Subscriber access provided by Brought to you by ST ANDREWS UNIVERSITY LIBRARY

Catalyst-Free and Selective C-N Bond Functionalization: Stereospecific Three-Component-Coupling of Amines, Dichloromethane and >P(O)H Species Affording alpha-Aminophosphorus Compounds

Yalei Zhao, Xiuling Chen, Tieqiao Chen, Yongbo Zhou, Shuang-Feng Yin, and Li-Biao Han J. Org. Chem., Just Accepted Manuscript • DOI: 10.1021/jo501961h • Publication Date (Web): 03 Dec 2014 Downloaded from http://pubs.acs.org on December 7, 2014

Just Accepted

Article

"Just Accepted" manuscripts have been peer-reviewed and accepted for publication. They are posted online prior to technical editing, formatting for publication and author proofing. The American Chemical Society provides "Just Accepted" as a free service to the research community to expedite the dissemination of scientific material as soon as possible after acceptance. "Just Accepted" manuscripts appear in full in PDF format accompanied by an HTML abstract. "Just Accepted" manuscripts have been fully peer reviewed, but should not be considered the official version of record. They are accessible to all readers and citable by the Digital Object Identifier (DOI®). "Just Accepted" is an optional service offered to authors. Therefore, the "Just Accepted" Web site may not include all articles that will be published in the journal. After a manuscript is technically edited and formatted, it will be removed from the "Just Accepted" Web site and published as an ASAP article. Note that technical editing may introduce minor changes to the manuscript text and/or graphics which could affect content, and all legal disclaimers and ethical guidelines that apply to the journal pertain. ACS cannot be held responsible for errors or consequences arising from the use of information contained in these "Just Accepted" manuscripts.

The Journal of Organic Chemistry is published by the American Chemical Society. 1155 Sixteenth Street N.W., Washington, DC 20036

Published by American Chemical Society. Copyright © American Chemical Society. However, no copyright claim is made to original U.S. Government works, or works produced by employees of any Commonwealth realm Crown government in the course of their duties.

Catalyst-Free and Selective C-N Bond Functionalization: Stereospecific Three-Component-Coupling of Amines, Dichloromethane and >P(O)H Species Affording α-Aminophosphorus Compounds

Yalei Zhao,[§] Xiuling Chen,[§] Tieqiao Chen, Yongbo Zhou,* Shuang-Feng Yin* and Li-Biao Han

State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University,

Changsha, 410082, People's Republic of China.

E-mail: zhouyb@hnu.edu.cn; sf_yin@hnu.edu.cn

Abstract: The catalyst-free and selective C-N bond functionalization has been achieved through three-component-coupling of amines, dihalomethane and >P(O)H species. This reaction takes place stereospecifically with retention of configuration at phosphorus which can produce various new optically active phosphorus analogues of α -amino acids.

$$R^{1}R^{2}N - \xi^{5} - R^{3} + CH_{2}X_{2} + H - R^{1}R^{2}N - CH_{2} - R^{1}R^{2}N - CH_{$$

INRODUCTION

therefore be important and useful to make C-N bond cleavage for constructing new compounds in organic synthesis.² However, C-N

Carbon-nitrogen (C-N) bonds are abundant in numerous organic compounds including natural products and fine chemicals.¹ It would

bonds are generally stable, which makes their functionalization difficult.³ Considerable efforts have been devoted to resolve the

challenge.²⁻³ However, among the reported systems, transition metal and their complexes are generally required as the catalysts to fulfill

the cleavage and further functionalization of C-N bonds.²⁻³ The limited availability and difficult removal of transition metals from products led to the development of alternative green metal-free catalytic systems, but they remain scarce.⁴⁻⁵ Due to the interest in the C-N activation and further functionalization, and combined with our previous work,⁶ we accidentally discovered a catalyst-free and selective

C-N cleavage, leading to an efficient alternative synthesis method to α -aminophosphorus compounds.

$$R^{1}R^{2}N - \stackrel{\delta}{\xi} - R^{3} + CH_{2}X_{2} + H - \stackrel{\parallel}{P} - Z^{1} \longrightarrow R^{1}R^{2}N - CH_{2} - \stackrel{\vee}{P} - Z^{1} \qquad (1)$$

$$Z^{1}, Z^{2} = alkyl, alkoxy, aryl$$

 α -Aminophosphorus compounds are structural analogoues to natural α -amino acids, which have wide applications in the research fields of physiological processes in living organisms, as well as diagnostic and therapeutic studies.⁷ Over the past half a century, numerous methods for the preparation of such compounds have been developed with Kabachnik-Fields reaction and Pudovik reaction being the most popular choices.⁸⁻⁹ However, in those systems, transition metals are generally required or the scope of starting materials is limited to aldehydes (ketones) or imines. Especially, there is no precedent on the stereospecific synthesis of P-chiral α -aminophosphorus compounds. Herein we report that, without the aid of any catalysts, selective C-N bond functionalization is achieved: by simply combining an amine, a >P(O)H compound (*H*-phosphonate, *H*-phosphinate or secondary phosphine oxide) and dihalomethane, a one-pot three-component coupling reaction takes place stereospecifically and selectively to afford the α -aminophosphorus compounds 1 in high yields (eq 1).

RESULTS AND DISCUSSION

$$Et_2N-\xi-Et + CH_2Cl_2 + H-\xi-P(O)(OR)_2 \longrightarrow R_2N-CH_2-P(O)(OEt)_2$$
 (2)
Isolated yield
1a, R = Et 92%

When a mixture of $(EtO)_2P(O)H$ (0.5 mmol), CH_2Cl_2 (0.5 mL) and Et_3N (1.5 mmol) in DMF (0.5 mL) is heated at 100 °C for 12 mmol) in DMF (0.5 mL) is heated at 100 °C for 12 mmol).

h, the unsymmetrical substituted product, α -aminophosphonate **1a** is selectively obtained in 92% yield through C-N bond cleavage

(eq 2). It is noted that the use of other methylene halides also produces the corresponding α -aminophosphonate 1a in good to

The Journal of Organic Chemistry

excellent yields under the same reaction conditions (CH₂Br₂, 91%; CH₂I₂, 86%; CH₂BrCl, 75%), but no corresponding coupling products can be obtained when dihalomethane is switched to other haloalkanes, such as CHCl₃, CH₃CHCl₂, CICH₂CH₂Cl, or CH₃CCl₂CH₃. This reaction is highly solvent-dependent. In addition to DMF, under similar reaction conditions, **1a** can also be obtained from DMSO and MeCN in excellent yields, respectively. However, the reaction hardly proceeds in EtOAc, hexane, toluene, THF, dioxane and ethanol.

As shown in Table 1, this reaction can be successfully applied to other substrates, indicating that this is a general method for the preparation of a variety of α -aminophosphorus compounds. Besides (EtO)₂P(O)H, (i-PrO)₂P(O)H and (PhO)₂P(O)H can also react efficiently with Et₃N to give the corresponding coupling products 1b and 1c in satisfactory yields (Entries 1 and 2). As to symmetrical tertiary amines, in addition to Et_3N , the use of trially lamine also produces the corresponding α -aminophosphonate in a good yield (Entry 3). Moreover, both for triethylamine and triallylamine, only one of the three C-N bonds of the amine is cleaved to give the corresponding coupling products. The reaction with polyamine is noteworthy. For example, the use of urotropine produces a bisphosphorylamino compound selectively in high yields (Entry 4). For primary and secondary amines, the N-H bond cleavage takes place predominantly to produce the corresponding coupling products (Entries 5-8). No coupling products from the C-N bond cleavage can be detected from these reactions. In addition, such a high selectivity is also observed in the C-N bond cleavage with tertiary amines. For example, with n-BuNMe₂, regardless of the tiny electronic and steric difference between n-Bu and Me, an almost exclusive cleavage takes place on the N-Me bond to produce n-BuMeNCH₂P(O)(OEt)₂ in 95% yield (Entry 9). Besides HP(O)(OEt)₂, other >P(O)H species, such as a cyclic H-phosphonate (Entry 10), a H-phosphinate (Entry 11) and secondary phosphine oxides (Entries 12-14) all react efficiently and selectively with n-BuNMe₂ to give the corresponding a-aminophosphorus compounds in high yields. As expected, high selectivity on C-N bond cleavage (N-Me cleavage) is gained for dimethyloctylamine (Entry 15), and a good selectivity preferring the N-Me cleavage (85% selectivity) is also observed for diethylmethylamine MeNEt₂ (Entry 16). Moreover, selective N-Me bond cleavages are achieved for amines bearing secondary

alkyl groups (Entries 17-18), and cyclic amines such as 1-methylpiperidine and 4-methylmorpholine (Entries 19-20). However,

Table 1. One-Pot Three-Component-Coupling Reactions Forming α-Aminophosphorus Compounds.^a

The Journal of Organic Chemistry

entry	/ amine	$H-P(O)Z^{1}Z^{2}$	product % yie	ld (selec
1	Et−N— <i>Et</i> Ét	H-P(O)(OPr- <i>i</i>) ₂	Et-N- Et P(O)(OPr-/)	2 1b
2		H-P(O)(OPh) ₂	Et-N- Et P(O)(OPh) ₂	2 1c
3	$\left(\begin{array}{c} \\ \end{array} \right)_{2} N $	H-P(O)(OEt) ₂	()2 N P(O)(OEt)2	1d
4		(EtC	9) ₂ (O)P N P(O)(OEt │) ₂ 1e
5	H - N - H		H–N– <i>n</i> -C ₈ H ₁₇ P(O)(OEt) ₂	1f
6	n-Bu—N—H Me		<i>n</i> -Bu-N- Me P(O)(OEt) ₂	1g
7	MeN_N-H		MeN_N^P(O)(OEt)	2 1h
8	<i>n</i> -Bu─N─H │ <i>n</i> -Bu		n-Bu−N− P(O)(OEt) ₂	1i
9	<i>n</i> -Bu−N <i>──Me</i> Me	H-P(O)(OEt) ₂	1g	
10		H-P	n-Bu N P Me O O	1j
11		H-P(O)Ph(O <i>i</i> -Pr)	n-Bu-N- Me P(O)Ph(O <i>i</i> -F	Pr) 1k
12		H-P(O)Ph ₂	n-Bu−N Me P(O)Ph ₂	11
13		H-P(O)(<i>n</i> -Bu) ₂	n-Bu−N− Me P(O)(n-Bu) ₂ 1m
14		H-P(O)((CH ₂) ₄ Ph)		h) ₂ 1n
15	<i>n</i> -C ₈ H ₁₇ -N- <i>Me</i>	H-P(O)(OEt) ₂	<i>n</i> -C ₈ H ₁₇ -N- Me P(O)(OEt	10
16	Et-N-Me		Et-N- Et P(O)(OEt)	1a
17	N-Me Me		P(O)(OEt	⁾ 2 1p
18	<i>i</i> -Pr−N <i>─Me</i> Me		<i>i</i> -Pr-N- Me P(O)(OEt)2	1q
19	N-Me		N P(O)(OEt)	2 1r
20	ON− <i>M</i> e		ON P(O)(OEt)	2 1s
21	Me-N-t-Bu		Me-N- Ma P(O)(OFt)a	1t
22	Me-N-CH ₂ F	Ph	1t	
	Me			

