists but is only a minor pathway.



Scheme 8

Copyright of Synlett is the property of Georg Thieme Verlag Stuttgart and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use.