Exclusive C-Si Bond Formation upon Reaction of a Platinum(II) Alkyl with Silanes

Milko E. van der Boom, Jürgen Ott, and David Milstein*

Department of Organic Chemistry, The Weizmann Institute of Science, Rehovot 76100, Israel

Received April 13, 1998

An unusual, highly selective C-Si coupling reaction takes place upon treating the platinum(II) alkyl complex *cis*-(DIPPIDH)(DIPPID)PtMe (2) (DIPPIDH = α^2 -(disopropylphosphino) iso durene, 1) with $HSiR_3$ ($R_3 = Et_3$, $EtMe_2$, Me_2Ph), leading to formation of $MeSiR_3$ and the hydrido complex trans-(DIPPIDH)(DIPPID)PtH (5). The overall process involves activation of a Si-H bond, reverse-cyclometalation of the phosphine ligand DIPPIDH (1), and C-Si elimination. The resulting thermally stable platinum(II) hydride complex 5 was independently prepared by thermolysis of a platinum(II) dihydride, trans-(DIPPIDH)₂PtH₂ (6), which was obtained by reaction of 2 with H_2 . In the absence of silane, the cis complex 2 isomerizes thermally to trans-(DIPPIDH)(DIPPID)PtMe (3), which does not react productively with silanes. Our results indicate that opening of the metallacycle of 2 by benzylic C-H formation is kinetically preferred over formation of CH₄ or CH₃SiR₃.

Introduction

Hydrosilylation processes of olefins and acetylenes,¹ which are frequently catalyzed by Pt complexes,² are thought to proceed by the Chalk-Harrod mechanism which invokes C-Si bond formation as the productforming step.³ Reactions of metal alkyl complexes with primary silanes can lead to products of both $C\!-\!H$ and C-Si reductive elimination. 4,5,6 For instance, reaction of (dmpe)Pt(Me)(OTf) $(dmpe = Me_2PCH_2CH_2PMe_2)$ with Et₃SiH led to formation of CH₄ and CH₃SiEt₃.^{5a} Methane was formed in the reaction of MeRh(PMe₃)₄ with HSiPh₃,^{5b} while, in the analogous reaction with HSiEt₃, both methane and CH₃SiEt₃ were formed. A theoretical study showed that CH₃-H reductive elimination from Pt(II) is 26.8 kcal/mol more favorable than that of CH₃-SiH₃.7

Few detailed studies on selective metal-mediated C-Si formation have been reported.^{6,8} Gladysz et al. observed this key step directly by thermolysis of Fe-(CO)₄(SiMe₃)(Me).^{8a} Kinetic data were obtained for C-Si reductive elimination from cis-Pt(Me)(SiPh₃)-(PMePh₂)₂,^{8b,c} and a reversible C-Si addition to Pt and to binuclear Ru complexes was observed recently.8d,e We demonstrated that C-H and C-Si reductive elimination from isolated Ir(III) complexes can occur competitively at comparable rates (Scheme 1).6

We report here that reaction of the cyclometalated cis-Pt(II) alkyl complex 2 with $H-SiR_3$ ($R_3 = Et_3$, $EtMe_2$, Me₂Ph), results in exclusive C-Si bond formation and generation of the new Pt(II) hydride complex 5 (Scheme 2). Interestingly, the trans isomer **3** exhibits totally different reactivity.

Results and Discussion

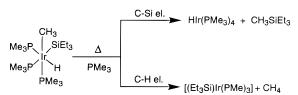
We reported recently that reaction of (COD)Pt(CH₃)₂ (COD = 1,5-cyclooctadiene) with α^2 -(disopropylphosphino)isodurene (1) in C₆H₆ at room temperature resulted in cyclometalation to form complex 2 and CH₄ quantitatively.9 Thermolysis of 2 in C₆H₆ resulted in the competitive formation of the trans isomer 3 and complex 4 with liberation of CH₄ (Scheme 2). Continuous heating of complex 3 resulted also in the quantitative formation of CH₄ and **4**, which was fully characterized by X-ray analysis.