^{*a*}A mixture of HP(O)Z¹Z² (0.5 mmol), amine (1.5 mmol) and CH₂Cl₂ (0.5 mL) in DMF (0.5 mL) was heated overnight in a sealed glass tube (75 °C for primary and secondary amines, 100 °C for tertiary amines). ^{*b*}Isolated yield based on HP(O)Z¹Z² used. Selectivity was determined on the basis of the ratio

of the products calculated from ³¹P NMR and/or GC analysis results of the mixture.

with *t*-BuNMe₂ (Entry 21), the selective cleavage of N-*t*-Bu rather than N-Me is observed. The selectivity is 96% preferring the N-*t*-Bu cleavage which is striking considering the nearly perfect selective N-Me bond cleavage for *i*-PrNMe₂ (Entry 16). Similarly, in the cases of Me₂NCH₂Ph and Me₂NCH₂CH=CH₂, which simultaneously bear two N-Me bonds, preferred cleavages for N-CH₂Ph (85% selectivity) and N-allyl bond (67% selectivity) proceeds (Entries 20 and 21). Therefore, the ease of N-R cleavage in the coupling reactions follows the decreasing order of H, *t*-Bu, allyl, benzyl > Me > primary and secondary alkyl groups.¹⁰

Importantly, this one-pot three-component coupling reaction takes place highly stereospecifically to produce the corresponding P-chiral aminophosphorus compounds, a new class of phosphorus analogues of amino acids. They are difficult to be synthesized in high yields through other methods by employing the easily accessible optically pure P-chiral *H*-phosphinates as substrates (Table 2).^{11a} One can see that (R_p)-**2a** and (R_p)-**2b** reacts efficiently with a variety of amines to produce the corresponding optically pure (S_p)- α -aminophosphinates selectively. The absolute configuration at the phosphorus atom of the product from dimethylcyclohexylamine with (R_p)-**2b** was determined unambiguously by X-ray analysis (Figure 1), showing that this three-component coupling takes place with retention of the configuration at phosphorus. On the other hand, from the reaction of **2a** (R_p/S_p =60/40) with dimethylcyclohexylamine, the corresponding coupling product can be obtained with the same diastereomer's ratio, confirming that this coupling reaction proceeds stereospecifically. It is noted that this reaction also presents a rare example for stereospecific substitution reactions of optically active hydrogen phosphorus compounds since epimerization usually occurs during such reactions.^{11b, c} This simple three-component-coupling, taking place highly stereospecifically, has not been recognized

before.

The Journal of Organic Chemistry

Table 2. One-Pot Three-Component-Coupling Reactions Forming P-Chiral Aminophosphorus Compounds.ª

R ¹ R ² N <i>ϟ</i> R ³ + C⊦	l₂Cl₂ + H	−P·····Z − OMen	$\xrightarrow{\text{DMF}} R^1 R^2 N \bigvee_{O}^{H}$	'''Z Men
Men = (-) menthyl (<i>R</i> _P)- 2a : Z = Ph, >	99% ee, (<i>R</i>	P _P)- 2b : Z = CH ₂	(<i>S_P</i>) -1 ₂ Ph,> 99% ee	
$R^1R^2N \xi R^3$	(R _P)- 2	(S _P) -1	% yield (selectivity) ^b	ee (%) ^c
n-Bu−N <i>−−Me</i>	(R _P)- 2a	(S _P) -1a	95(98)	> 99
	(<i>R</i> _P)- 2b	(S _P) -1b	94(98)	> 99
N— <i>Me</i> Me	(R _P)- 2a	(S _P) -1c	96(99)	> 99
\rightarrow	(<i>R</i> _P)- 2b	(S _P)-1d	95(99)	> 99
∕ …N <i>—Me</i> Me		(S _P) -1e	93(95)	> 99
N— <i>Me</i> ∥ Me		(S _P) -1f	90(96)	> 99
<i>n</i> -C ₈ H ₁₇ −N─− <i>H</i> H	(<i>R</i> _P)- 2a	(S _P) -1g	75(99)	> 99
Me-N-CH ₂ Ph		(S _P)-1h	65(85)	> 99
ме Et ₂ N— <i>Et</i>		(S _P)-1i	98	> 99
$()_{2N} $		(S _P) -1j	72	> 99

^aA mixture of (R_P)-2 (0.2 mmol), amine (0.6 mmol) and CH₂Cl₂ (0.3 mL) in DMF (0.3 mL) was heated overnight in a sealed glass tube (75 °C for primary

and secondary amines, 100 °C for tertiary amines). ^bIsolated yield based on (R_P)-2 used. Selectivity was determined on the bases of the ratio of the products

calculated from ³¹P NMR and /or GC of the mixture. ^cEantiomeric excess determined by ¹H and ³¹P NMR.

Figure 1. ORTEP Drawing of the *(Sp)*-1d. Hydrogen atoms are omitted for clarity; ellipsoids are drawn at 50% probability. Selected bond lengths (Å) and angles (deg): C11-P1 = 1.8134(13), C19-P1 = 1.8033(12), O1-P1 = 1.5933(10), O2-P1 = 1.4812(9), C1-O1-P1 = 121.91(7), O2-P1-O1 = 115.56(5), O2-P1-C19 = 112.44(6), O1-P1-C19 = 101.48(5), O2-P1-C11 = 114.82(6), O1-P1-C11 = 103.82(5), C19-P1-C11 = 107.47(6).

of the reaction was determined exactly by using 1,4-diazabicyclo[2.2.2]octane (DABCO) (eq 3). Heating a mixture of DABCO (1.5 mmol), (EtO)₂P(O)H (0.5 mmol) and CH₂Cl₂ (0.5 mL) in DMF (0.5 mL) at 100 °C overnight resulted in a halogenated α -aminophosphorus compound in 81% yield based on (EtO)₂P(O)H. This result indicates that one α -aminophosphonate is produced accompanying with one chloroalkane in the present system.

$$HP(O)(OEt)_{2} + CH_{2}CI_{2} + \swarrow N \qquad DMF_{100 \circ C} \qquad CI \qquad N \qquad P(O)(OEt)_{2} \quad (3)$$

On the other hand, under the reaction conditions, CH_2Cl_2 reacts with Et_3N to form the corresponding 1-chloro-*N*,*N*,*N*-triethylmethaniminium chloride **3a** in 89% yield (reaction conditions: 100 °C in DMF for 10 h) as colorless crystals.¹² Importantly, the α -aminophosphonate can be obtained quantitatively by heating **3a** with an equal amount of diethyl phosphite in DMF at 100 °C for 2 h (Scheme 1). Instead of CH_2Cl_2 , an experiment using CD_2Cl_2 as the substrate confirms that the two protons of the methylene group of dichloromethane are not affected during the reaction, showing that the proton for the formation of the ammonium chloride comes from the hydrogen phosphonate. Moreover, the presence of the two chloro atoms in

The Journal of Organic Chemistry

3a are essential for this reaction since the replacement of one chloro atom by BF₄, without nucleophilicity, fails to produce the

 α -aminophosphonate with (EtO)₂P(O)H under similar reaction conditions.

Scheme 1. Reactions of triethylamine with dichloromethane forming 3.

$$\begin{bmatrix} Et_{3}\overset{+}{\mathsf{N}}-CH_{2}C \end{bmatrix} BF_{4}^{-} \xrightarrow{(EtO)_{2}\mathsf{P}(O)\mathsf{H}} \\ AgBF_{4} & 3b \\ BF_{4} & 3b \\ BF$$

On the basis of these observations and literature,¹³ the reaction sequences for the stereospecific three-component-coupling are

illustrated in (eq 4). First, the methaniminium chloride **3** formed by the reaction of R_3N with CH_2Cl_2 is decomposed to produce methyleneamonium chloride **4**.¹⁰ Intermediate **4** is an electrophile¹⁴ which subsequently is attacked by the phosphorus of **2**', a

tautomer of $2^{8e,k,15}$ to give the product with retention of configuration at phosphorus.

$$CH_{2}CI_{2} \xrightarrow{R_{3}N} \underset{R^{\prime}+}{\overset{R}{\rightarrow}} \underset{3}{\overset{R}{\rightarrow}} CI \cdot CI^{-} \xrightarrow{RCI} \underset{R^{\prime}+}{\overset{R}{\rightarrow}} \underset{R^{\prime}+}{\overset{R}{\rightarrow}} \underset{R^{\prime}+}{\overset{R}{\rightarrow}} \underset{R^{\prime}+}{\overset{R}{\rightarrow}} \underset{R^{\prime}+}{\overset{R}{\rightarrow}} \underset{R^{\prime}+}{\overset{R}{\rightarrow}} \underset{retention on P}{\overset{O}{}} \underset{1}{\overset{O}{}} \underset{retention on P}{\overset{O}{}} \underset{1}{\overset{O}{}} \underset{retention on P}{\overset{O}{}} \underset{1}{\overset{O}{}} \underset{1}{\overset{O}{}} \underset{retention on P}{\overset{O}{}} \underset{1}{\overset{O}{}} \underset{1}{\overset{O}{}} \underset{retention on P}{\overset{O}{}} \underset{1}{\overset{O}{}} \underset{1}{\overset{O}{} \underset{1}{\overset{O}{}} \underset{1}{\overset{O}{}} \underset{1}{\overset{O}{}} \underset{1}{\overset{O}{} \underset{1}{\overset{O}{}} \underset{1}{\overset{O}{} \underset{1}{\overset{O}{}} \underset{1}{\overset{O}{} \underset{1}{\overset{O}{}} \underset{1}{\overset{O}{} \underset{1}{\overset{O}{}} \underset{1}{\overset{O}{}} \underset{1}{\overset{O}{}} \underset{1}{\overset{O}{} \underset{1}{\overset{O}{}} \underset{1}{\overset{O}{}} \underset{1}{\overset{O}{} \underset{1}{\overset{O}{}} \underset{1}{\overset{O}{}} \underset{1}{\overset{O}{}} \underset{1}{\overset{O}{}} \underset{1}{\overset{O}{} \underset{1}{\overset{O}{}} \underset{1}{\overset{O}{}} \underset{1}{\overset{O}{}} \underset{1}{\overset{O}{} \underset{1}{\overset{O}{}} \underset{1}{\overset{O}{}} \underset{1}{\overset{O}{} \underset{1}{\overset{O}{}} \underset{1}{\overset{O}{}} \underset{1}{\overset{O}{} \underset{I}{\overset{O}{}} \underset{I}{\overset{O}{}} \underset{I}{\overset{I}{} \underset{I}{\overset{I}{}} \underset{I}{\overset{I}{} \underset{I}{} \underset{I}$$

In summary, we have demonstrated a general and efficient three-component-coupling of amines, dichloromethane and >P(O)H species producing the important α -aminophosphorus compounds in high yields. This reaction takes place stereospecifically with retention of configuration at phosphorus which can readily produce various new chiral optically active phosphorus analogues of amino acids. This reaction also provides a novel C-N bond fuctionalization without the aid of any catalysts.

EXPERIMENTAL SECTION

General Information. Except where otherwise noted, all reactions were carried out in oven-dried schlenk tubes under N2

atmosphere with dry solvents under anhydrous conditions. Dry solvents were obtained by purification according to standard

methods. Reagents were used as received unless otherwise noted. ¹H, ¹³C and ³¹P NMR spectra were recorded on a 500 MHz spectrometer (500 MHz for ¹H, 125 MHz for ¹³C, and 202 MHz for ³¹P NMR spectroscopy) or a 400 MHz spectrometer (400 MHz for ¹H, 100 MHz for ¹³C, and 162 MHz for ³¹P NMR spectroscopy). CDCl₃ or C₆D₆ was used as the solvent. Chemical shifts for ¹H NMR are referred to internal Me₄Si (0 ppm) and reported as follows: chemical shift (δ ppm), multiplicity, integration and coupling constant (Hz). Data for ¹³C NMR are reported in ppm relative to the center line of a triplet at 77.0 ppm for chloroform-d, and those for ³¹P NMR were relative to H₃PO₄ (85% solution in D₂O, 0 ppm). The electron ionization (EI) and electrospray ionization (ESI) method are used as the ionization method for the HRMS measurement, and the mass analyzer type is TOF for EI and ion trap for ESI.

General Procedure for Synthesis of a-Aminophosphorus Compounds

An oven-dried schlenk tube containing an Teflon-coated stir bar was charged with a mixture of $R_2P(O)$ -H (0.5 mmol), amine (1.5 mmol), and dichloromethane (0.5 mL) in 0.5 mL of DMF under N_2 atmosphere and stirred at a selected temperature (75 °C for primary and secondary amine, 100 °C for tertiary amine) for 12 h. After completion of the reaction, saturated solution of Na_2CO_3 (10 mL) was added to the reaction mixture, and extracted with ethyl acetate. The combined organic extracts were dried over Na_2SO_4 , concentrated in vacuum, and the resulting residue was passed through a short silica chromatography (particle size 40-50 μ m) or preparative GPC to afford the pure products.

General Procedure for Synthesis of p-Chiral Aminophosphinates

An oven-dried schlenk tube containing an Teflon-coated stir bar was charged with a mixture of *P*-chiral *H*-phosphinates (0.2

mmol), amine (0.6 mmol), and dichloromethane (0.3 mL) in 0.3 mL of DMF under N_2 atmosphere and stirred at a selected

temperature (75 °C for primary amine, 100 °C for tertiary amine) for 12 h. After the reaction was finished, Na₂CO₃ saturated solution (5 mL) was added to the reaction mixture, and extracted with ethyl acetate. The combined organic extracts were dried over anhydrous Na₂SO₄, concentrated in vacuum, and the resulting residue was passed through a short silica chromatography (particle size 40-50 μ m) or preparative GPC to afford the pure products.

Synthesis of ammonium chloride and ammonium tetrafluoroborate

An oven-dried schlenk tube containing an Teflon-coated stir bar was charged with a mixture of Et_3N (1.5 mmol), and dichloromethane (0.5 mL) in 0.5 mL of DMF under N₂ atmosphere stirred at 100 °C for 10 h. The mixture was then cooled to room temperature and removal of the volatiles under vacuum afforded a white solid. Recrystallization of the crude product from MeOH and Et_2O gave 1-chloro-N,N,N-triethylmethaniminium chloride **3a** as a colorless crystal in 89% yield. Similarly, using dichloromethane- d_2 as substrate resulted in **3a-**d.

For the synthesis of ammonium tetrafluoroborate: in a glass tube, **3a** (0.2 mmol) was dissolved in 0.5 mL DMSO- d_6 , and AgBF₄ (0.2 mol) was added under N₂ atmosphere. The mixture was stirred at room temperature for 1 h, and then removal of the solid by filtration afforded the corresponding ammonium tetrafluoroborate **3b** quantitatively.

¹H, ¹³C, and ³¹P NMR spectra data of the products

Diethyl(*N*,*N*-diethylaminomethyl)phosphonate (1a).¹⁶ Following the general procedure, the crude product was purified by column chromatography on silica gel and eluted with ethyl acetate/petroleum ether (3/1) to afford a pale yellow liquid.Yield: 102.6 mg, 92%. ¹H NMR (CDCl₃, 400 MHz): δ 4.11-4.19 (m, 4H), 2.86 (d, 2H, J_{P-H} = 10.8 Hz), 2.71 (q, 4H, J = 7.2 Hz), 1.32-1.35 (m, 6H), 1.05 (t, 6H, J = 7.2 Hz); ³¹P NMR (CDCl₃, 162 MHz): δ 26.77; ¹³C NMR (CDCl₃, 100 MHz): δ 61.8 (d, J_{P-c} = 6.9 Hz) , 47.7 (d, J_{P-c} = 162.8 Hz), 48.2 (d, J_{P-c} = 8.6 Hz), 16.3 (d, J_{P-c} = 5.8 Hz), 11.4 (1a-d). ¹H NMR (CDCl₃, 400 MHz): δ 4.10-4.15 (m, 4H),

2.66 (q, 4H, J = 5.7 Hz), 1.31 (t, 6H, J = 5.6 Hz), 1.01 (t, 6H, J = 5.6 Hz).

Diisopropyl(*N*,*N*-diethylaminomethyl)phosphonate (**1b**).¹⁶ Following the general procedure, the crude product was purified by column chromatography on silica gel and eluted with ethyl acetate / petroleum ether (3/1) to afford a colorless liquid. Yield: 119.2 mg, 95%. ¹H NMR (400 MHz, CDCl₃) δ 4.62-4.70 (m. 2H), 2.70 (d, 2H, *J* =10.8 Hz), 2.60 (q, 4H, *J* =7.0 Hz), 1.24 (d, 12H, *J*

=10.4 Hz), 0.94 (t, 6H, J = 7.0 Hz); ³¹P NMR (162 MHz, CDCl₃) δ 24.17; ¹³C NMR (100 MHz, CDCl₃) δ 70.1 (d, J_{P-C} = 2.0 Hz),

49.8 (d, $J_{P-C} = 163.7$ Hz), 48.2 (d, $J_{P-C} = 8.8$ Hz), 24.1 (d, $J_{P-C} = 3.5$ Hz), 24.0 (d, $J_{P-C} = 5.0$ Hz), 11.6.

Diphenyl(*N*,*N*-diethylaminomethyl)phosphonate (1c). Following the general procedure, the crude product was purified by column chromatography on silica gel and eluted with ethyl acetate / petroleum ether (3/1) to afford a colorless liquid. Yield: 110.1 mg, 69%. ¹H NMR (400 MHz, CDCl₃) δ 7.31 (t, 4H, *J* = 8.0 Hz), 7.20 (d, 4H, *J* = 8.4 Hz), 7.15 (t, 2H, *J* = 7.2 Hz), 3.21 (d, 2H, *J* = 9.2 Hz), 2.76 (q, 4H, *J* = 7.2 Hz), 1.05 (t, 6H, *J* = 8.4 Hz); ³¹P NMR (162 MHz, CDCl₃) δ 18.87; ¹³C NMR (100 MHz, CDCl₃) δ 150.6 (d, *J*_{P-C} = 9.7 Hz), 129.6, 125.0, 120.6 (d, *J*_{P-C} = 4.3 Hz), 49.2 (d, *J*_{P-C} = 163.0 Hz), 48.4 (d, *J*_{P-C} = 8.9 Hz), 11.7. HRMS (EI) m/z: [M] Calcd for C_{1.7}H_{2.2}NO₃P 319.1337; Found 319.1335.

Diethyl(*N*,*N*-diallylaminomethyl)phosphonate (**1d**).¹⁷ Following the general procedure, the crude product was purified by preparative GPC using CHCl₃ as eluent to afford a colorless liquid. Yield: 90.2 mg, 73%. ¹H NMR (400 MHz, C₆D₆) δ 5.75-5.86 (m, 2H), 5.13 (dd, 2H, *J*₁ = 2.0 Hz, *J*₂ = 17.2 Hz), 5.03 (dd, 2H, *J*₁ = 2.0 Hz, *J*₂ = 10.4 Hz), 3.96-4.06 (m, 4H), 3.25 (d, 4H, *J* = 6.4 Hz), 2.83 (d, 2H, *J* = 10.8 Hz), 1.07 (t, 6H, *J* = 7.6 Hz); ³¹P NMR (162 MHz, C₆D₆) δ 24.90; ¹³C NMR (100 MHz, C₆D₆) δ 135.8,

117.8, 61.7 (d, $J_{P-C} = 6.6$ Hz), 58.3 (d, $J_{P-C} = 8.6$ Hz), 49.1 (d, $J_{P-C} = 162.1$ Hz), 16.7 (d, $J_{P-C} = 5.7$ Hz).

N,*N*-bis(diethoxyphosphinoylmethyl)-*N*-methylamine (**1e**).¹⁸ Following the general procedure, the crude product was purified by preparative GPC using CHCl₃ as eluent to afford a colorless liquid. Yield: 63.7 mg, 77%. ¹H NMR (CDCl₃, 400 MHz): δ 4.11-4.22 (m, 8H), 3.06 (d, 4H, *J*_{P-H} =9.2 Hz), 2.63 (s, 3H), 1.34 (t, 12H, *J* = 7.0 Hz); ³¹P NMR (CDCl₃, 162 MHz): δ 25.41; ¹³C

 Diethyl *N*-Octylaminomethylphosphonate (**1f**).¹⁹ Following the general procedure, the crude product was purified by preparative GPC using CHCl₃ as eluent to afford a colorless liquid. Yield: 113.1 mg, 81%. ¹H NMR (400 MHz, C₆D₆) δ 3.96-4.10 (m, 4H), 2.87 (d, 2H, $J_{P-H} = 12.4$ Hz), 2.45 (t, 2H, J = 6.8 Hz), 1.36 (br, 1H), 1.29 (br, 4H), 1.21 (br, 8H), 1.09 (t, 6H, J = 7.2 Hz), 0.90 (t, 3H, J = 6.4 Hz); ³¹P NMR (162 MHz, C₆D₆) δ 26.15; ¹³C NMR (100 MHz, C₆D₆) δ 61.8 (d, $J_{P-C} = 6.7$ Hz), 51.7 (d, $J_{P-C} = 16.2$ Hz), 46.2 (d, $J_{P-C} = 153.5$ Hz), 32.3, 30.2, 29.9, 29.7, 27.5, 23.1, 16.7 (d, $J_{P-C} = 5.7$ Hz), 14.4.

Diethyl(*N*-butylmethylaminomethyl)phosphonate (**1g**). Following the general procedure, the crude product was purified by preparative GPC using CHCl₃ as eluent to afford a colorless liquid. Yield: 113.8 mg, 96%. ¹H NMR (400 MHz, C₆D₆) δ 3.98-4.08 (m, 4H), 2.67 (d, 2H, $J_{P-H} = 10.8$ Hz), 2.32-2.37 (m, 5H), 1.21-1.36 (m, 4H), 1.09 (t, 6H, J = 6.8 Hz), 0.86 (t, 3H, J = 6.8 Hz); ³¹P NMR (162 MHz, C₆D₆) δ 24.69; ¹³C NMR (100 MHz, C₆D₆) δ 61.6 (d, $J_{P-C} = 5.7$ Hz), 59.5 (d, $J_{P-C} = 13.4$ Hz), 54.0 (d, $J_{P-C} = 163.0$ Hz), 44.2 (d, $J_{P-C} = 6.7$ Hz), 29.9, 20.6, 16.7 (d, $J_{P-C} = 5.7$ Hz), 14.2. HRMS (EI) m/z: [M] Calcd for C₁₀H₂₄NO₃P 237.1494;

Found 237.1490.

Diethyl (4-methylpiperazin-1-yl)methylphosphonate (**1h**).²⁰ Following the general procedure, the crude product was purified by preparative GPC using CHCl₃ as eluent to afford a colorless liquid. Yield: 116.3 mg, 93%. ¹H NMR (400 MHz, CDCl₃) δ 4.07-4.20 (m, 4H), 2.76 (d, 2H, $J_{P-H} = 11.2$ Hz), 2.66 (br, 4H), 2.42 (br, 4H), 2.25 (s, 3H), 1.32 (t, 6H, J = 6.8 Hz); ³¹P NMR (162 MHz, CDCl₃) δ 24.37; ¹³C NMR (100 MHz, CDCl₃) δ 62.1 (d, $J_{P-C} = 6.7$ Hz), 55.1, 54.8, 54.0 (d, $J_{P-C} = 172.5$ Hz), 45.9, 16.6 (d, $J_{P-C} = 4.8$ Hz).

Diethyl(*N*,*N*-dibutylaminomethyl)phosphonate (1i).²¹ Following the general procedure, the crude product was purified by preparative GPC using CHCl₃ as eluent to afford a colorless liquid. Yield: 128.5 mg, 92%. ¹H NMR (400 MHz, CDCl₃) δ 4.06-4.15

ACS Paragon Plus Environment

(m, 4H), 2.83 (d, 2H, $J_{P-H} = 10.0$ Hz), 2.54 (t, 4H, J = 6.8 Hz), 1.36-1.43 (m, 4H), 1.24-1.33 (m, 10H), 0.88 (t, 6H, J = 7.6 Hz); ³¹P NMR (162 MHz, CDCl₃) δ 26.10; ¹³C NMR (100 MHz, CDCl₃) δ 61.8 (d, $J_{P-C} = 6.7$ Hz), 55.2 (d, $J_{P-C} = 8.4$ Hz), 50.0 (d, $J_{P-C} = 161.1$ Hz), 29.1, 20.41, 16.5 (d, $J_{P-C} = 5.7$ Hz), 14.1.

2-*N*-butylmethylaminomethyl-4,4,5,5-tetramethyl-1,3,2-dioxaphospholane 2-oxide **(1j)**. Following the general procedure, the crude product was purified by preparative GPC using CHCl₃ as eluent to afford a colorless liquid. Yield: 118.4 mg, 90%. ¹H NMR (400 MHz, CDCl₃) δ 2.97 (d, 2H, *J*_{P-H} = 9.6 Hz), 2.50 (t, 2H, *J* = 7.2 Hz), 2.39 (s, 3H), 1.49 (s, 6H), 1.39-1.48 (m, 2H), 1.37 (s, 6H), 1.26-1.35 (m, 2H), 0.90 (t, 3H, *J* = 7.2 Hz); ³¹P NMR (162 MHz, CDCl₃) δ 39.09; ¹³C NMR (100 MHz, CDCl₃) δ 88.0 (d, *J*_{P-C} = 1.9 Hz), 58.6 (d, *J*_{P-C} = 12.4 Hz), 54.1 (d, *J*_{P-C} = 147.7 Hz), 44.0 (d, *J*_{P-C} = 5.7 Hz), 29.5, 25.0 (d, *J*_{P-C} = 3.8 Hz), 24.2 (d, *J*_{P-C} = 4.7 Hz), 20.4, 14.1. HRMS (EI) m/z: [M] Calcd for C₁₂H₂₆NO₃P 263.1650; Found 263.1656.

Isopropyl (*N*-butylmethylaminomethyl)phenylphosphinate (**1k**). Following the general procedure, the crude product was purified by preparative GPC using CHCl₃ as eluent to afford a colorless liquid. Yield: 128.9 mg, 91%. ¹H NMR (400 MHz, C₆D₆) δ 7.91-7.98 (m, 2H), 7.10-7.16 (m, 3H), 4.53-4.64 (m, 1H), 2.71-2.84 (m, 2H), 2.34 (s, 3H), 2.17-2.32 (m, 2H), 1.28 (d, 3H, *J* = 6.4 Hz), 1.03-1.21 (m, 4H), 0.97 (d, 3H, *J* = 6.0 Hz), 0.76 (t, 3H, *J* = 7.6 Hz); ³¹P NMR (162 MHz, C₆D₆) δ 35.97; ¹³C NMR (100 MHz, C₆D₆) δ 133.3 (d, *J*_{P-C} = 121.1 Hz), 132.5 (d, *J*_{P-C} = 8.6 Hz), 131.7 (d, *J*_{P-C} = 2.9 Hz), 127.9, 69.3 (d, *J*_{P-C} = 6.7 Hz), 59.6 (d, *J*_{P-C} = 12.4 Hz), 57.4 (d, *J*_{P-C} = 121.1 Hz), 44.4 (d, *J*_{P-C} = 4.7 Hz), 29.8, 24.7 (d, *J*_{P-C} = 2.8 Hz), 24.1 (d, *J*_{P-C} = 4.7 Hz), 20.4, 14.2. HRMS (EI) m/z; [M] Calcd for C₁₅H₂₆NO₂P 283.1701; Found 283.1710.

diphenyl(*N*-butylmethylaminomethyl)phosphine oxide (**11**). Following the general procedure, the crude product was purified by preparative GPC using CHCl₃ as eluent to afford a colorless liquid. Yield: 141.6 mg, 94%. ¹H NMR (400 MHz, C₆D₆) δ 7.84-7.89 (m, 4H), 7.16 (br, 4H), 7.06-7.08 (m, 2H), 3.02 (d, 2H, *J*_{P-H} = 6.4 Hz), 2.39 (s, 3H), 2.37 (t, 2H, *J* = 6.8 Hz), 1.18-1.25 (m, 2H), 1.07-1.16 (m, 2H), 0.78 (t, 3H, *J* = 7.2 Hz); ³¹P NMR (162 MHz, C₆D₆) δ 24.74; ¹³C NMR (100 MHz, C₆D₆) δ 134.5 (d, *J*_{P-C} =

94.3 Hz), 131.6 (d, $J_{P-C} = 8.6$ Hz), 131.4 (d, $J_{P-C} = 1.9$ Hz), 128.5 (d, $J_{P-C} = 10.4$ Hz), 60.0 (d, $J_{P-C} = 10.5$ Hz), 58.5 (d, J_{P-C} = 10.5 Hz), 58.5 (d, J_{P-C} = 1
87.7 Hz), 44.6 (d, <i>J</i> _{P-C} = 5.7 Hz), 29.7, 20.5, 14.2. HRMS (EI) m/z: [M] Calcd for C ₁₈ H ₂₄ NOP 301.1596; Found 301.1595.
Dibutyl(N-butylmethylaminomethyl)phosphine oxide (1m). Following the general procedure, the crude product was purified by
preparative GPC using CHCl ₃ as eluent to afford a colorless liquid. Yield: 121.5 mg, 93%. ¹ H NMR (400 MHz, C ₆ D ₆) δ 2.31-2.36
(m, 7H), 1.42-1.58 (m, 8H), 1.24-1.33 (m, 8H), 0.89 (t, 3H, <i>J</i> = 7.2 Hz), 0.83 (t, 6H, <i>J</i> = 7.2 Hz); ³¹ P NMR (162 MHz, CDCl ₃) &
43.22; ¹³ C NMR (100 MHz, CDCl ₃) δ 60.4 (d, $J_{P-C} = 9.5$ Hz), 56.6 (d, $J_{P-C} = 81.1$ Hz), 44.7 (d, $J_{P-C} = 4.8$ Hz), 30.0, 27.5 (d, $J_{P-C} = 8.11$ Hz), 44.7 (d, $J_{P-C} = 4.8$ Hz), 30.0, 27.5 (d, $J_{P-C} = 8.11$ Hz), 44.7 (d, $J_{P-C} = 4.8$ Hz), 30.0, 27.5 (d, $J_{P-C} = 8.11$ Hz), 44.7 (d, $J_{P-C} = 4.8$ Hz), 30.0, 27.5 (d, $J_{P-C} = 8.11$ Hz), 44.7 (d, $J_{P-C} = 4.8$ Hz), 30.0, 27.5 (d, $J_{P-C} = 8.11$ Hz), 44.7 (d, $J_{P-C} = 4.8$ Hz), 30.0, 27.5 (d, $J_{P-C} = 8.11$ Hz), 44.7 (d, $J_{P-C} = 4.8$ Hz), 30.0, 27.5 (d, $J_{P-C} = 8.11$ Hz), 44.7 (d, $J_{P-C} = 4.8$ Hz), 30.0, 27.5 (d, $J_{P-C} = 8.11$ Hz), 44.7 (d, $J_{P-C} = 4.8$ Hz), 30.0, 27.5 (d, $J_{P-C} = 8.11$ Hz), 44.7 (d, $J_{P-C} = 4.8$ Hz), 30.0, 27.5 (d, $J_{P-C} = 8.11$ Hz), 44.7 (d, $J_{P-C} = 4.8$ Hz), 30.0, 27.5 (d, $J_{P-C} = 8.11$ Hz), 44.7 (d, $J_{P-C} = 4.8$ Hz), 30.0, 27.5 (d, $J_{P-C} = 8.11$ Hz), 44.7 (d, $J_{P-C} = 4.8$ Hz), 30.0, 27.5 (d, $J_{P-C} = 8.11$ Hz), 44.7 (d, $J_{P-C} = 4.8$ Hz), 30.0, 27.5 (d, $J_{P-C} = 8.11$ Hz), 44.7 (d, $J_{P-C} = 4.8$ Hz), 30.0, 27.5 (d, $J_{P-C} = 8.11$ Hz), 44.7 (d, J_{P-C} = 8.11 Hz), 44.7 (d, J_{P-
= 64.8 Hz), 24.7 (d, J_{P-C} = 13.4 Hz), 24.3 (d, J_{P-C} = 3.8 Hz), 20.7, 14.3, 13.9. HRMS (ESI) m/z: [M+Na] ⁺ Calcd for
C ₁₄ H ₃₂ NOPNa 284.2114; Found 284.2113.
bis(4-phenylbutyl)(N-butylmethylaminomethyl)phosphine oxide (1n). Following the general procedure, the crude product was

purified by preparative GPC using CHCl₃ as eluent to afford a colorless liquid. Yield: 188.1 mg, 91%. ¹H NMR (400 MHz, C₆D₆) δ 7.11-7.16 (m, 6H), 7.01-7.05 (m, 4H), 2.38-2.45 (m, 4H), 2.56-2.29 (m, 7H), 1.36-1.50 (m, 12H), 1.21-1.27 (m, 4H), 0.834 (t, 3H, J = 6.8 Hz); ³¹P NMR (162 MHz, C₆D₆) δ 42.78; ¹³C NMR (100 MHz, C₆D₆) δ 142.4, 128.7, 128.7, 126.2, 60.4 (d, $J_{P-C} = 10.5$ Hz), 56.7 (d, $J_{P-C} = 80.0$ Hz), 44.7 (d, $J_{P-C} = 4.8$ Hz), 35.8, 33.3 (d, $J_{P-C} = 12.4$ Hz), 29.9, 27.7 (d, $J_{P-C} = 63.8$ Hz), 21.9 (d, $J_{P-C} = 2.8$

Hz), 20.7, 14.3. HRMS (ESI) m/z: [M+Na]⁺ Calcd for C₂₆H₄₀NOPNa 436.2740; Found 436.2736.

Diethyl(*N*-Octylmethylaminomethyl)phosphonate (**10**). Following the general procedure, the crude product was purified by preparative GPC using CHCl₃ as eluent to afford a colorless liquid. Yield: 127.6 mg, 87%. ¹H NMR (400 MHz, C₆D₆) δ 3.97-4.09 (m, 4H), 2.70 (d, 2H, J_{P-H} = 10.8 Hz), 2.36-2.39 (m, 5H), 1.25-1.40 (m, 12H), 1.10 (t, 6H, J = 6.8 Hz), 0.90 (t, 3H, J = 6.8 Hz); ³¹P NMR (162 MHz, C₆D₆) δ 24.67; ¹³C NMR (100 MHz, C₆D₆) δ 61.6 (d, J_{P-C} = 6.7 Hz), 59.8 (d, J_{P-C} = 13.3 Hz), 54.0 (d, J_{P-C} = 162.9 Hz), 44.2 (d, J_{P-C} = 6.7 Hz), 32.3, 30.0, 29.8, 27.9, 27.6, 23.1, 16.7 (d, J_{P-C} = 5.7 Hz), 14.4. HRMS (EI) m/z: [M] Calcd for

 $C_{14}H_{32}NO_3P$ 293.2120; Found 293.2109.

Diethyl(*N*-cyclohexylmethylaminomethyl)phosphonate (**1p**). Following the general procedure, the crude product was purified by preparative GPC using CHCl₃ as eluent to afford a colorless liquid. Yield: 121.1mg, 92%. ¹H NMR (400 MHz, C₆D₆) δ 4.02-4.12 (m, 4H), 2.74 (d, 2H, *J*_{P-H} = 11.2 Hz), 2.44 (s, 3H) 2.23-2.30 (m, 1H), 1.45-1.67 (m, 6H), 1.11 (t, 6H, *J* = 6.8 Hz), 0.84-1.10 (m, 4H); ³¹P NMR (162 MHz, C₆D₆) δ 25.36; ¹³C NMR (100 MHz, C₆D₆) δ 64.4 (d, *J*_{P-C} = 14.3 Hz), 61.7 (d, *J*_{P-C} = 6.7 Hz), 50.4 (d, *J*_{P-C} = 167.8 Hz), 39.8 (d, *J*_{P-C} = 3.8 Hz), 28.6, 26.5, 26.1, 16.7 (d, *J*_{P-C} = 5.7 Hz). HRMS (EI) m/z: [M] Calcd for C₁₂H₂₆NO₃P 263.1650; Found 263.1643.

Diethyl(*N*-isopropylmethylaminomethyl)phosphonate (**1q**). Following the general procedure, the crude product was purified by preparative GPC using CHCl₃ as eluent to afford a colorless liquid. Yield: 89.3 mg, 80%. ¹H NMR (400 MHz, CDCl₃) δ 4.09-4.18 (m, 4H), 2.82-2.92 (m, 1H), 2.73 (d, 2H, $J_{P-H} = 10.8$ Hz), 2.38 (s, 3H), 1.32 (t, 6H, J = 7.2 Hz), 0.97 (d, 6H, J = 6.8 Hz); ³¹P NMR (162 MHz, CDCl₃) δ 26.34; ¹³C NMR (100 MHz, CDCl₃) δ 62.0 (d, $J_{P-C} = 6.7$ Hz), 55.3 (d, $J_{P-C} = 14.3$ Hz), 48.6 (d, $J_{P-C} = 168.7$ Hz), 39.7 (d, $J_{P-C} = 2.8$ Hz), 17.6, 16.5 (d, $J_{P-C} = 5.7$ Hz). HRMS (EI) m/z: [M] Calcd for C₃H₂₂NO₃P 223.1337; Found 223.1331. Piperidin-1-ylmethyl-phosphonic acid diethyl ester (**1r**).²² Following the general procedure, the crude product was purified by column chromatography on silica gel and eluted with ethyl acetate/petroleum ether (4/1) to afford a pale yellow liquid. Yield: 104.6 mg, 89%. ¹H NMR (CDCl₃, 400 MHz): δ 4.11-4.21 (m, 4H), 2.78 (d, 2H, $J_{P-H} = 11.2$ Hz), 2.62 (br, 4H), 1.57-1.63 (m, 4H), 1.42-1.44 (m, 2H); 1.34 (t, 6H, J = 7.0 Hz,); ³¹P NMR (CDCl₃, 162 MHz): δ 25.85; ¹³C NMR (CDCl₃, 100 MHz): δ 62.0 (d, $J_{P-C} = 5.8$ Hz).

Diethyl (morpholinomethyl)phosphonate (**1s**).²² Following the general procedure, the crude product was purified by column chromatography on silica gel and eluted with ethyl acetate/petroleum ether (4/1) to afford a pale yellow liquid. Yield: 105.5 mg, 89%. ¹H NMR (CDCl₃, 400 MHz): δ 4.11-4.21 (m, 4H), 3.71 (t, 4H, *J* = 4.8 Hz), 2.78 (d, 2H, *J*_{P-H} = 12.0 Hz), 2.65 (t, 4H, *J* = 4.6 Hz), 1.34 (t, 6H, *J* = 7.2 Hz); ³¹P NMR (CDCl₃, 162 MHz): δ 24.95; ¹³C NMR (CDCl₃, 100 MHz): δ 66.6, 61.8 (d, *J*_{P-F} = 6.7 Hz),

The Journal of Organic Chemistry

55.0 (d,
$$J_{p-c} = 10.4 \text{ Hz}$$
), 54.1 (d, $J_{p-c} = 163.0 \text{ Hz}$), 16.2 (d, $J_{p-c} = 5.6 \text{ Hz}$).

Diethyl(*N*,*N*-dimethylaminomethyl)phosphonate (**1t**).²³ Following the general procedure, the crude product was purified by preparative GPC using CHCl₃ as eluent to afford a colorless liquid. Yield: 79.9 mg, 82%. ¹H NMR (400 MHz, C_6D_6) δ 3.96-4.07

(m, 4H), 2.57 (d, 2H,
$$J_{P-H} = 11.6$$
 Hz), 2.23 (s, 6H), 1.07 (t, 6H, $J = 7.6$ Hz); ³¹P NMR (162 MHz, C₆D₆) δ 24.16; ¹³C NMR (100 MHz, C₆D₆) δ 24.16; ¹³C NMZ (100 MHz, C₆D₆) δ

MHz,
$$C_6D_6$$
) δ 61.7 (d, J_{P-C} = 6.6 Hz), 55.7 (d, J_{P-C} = 162.9 Hz), 47.5 (d, J_{P-C} = 11.5 Hz), 16.7 (d, J_{P-C} = 5.7 Hz).

Diethyl [4-(2-chloroethyl)- piperazin-1-yl]methylphosphonate (**1u**). Following the general procedure, the crude product was purified by preparative GPC using CHCl₃ as eluent to afford a colorless liquid. Yield: 120.9 mg, 81%. ¹H NMR (400 MHz, C₆D₆) δ 3.95-4.10 (m, 4H), 3.14 (t, 2H, *J* = 6.8 Hz), 2.60 (d, 2H, *J*_{P-H} = 11.6 Hz), 2.55 (br, 4H), 2.31 (t, 2H, *J* = 7.2 Hz), 2.17 (t, 4H, *J* = 4.8 Hz), 1.09 (t, 6H, *J* = 7.2 Hz); ³¹P NMR (162 MHz, C₆D₆) δ 23.61; ¹³C NMR (100 MHz, C₆D₆) δ 61.7 (d, *J*_{P-C} = 6.7 Hz), 59.9, 54.7 (d, *J*_{P-C} = 163.9 Hz), 55.3 (d, *J*_{P-C} = 10.5 Hz), 53.4, 41.3, 16.7 (d, *J*_{P-C} = 5.7 Hz). HRMS (EI) m/z: [M+H]⁺ Calcd for C₁₁H₂₅ClN₂O₃P 299.1286; Found 299.1283.

(Sp)-(-)-menthyl phenyl(*N*-butylmethylaminomethyl)phosphinate (*Sp*)-**1a**. Following the general procedure, the crude product was purified by preparative GPC using CHCl₃ as eluent to afford a colorless liquid. Yield: 72.1 mg, 95%. ¹H NMR (400 MHz, C₆D₆) δ 7.96-8.04 (m, 2H), 7.08-7.16 (m, 3H), 4.50-4.58 (m, 1H), 2.76-2.88 (m, 2H), 2.53-2.65 (m, 1H), 2.36 (s, 3H) 2.19-2.34 (m, 2H), 1.86-1.92 (m, 1H), 1.34-1.52 (m, 3H), 1.15-1.23 (m, 2H), 1.06-1.14 (m, 6H), 1.02 (d, 3H, *J* = 6.8 Hz), 0.80-0.99 (m, 2H), 0.77 (t, 3H, *J* = 7.2 Hz), 0.61-0.68 (m, 1H), 0.59 (d, 3H, *J* = 6.0 Hz); ³¹P NMR (162 MHz, C₆D₆) δ 35.21; ¹³C NMR (100 MHz, C₆D₆) δ 130.2 (d, *J*_{P-C} = 121.0 Hz), 128.0 (d, *J*_{P-C} = 9.5 Hz), 127.5 (d, *J*_{P-C} = 2.8 Hz), 123.9, 71.6 (d, *J*_{P-C} = 7.6 Hz), 55.6 (d, *J*_{P-C} = 12.4 Hz), 53.5 (d, *J*_{P-C} = 122.0 Hz), 45.2 (d, *J*_{P-C} = 4.7 Hz), 40.2 (d, *J*_{P-C} = 4.8 Hz), 39.5, 30.2, 27.3, 25.6, 21.9, 19.0, 17.9, 17.2, 16.2, 12.0, 10.0. HRMS (EI) m/z: [M] Calcd for C₂₂H₃₈NO₃P 379.2640; Found 379.2628.

(Sp)-(-)-menthyl benzyl(N-butylmethylaminomethyl)phosphinate (Sp)-1b. Following the general procedure, the crude product was

purified by preparative GPC using CHCl₃ as eluent to afford a colorless liquid. Yield: 73.9 mg, 94%. ¹H NMR (400 MHz, C₆D₆) δ 7.41-7.44 (m, 2H), 7.14-7.17 (m, 2H), 7.03-7.08 (m, 1H), 4.35-4.43 (m, 1H), 3.12-3.32 (m, 2H), 2.43-2.58 (m, 3H), 2.32 (s, 3H) 2.17-2.28 (m, 2H), 1.87-1.92 (m, 1H), 1.35-1.48 (m, 3H), 1.22-1.35 (m, 5H), 0.97-1.14 (m, 2H), 0.85-0.93 (m, 9H), 0.78-0.82 (m, 1H), 0.75 (d, 3H, *J* = 6.4 Hz); ³¹P NMR (162 MHz, C₆D₆) δ 46.36; ¹³C NMR (100 MHz, C₆D₆) δ 133.5 (d, *J*_{P-C} = 7.6 Hz), 130.7 (d, *J*_{P-C} = 5.7 Hz), 128.5 (d, *J*_{P-C} = 1.9 Hz), 126.7 (d, *J*_{P-C} = 2.8 Hz), 75.8 (d, *J*_{P-C} = 6.7 Hz), 59.8 (d, *J*_{P-C} = 11.4 Hz), 56.4 (d, *J*_{P-C} = 114.4 Hz), 49.1 (d, *J*_{P-C} = 5.8 Hz), 44.2, 43.9 (d, *J*_{P-C} = 6.6 Hz), 37.1 (d, *J*_{P-C} = 83.9 Hz), 34.4, 31.6, 29.8, 26.0, 23.1, 22.2, 21.3, 20.8, 15.9, 14.3. HRMS (ESI) m/z: [M+H]⁺ Calcd for C₂₃H₄₁NO₂P 394.2869; Found 394.2870.

(Sp)-(-)-menthyl phenyl(*N*-cyclohexylmethylaminomethyl)phosphinate (*Sp*)-1c. Following the general procedure, the crude product was purified by preparative GPC using CHCl₃ as eluent to afford a colorless liquid. Yield: 75.1 mg, 96%. ¹H NMR (400 MHz, CDCl₃) δ 7.81-7.86 (m, 2H), 7.49-7.53 (m, 1H), 7.42-7.46 (m, 2H), 4.27-4.36 (m, 1H), 2.81-3.00 (m, 2H), 2.38 (s, 3H), 2.22-2.35 (m, 2H), 1.50-1.80 (m, 8H), 1.26-1.42 (m, 2H), 0.94-1.17 (m, 10H), 0.89 (d, 3H, *J* = 6.8 Hz), 0.79-0.85 (m, 1H), 0.76 (d, 3H, *J* = 7.2 Hz); ³¹P NMR (162 MHz, CDCl₃) δ 37.61; ¹³C NMR (100 MHz, CDCl₃) δ 132.8 (d, *J* _{P-C} = 123.9 Hz), 131.9 (d, *J* _{P-C} = 8.6 Hz), 131.7, 127.9 (d, *J* _{P-C} = 11.5 Hz), 76.2 (d, *J* _{P-C} = 9.5 Hz), 64.3 (d, *J* _{P-C} = 11.4 Hz), 53.4 (d, *J* _{P-C} = 125.8 Hz), 48.9 (d, *J* _{P-C} = 5.7 Hz), 43.3, 39.8 (d, *J* _{P-C} = 2.9 Hz), 34.1, 31.5, 28.7, 27.7, 25.8 (d, *J* _{P-C} = 6.6 Hz), 25.7, 22.9, 22.0, 21.2, 15.8. HRMS (EI) m/z: [M] Calcd for C₂₄H₄₀NO₂P 405.2797; Found 405.2789.

(Sp)-(-)-menthyl benzyl(*N*-cyclohexylmethylaminomethyl)phosphinate (S_p) -1d. Following the general procedure, the crude product was purified by preparative GPC using CHCl₃ as eluent to afford a colorless liquid. Yield: 77.1 mg, 95%. The purified product was dissolved in hexane and let it stand in -30 °C for overnight afforded a white solid. Crystal suitable for X-ray crystallography was obtained from recrystallization of the solid from hexane at -30 °C (R.T slowly cooled to -30 °C). ¹H NMR (400 MHz, CDCl₃) δ 7.31-7.34 (m, 2H), 7.27-7.29 (m, 2H), 7.19-7.23 (m, 1H), 4.14-4.22 (m, 1H), 3.16-3.32 (m, 2H), 2.62 (d, 2H,

The Journal of Organic Chemistry

J _{P-H} = 9.6 Hz), 2.38 (s, 3H), 2.26-2.34 (m, 1H), 1.96-2.04 (m, 1H), 1.67-1.80 (m, 6H), 1.61 (d, 3H, J = 12.8 Hz), 1.31-1.39 (m,
1H), 1.22-1.29 (m, 2H), 1.13-1.18 (m, 3H), 1.00-1.05 (m, 1H), 0.91-0.97 (m, 2H), 0.87 (d, 3H, <i>J</i> = 6.8 Hz), 0.80 (d, 3H, <i>J</i> = 6.4 Hz), 0.80 (d, 3H, <i>J</i> = 6.8 Hz), 0.80 (d, 3H, Jz),
Hz), 0.77 (d, 3H, $J = 6.8$ Hz); ³¹ P NMR (162 MHz, CDCl ₃) δ 49.97; ¹³ C NMR (100 MHz, CDCl ₃) δ 132.6 (d, $J_{P-C} = 9.5$ Hz), 130.2
$(d, J_{P-C} = 5.7 \text{ Hz}), 128.3 (d, J_{P-C} = 2.8 \text{ Hz}), 126.5 (d, J_{P-C} = 2.8 \text{ Hz}), 76.2 (d, J_{P-C} = 7.6 \text{ Hz}), 64.5 (d, J_{P-C} = 12.4 \text{ Hz}), 52.6 (d, J_{P-C} = 2.8 \text{ Hz}), 76.2 (d, J_{P-C} = 7.6 \text{ Hz}), 64.5 (d, J_{P-C} = 12.4 \text{ Hz}), 52.6 (d, J_{P-C} = 2.8 \text{ Hz}), 76.2 (d, J_{P-C} = 7.6 \text{ Hz}), 64.5 (d, J_{P-C} = 12.4 \text{ Hz}), 52.6 (d, J_{P-C} = 2.8 \text{ Hz}), 76.2 (d, J_{P-C} = 7.6 \text{ Hz}), 64.5 (d, J_{P-C} = 12.4 \text{ Hz}), 52.6 (d, J_$
= 118.2 Hz), 48.7 (d, J_{P-C} = 5.8 Hz), 43.7, 38.5, 36.1 (d, J_{P-C} = 85.8 Hz), 34.1, 31.5, 28.2 (d, J_{P-C} = 13.8 Hz), 26.3, 26.0 (d, J_{P-C} =
5.8 Hz), 25.6, 22.8, 22.0, 21.1, 15.6. HRMS (ESI) m/z: $[M+Na]^+$ Calcd for $C_{25}H_{42}NO_2PNa$ 442.2845; Found 442.2839.
(Sp)-(-)-menthyl benzyl(((S)-3,3-dimethylbutan-2-yl)(methyl)aminomethyl)phosphinate (Sp)-1e. Following the general procedure,
the crude product was purified by column chromatography on silica gel and eluted with ethyl acetate / petroleum ether (3/1) to
afford a colorless liquid. Yield: 78.3 mg, 93%. ¹ H NMR (400 MHz, CDCl ₃) & 7.22-7.34 (m, 5H), 4.11-4.19 (m, 1H), 3.15-3.38 (m,
2H), 2.62-2.78 (m, 2H), 2.37-2.39 (m, 1H), 2.35 (s, 3H), 1.99-2.07 (m, 1H), 1.53-1.61 (m, 3H), 1.21-1.32 (m, 3H), 0.94 (s, 9H),
0.86-0.92 (m, 7H), 0.74-0.79 (m, 7H); ³¹ P NMR (162 MHz, CDCl ₃) δ 49.77; ¹³ C NMR (100 MHz, CDCl ₃) δ 132.4 (d, J_{P-C} = 7.9
Hz), 130.2 (q, $J_{P-C} = 5.5$ Hz), 128.3 (d, $J_{P-C} = 2.5$ Hz), 126.5 (d, $J_{P-C} = 2.9$ Hz), 76.1 (d, $J_{P-C} = 8.0$ Hz), 68.8 (d, $J_{P-C} = 11.3$ Hz),
56.2 (d, $J_{P-C} = 113.6 \text{ Hz}$), 48.6 (d, $J_{P-C} = 5.5 \text{ Hz}$), 43.5, 40.1 (d, $J_{P-C} = 3.9 \text{ Hz}$), 36.2, (d, $J_{P-C} = 83.2 \text{ Hz}$), 35.8, 34.0, 31.4, 27.9,
25.6, 22.7, 21.9, 21.1, 15.5, 6.5. HRMS (EI) m/z: [M+H] Calcd for $C_{25}H_{45}NO_2P$ 422.3182; Found 422.3164.

(Sp)-(-)-menthyl benzyl(((S)-3-methylbutan-2-yl)(methyl)aminomethyl)phosphinate (*Sp*)-**1f**. Following the general procedure, the crude product was purified by column chromatography on silica gel and eluted with ethyl acetate / petroleum ether (3/1) to afford a colorless liquid. Yield: 73.2 mg, 90%. ¹H NMR (400 MHz, CDCl₃) δ 7.19-7.33 (m, 5H), 4.11-4.19 (m, 1H), 3.17-3.35 (m, 2H), 2.55-2.67 (m, 2H), 2.26(s, 3H), 2.16-2.22 (m, 1H), 1.94-1.99 (m, 1H), 1.69 (d, 1H, *J* = 12.4 Hz), 1.58 (d, 3H, *J* = 11.6 Hz), 1.20-1.37 (m, 3H), 1.05 (d, 3H, *J* = 6.4 Hz), 0.85-0.98 (m, 11H), 0.77 (t, 6H, *J* = 7.0 Hz); ³¹P NMR (162 MHz, CDCl₃) δ 49.73; ¹³C NMR (100 MHz, CDCl₃) δ 132.5 (d, *J*_{P-C} = 7.9 Hz), 130.2 (q, *J*_{P-C} = 5.5Hz), 128.3 (d, *J*_{P-C} = 2.4 Hz), 126.5 (d, *J*_{P-C} = 3.0 Hz),

76.1 (d, J_{P-C} = 7.0 Hz), 66.5 (d, J_{P-C} = 11.8 Hz), 54.0 (d, J_{P-C} = 116.1 Hz), 48.6 (d, J_{P-C} = 5.6 Hz), 43.6, 36.0 (d, J_{P-C} = 3.9 Hz),
35.9 (d, J_{P-C} = 84.6 Hz), 34.0, 31.9, 31.4, 25.5, 22.7, 21.9, 21.1, 21.0, 20.4, 15.5, 9.2. HRMS (EI) m/z: [M] Calcd for C₂₄H₄₂NO₂P
407.2953; Found 407.2939.

(Sp)-(-)-menthyl phenyl(*N*-Octylaminomethyl)phosphinate *(Sp)*-1g. Following the general procedure, the crude product was purified by preparative GPC using CHCl₃ as eluent to afford a colorless liquid. Yield: 63.1 mg, 75%. ¹H NMR (400 MHz, CDCl₃) δ 7.79-7.83 (m, 2H), 7.45-7.52 (m, 1H), 7.40-7.44 (m, 2H), 4.28-4.36 (m, 1H), 3.00-3.11 (m, 2H), 2.55-2.59 (m, 2H), 2.19-2.26 (m, 1H), 1.79-1.85 (m, 1H), 1.57-1.65 (m, 2H), 1.36 (t, 3H, *J* = 12.4 Hz), 1.20 (br, 12H), 0.96-1.04 (m, 2H), 0.92-0.94 (m, 3H), 0.83-0.87 (m, 6H), 0.69-0.80 (m, 4H); ³¹P NMR (162 MHz, CDCl₃) δ 37.33; ¹³C NMR (100 MHz, CDCl₃) δ 132.2 (d, *J*_{P-C} = 121.1 Hz), 132.1(d, *J*_{P-C} = 2.9 Hz), 131.6 (d, *J*_{P-C} = 9.5 Hz), 128.3 (d, *J*_{P-C} = 12.4 Hz), 76.9 (d, *J*_{P-C} = 7.6 Hz), 51.5 (d, *J*_{P-C} = 14.3 Hz), 49.3 (d, *J*_{P-C} = 105.6 Hz), 48.9 (d, *J*_{P-C} = 5.7 Hz), 43.4, 34.1, 31.9, 31.5, 29.8, 29.5, 29.3, 27.1, 25.8, 22.9, 22.7, 21.9, 21.2, 15.8, 14.1. HRMS (ESI) m/z; [M+H]⁺ Calcd for C₂₅H₄₅NO₂P 422.3182; Found 422.3183.

(Sp)-(-)-menthyl phenyl(*N*,*N*-dimethylaminomethyl)phosphinate (*Sp*)-**1h**. Following the general procedure, the crude product was purified by preparative GPC using CHCl₃ as eluent to afford a colorless liquid. Yield: 43.8 mg, 65%. ¹H NMR (400 MHz, CDCl₃) δ 7.81-7.86 (m, 2H), 7.51-7.55 (m, 1H), 7.43-7.48 (m, 2H), 4.27-4.35 (m, 1H), 2.77-2.90 (m, 2H), 2.30 (s, 6H), 2.22-2.28 (m, 1H), 1.74-1.80 (m, 2H), 1.58-1.68 (m, 2H), 1.25-1.41 (m, 2H), 0.98-1.56 (m, 1H), 0.95 (d, 3H, *J* = 7.2 Hz), 0.88 (d, 3H, *J* = 6.8 Hz), 0.77-0.84 (m, 1H), 0.75 (d, 3H, *J* = 6.4 Hz); ³¹P NMR (162 MHz, CDCl₃) δ 36.04; ¹³C NMR (100 MHz, CDCl₃) δ 132.8 (d, *J*_{P-C} = 122.0 Hz), 131.9 (d, *J*_{P-C} = 2.9 Hz), 131.6 (d, *J*_{P-C} = 9.6 Hz), 128.3 (d, *J*_{P-C} = 12.4 Hz), 76.6 (d, *J*_{P-C} = 8.5 Hz), 59.6 (d, *J*_{P-C} = 120.1 Hz), 48.9 (d, *J*_{P-C} = 5.7 Hz), 47.8 (d, *J*_{P-C} = 10.4 Hz), 43.3, 34.1, 31.5, 25.7, 22.9, 22.0, 21.2, 15.9. HRMS (EI) m/z: [M] Calcd for C₁₉H₃₂NO₂P 337.2171; Found 337.2169.

(Sp)-(-)-menthyl phenyl(N,N-diethylaminomethyl)phosphinate (Sp)-1i. Following the general procedure, the crude product was

The Journal of Organic Chemistry

purified by preparative GPC using CHCl₃ as eluent to afford a pale yellow liquid. Yield: 71.6 mg, 98%. ¹H NMR (400 MHz, CDCl₃) δ 7.80-7.85 (m, 2H), 7.48-7.52 (m, 1H), 7.40-7.44 (m, 2H), 4.25-4.34 (m, 1H), 2.84-2.95 (m, 2H), 2.53-2.62 (m, 4H), 2.26-2.33 (m, 1H), 1.75-1.80 (m, 1H), 1.57-1.67 (m, 2H), 1.26-1.39 (m, 2H), 0.94-1.05 (m, 2H), 0.944 (d, 3H, *J* = 6.8 Hz), 0.83-0.88 (m, 9H), 0.77-0.81 (m, 1H), 0.74 (d, 3H, *J* = 6.4 Hz); ³¹P NMR (162 MHz, CDCl₃) δ 37.26; ¹³C NMR (100 MHz, CDCl₃) δ 132.9 (d, *J*_{P-C} = 121.0 Hz), 131.9 (d, *J*_{P-C} = 9.5 Hz), 131.7 (d, *J*_{P-C} = 2.9 Hz), 127.9 (d, *J*_{P-C} = 12.4 Hz), 76.3 (d, *J*_{P-C} = 7.6 Hz), 53.3 (d, *J*_{P-C} = 122.0 Hz), 48.9 (d, *J*_{P-C} = 5.7 Hz), 48.5 (d, *J*_{P-C} = 7.6 Hz), 43.3, 34.1, 31.5, 25.7, 22.9, 22.0, 21.2, 15.8, 11.6. HRMS (EI) m/z: [M] Calcd for C₂₁H₃₆NO₂P 365.2484; Found 365.2469.

(Sp)-(-)-menthyl phenyl(*N*,*N*-diallylaminomethyl)phosphinate (*Sp*)-1j. Following the general procedure, the crude product was purified by preparative GPC using CHCl₃ as eluent to afford a colorless liquid. Yield: 56.1 mg, 72%. ¹H NMR (400 MHz, CDCl₃) δ 7.78-7.83 (m, 2H), 7.49-7.54 (m, 1H), 7.41-7.46 (m, 2H), 5.54-5.64 (m, 2H), 5.02-5.07 (m, 4H), 4.26-4.34 (m, 1H), 3.08-3.25 (m, 4H), 2.84-2.98 (m, 2H), 2.24-2.35 (m, 1H), 1.74-1.79 (m, 2H), 1.58-1.68 (m, 2H), 1.26-1.41 (m, 2H), 0.98-1.02 (m, 1H), 0.95 (d, 3H, *J* = 7.2 Hz), 0.87 (d, 3H, *J* = 6.8 Hz), 0.78-0.85 (m, 1H), 0.75 (d, 3H, *J* = 6.8 Hz); ³¹P NMR (162 MHz, CDCl₃) δ 37.24; ¹³C NMR (100 MHz, CDCl₃) δ 135.6, 133.1 (d, *J* _{P-C} = 123.0 Hz), 132.3 (d, *J* _{P-C} = 8.5 Hz), 132.2 (d, *J* _{P-C} = 2.8 Hz), 128.4 (d, *J* _{P-C} = 12.3 Hz), 118.1, 76.7 (d, *J* _{P-C} = 7.6 Hz), 58.6 (d, *J* _{P-C} = 7.6 Hz), 52.7 (d, *J* _{P-C} = 121.0 Hz), 49.3 (d, *J* _{P-C} = 5.8 Hz), 43.7, 34.5, 31.8, 26.0, 23.3, 22.3, 21.6, 16.2. HRMS (EI) m/z: [M] Calcd for C₂₃H₃₆NO₂P 389.2484; Found389.2468.

1-chloro-N,N,N-triethylmethaniminium chloride (**3a**). ¹H NMR (400 MHz, DMSO-d₆ δ 5.41 (s, 2H), 3.42 (q, 6H, *J* = 7.3 Hz), 1.27 (t, 9H, *J* = 7.2 Hz). (**3a-d**). ¹H NMR (400 MHz, DMSO-d₆ δ 3.42 (q, 6H, *J* = 7.3 Hz), 1.28 (t, 9H, *J* = 7.2 Hz).

1-chloro-N,N,N-triethylmethaniminium tetrafluoroborate (3b). ¹H NMR (400 MHz, DMSO-d₆ δ 5.33 (s, 2H), 3.40 (q, 6H, *J* = 7.2 Hz), 1.27 (t, 9H, *J* = 7.2 Hz).

ASSOCIATED CONTENT

Supporting Information. CIF files of chiral α -aminophosphonate., copies of ¹H, ¹³C and ³¹P NMR spectra for products. This

material is available free of charge via the Internet at http://pubs.acs.org.

AUTHOR INFORMATION

Notes

The authors declare no competing financial interest.

AUTHOR CONTRIBUTIONS

Corresponding Author: E-mail: zhouyb@hun.edu.cn; sf_yin@hnu.edu.cn. Fax: (+) 86-731-88821171.

§ These authors contributed equally.

ACKNOWLEDGMENT

This work is supported by the NSFC (21273066, 21273067, 21373080), the Doctoral Fund of Chinese Ministry of Education

(No.20110161120008), and the Fundamental Research Funds for the Central Universities (Hunan University).

REFERENCES

- (1) Lawrence, S. A. Amines: Synthesis, Properties and Applications, 9th ed, United Kingdom at the university Press, Cambridge, 2004.
- (2) a) Turner, N. J. Chem. Rev. 2011, 111, 4073-4087; b) Roglans, A.; Pla-Quintana, A.; Moreno-Mañas, M. Chem. Rev. 2006, 106, 4622-4643; c) Ho Jun, C. Chem. Soc. Rev.

2004, 33, 610-618; d) Li, Y.; Ma, Li.; Li, Z.; Chin. J. Org. Chem. 2013, 33, 704-714 and references cited therein.

- (3) a) Geng, W.; Zhang, W.; Hao, W.; Xi, Z. J. Am. Chem. Soc. 2012, 134, 20230-20233; b) Ling, Z.; Yun, L.; Liu, L.; Wu, B.; Fu, X. Chem. Commun. 2013, 49, 4214-4216.
- (4) Mai, W.; Song, G.; Yuan, J.; Yang, L.; Sun, G.; Xiao, Y.; Mao, P.; Qu, L. RSC Adv. 2013, 3, 3869-3872.
- (5) Nguyen, T. B.; Ermolenko, L.; Al-Mourabit, A. Green Chem. 2013, 15, 2713-2717.
- (6) Chen, X.; Chen, T.; Zhou, Y.; Au, C-T.; Han, L.; Yin, S. Org. Biomol. Chem, 2014, 12, 247-250.

The Journal of Organic Chemistry

3
4
5
6
7
<i>'</i>
8
9
10
11
12
13
10
14
15
16
17
18
19
20
21
21
22
23
24
25
26
27
28
20
29
30
31
32
33
34
35
36
27
31
38
39
40
41
42
43
Δ <i>Λ</i>
+ / E
40
46
47
48
49
50
51
52
52
55
54
55
56
57
58
59
60

(7) For reviews on their preparation and applications, see: a) Aminophosphonic and Aminophosphinic Acids: Chemistry and Biological Activity, Kukhar, V. P.; Hudson, H. R. Eds, John Wiley & Sons, Chichester, 2000; b) Ordóñez, M.; Sayago, F. J.; Cativiela, C. Tetrahedron. 2012, 68, 6369-6412; c) Kudzin, Z. H.; Kudzin, M. H.; Drabowics, J.; Stevens, C. Curr. Org. Chem. 2011, 15, 2015-2071; d) Mucha, A.; Kafarski, P.; Berlicki, L.; J. Med. Chem. 2011, 54, 5955-5980; e) Olivier, B.; Laurent, G.; Jean-Luc, M. Org. Lett. 2012, 14, 3404-3407; f) ösapay, G.; Szilagyi, I.; Deres, J. Tetrahedron, 1987, 43, 2977-2983; g) Queffelec, C.; Ribière, P.; Montchamp, J. L. J. Org. Chem, 2008, 73, 8987-8991; h) Jovic, F.; Louise, L.; Mioskowski, C.; Renard, P. Y. Tetrahedron. Lett, 2005, 46, 6809-6814. (8) Via Kabachnik-Fields reaction and Pudovik reaction to α-aminophosphonates see a) Fields, E. K. J. Am. Chem. Soc. 1952, 74, 1528-1531; b) Allen, J. G.; Atherton, F. R.; Hall, M. J.; Hassall, C. H.; Holmes, S. W.; Lambert, R. W. Nisbet, L. J.; Ringrose, P. S. Nature, 1978, 272, 56-58; c) Pratt, R. F. Science, 1989, 246, 917-919; d) Bhagat, S. Chakraborti, A.K. J. Org. Chem. 2007, 72, 1263-1270. e) Tibhe, G. D.; Lagunas-Rivera, S.; Vargas-Díaz, E.; García-Barradas, O.; Ordoñez, M. Eur. J. Org. Chem. 2010, 6573. f) Bhattacharya, A. K.; Raut, D. S.; Rana, K. C.; Polanki, I. K.; Khan, M. S.; Iram, S. Eur. J. Med. Chem. 2013, 66, 146. g) Bhattacharya, A. K.; Rana, K. C.; Pannecouque, C.; Clercq, E. D. ChemMedChem 2012, 7, 1601. h) Todorov, P. T.; Wesselinova, D. W.; Pavlov, N. D.; Martinez, J.; Calmes, M.; Naydenova, E. D. Amino Acids 2012, 43, 1445. i) Todorov, P. T.; Pavlov, N. D.; Shivachev, B. L.; Petrova, R. N.; Martinez, J.; Naydenova, E. D.; Calmes, M. Heteroatom Chem. 2012, 23, 123. j) Rossi, J.-C.; Marull, M.; Larcher, N.; Taillades, J.; Pascal, R.; van der Lee, A.; Gerbier, P. Tetrahedron: Asymmetry 2008, 19, 876. k) Wang, Y.; Wang, Y.; Yu, J.; Miao,

Z.; Chen, R. Chem. Eur. J. 2009, 15, 9290

(9) a) Han, W.; Mayer, P.; Ofial, A. R.; Adv. Synth. Catal. 2010, 352, 1667-1676; b) Han, W.; Ofial, A. R. Chem. Commun. 2009, 6023-6025; c) Balsé, O.; Li, C. Chem. Commun. 2009, 4124-4126; d) Gao, Y.; Huang, Z.; Zhuang, R.; Xu, J.; Zhang, P.; Tang, G.; Zhao, Y. Org. Lett. 2013, 15, 4214-4217; e) McDonald, S. L.; Wang, Q.

Angew. Chem. Int. Ed. 2014, 53, 4667-4670; f) Ordóňez, M.; Rojas-Cabrera, H.; Cativiela, C. Tetrahedron. 2009, 65, 17-49.

(10) Other than SN2 mechanism for methyl, 1° alkyl and 2° alkyl, the cleavage of H, allyl, benzyl and *t*-Bu-N bond probably occurs by a SN1 mechanism.

(11) a)Xu, Q.; Zhao, C.; Han, L. J. Am. Chem. Soc. 2008, 130, 12648-12655. (b) Emmick, T. L.; Letsinger, R. L. J. Am. Chem. Soc. 1968, 90, 3459. (c) Farnham,

W. B.; Murray, R. K.; Mislow, K. J. Am. Chem. Soc. 1970, 92, 5808.

(12) a) Almarzoqi, B.; George, A. V.; Isaacs, N. S. Tetrahedron Lett. 1986, 42, 601-607; b) Park, K.; Jung, I.; Chung, Y.; Han, J. Adv. Synth. Catal. 2007, 349, 411-416; c)

Nevstad, G. O.; Songstad, J. Acta. Chem. Scand. B, 1984, 38, 469-477; d) Langlois, M.; Meyer, C.; Soulier, J. L. Synth. Commun 1992, 22, 1895-1911; e) Böhme, H.;

Lehners, W.; Keitzer, G. Chem. Ber, 1958, 91, 340-345, f) Böhme, H.; Mundlos, E.; Herboth, O. E. Chem. Ber, 1957, 90, 2003-2008.

(13) a) Chambers, R. A.; Pearson, D. E. J. Org. Chem. 1963, 28, 3144. b) Shamma, M.; Deno, N.; Remar, J. F. Tetrahedron Lett. 1966, 7, 1375. c) Schreiber, J.; Maag, H.;

Hashimoto, N.; Eschenmoser, A. Angew. Chem. Int. Ed. 1971, 10, 330. d) Bryson, T. A.; Bonitz, G. H.; Reichel, C. J.; Dardis, R. E. J. Org. Chem.

1980, 45, 524-525. e) Fletcher, M. O.; Zhang, L.; Vu, Q.; Dolbier, W. R.; Jr. J. Chem. Soc., Perkin Trans. 2, 1999, 1187-1192.

(14) a) Danishefsky, S.; Kitahara, T.; Mckee, R.; Schuda, P. F. J. Am. Chem. Soc., 1976, 98, 6715-6717; b) Wu, K.; Ahmed, M.; Chen, C.; Huang, G.; Hon, Y.; Chou, P. Chem.

Commun. 2003, 890-891.

- (15) Quin, L. D. A. Guide to Organophosphorus Chemistry; Wiley- Interscience: New York, 2000. Chapter 2, pp 8-34.
- (16) a) Sindt, M.; Stephan, B.; Schneider, M.; Mieloszynski, L. J. Phosphorus, Sulfur and Silicon and the Related Elements. 2001, 174, 163–176; b) Charandabi, D. M. R. M.

A.; Ettel, L. M.; Kaushik, P. M.; Huffman, H. J.; Morse, W. K. Phosphorus, Sulfur and Silicon and the Related Elements. 1989, 44, 223–234.

(17) Issleib, K.; Kuehne, U.; Krech, F. Phosphorus, Sulfur and Silicon and the Related Elements. 1983, 17, 73-80.

(18) Prishchenko, A. A.; Livantsov, M. V.; Novikova, O. P.; Livantsova, I. L.; Petrosyan, V. S. Heteroatom. Chem. 2010, 21, 71–77.

(19) Zomova, M. A.; Zh, V.; Molodykh.; Kudryavtseva, A. L.; Teplyakova, V. L.; Fedorov, B. S.; Ivanov, B. E. Pharm. Chem. J. 1986, 20, 774–777, Khimiko-Farmatsevticheskii Zhurnal. 1986, 20, 1324–1327.

(20) Chaudhary, P.; Kumar, R.; Verma, A. K.; Singh, D.; Yadav, V.; Chhillar, A. K.; Sharma, G. L.; Chandra, R. Bioorg. & Med. Chem. 2006, 14, 1819–1826.

(21) Bel'skii, V. E.; Kudryavtseva, L. A.; Kurguzova, A. M.; Ivanov, B. E. Bull. Acad. Sci. USSR, Div. chem. Sci. (Engl. Transl.). 1975, 24, 958-960, Izvestiya Akademii Nauk

SSSR, Seriya Khimicheskaya. 1975, 24, 1047-1051.

(22) a) Prauda, I.; Greiner, I.; Ludanyi, K.; Keglevich, G. Synth. Commun. 2007, 37, 317–322. b) Bel'skii, V. E.; Bakeeva, R. F.; Kudryavtseva, L. A.; Kurguzova, A. M.;

Ivanov, B. E. Bull. Acad. Sci. USSR, Div. chem. Sci. (Engl. Transl.). 1975, 24, 1511-1512, Izvestiya Akademii Nauk SSSR, Seriya Khimicheskaya. 1975, 24, 1624-1625.

 (23) a) Laurenco, C.; Burgada, R. Tetrahedron. 1976, 32, 2089–2098. b) Prishchenko, A. A.; Livantsov, M. V.; Boganova, N. V.; Lutsenko, I. F. J. Gen. Chem. USSR (Engl.

Transl.). 1989, 59, 2133-2134.