Reaction of the cis-Pt(II)CH3 complex 2 with 5 equiv of various primary silanes in C₆D₆ at 100 °C (120 h in a sealed vessel) quantitatively afforded the new trans-

^{*} To whom correspondence should be addressed. Fax: +972-8-9344142. E-mail: comilst@wiccmail.weizmann.ac.il.

^{(1) (}a) Collman, J. P.; Hegedus, L. S.; Norton, R. J.; Finke, R. G. Principles and Applications of Organotransition Metal Complexes, University Science Book: Mill Valley, CA, 1987. (b) Ojima, I. In The Chemistry of Organic Silicon Compounds; Patai, S., Rappoport, Z., Eds.; Wiley: Chichester, U.K., 1989; p 1479. (c) Schubert, U. Adv. Organomet. Chem. 1990, 30, 151. (d) Braunstein, P.; Knorr, M. J. Organomet. Chem. 1995, 500, 21.

⁽²⁾ Speier, J. L. Adv. Organomet. Chem. **1979**, 17, 407. Lewis, N. J. Am. Chem. Soc. **1986**, 108, 7228.


⁽³⁾ Chalk, A. J.; Harrod, J. F. J. Am. Chem. Soc. 1965, 87, 16.
(4) Schubert, U. Angew. Chem., Int. Ed. Engl. 1994, 33, 419.
(5) (a) Goikhman, R.; Aizenberg, M.; Shimon, L. J. W.; Milstein, D. J. Am. Chem. Soc. 1996, 118, 10894. (b) Thorn, D. L.; Harlow, R. L. Inorg. Chem. 1990, 29, 2017. (c) Gozin, M.; Aizenberg, M.; Liou, S.-Y.; Weisman, A.; Ben-David, Y. Milstein, D. Nature 1994, 370, 42.

^{(6) (}a) Aizenberg, M.; Milstein, M. Angew. Chem., Int. Ed. Engl. 1994, 33, 317. (b) Aizenberg, M.; Milstein, D. J. Am. Chem. Soc. 1995, *117*, 6456.

⁽⁷⁾ Sakaki, S.; Ieki, M. J. Am. Chem. Soc. 1993, 115, 2373.

^{(8) (}a) Brinkman, K. C.; Blakeney, A. J.; Krone-Schmidt, W.; Gladysz, J. A. Organometallics 1984, 3, 1325. (b) Ozawa, F.; Hikida, T.; Hayashi, T. *J. Am. Chem. Soc.* **1994**, *116*, 2844. (c) Ozawa, F.; Hikidi, T.; Haseba. K.; Mori, T. *Organometallics* **1998**, *17*, 1018. (d) Hofmann, E.; Heiss, H.; Neiteler, P.; Müller, G.; Lachmann, J. *Angew.* Chem., Int. Ed. Engl. 1990, 29, 880. (e) Lin, W.; Wilson, S. R.; Girolami, G. S. Organometallics 1994, 13, 2309. (f) Tanaka, Y.; Yamashita, H.; Shimada, S.; Tanaka, M. *Organometallics* **1997**, *16*, 3246. (g) Schubert, U.; Kunz, E.; Knorr, M.; Müller, J. *Chem. Ber.* **1987**, *120*, 1079. (h) Schubert, U.; Knorr, M.; Straßer, C. J. Organomet. Chem. 1991, 411,

⁽⁹⁾ Van der Boom, M. E.; Liou, S.-Y.; Shimon, L. J. W.; Ben-David, Y.; Milstein, D. *Organometallics* **1996**, *15*, 2562.

Pt(II)H complex 5 and CH_3SiR_3 ($R_3 = Et_3$, $EtMe_2$, Me_2 -Ph) as judged by ³¹P{¹H}, ¹H, ¹H{³¹P}, ¹H-¹H COSY NMR, IR, FD-MS, and GC-MS analysis of the product solution and by comparison with authentic samples (vide infra). Surprisingly, only traces of CH₄ (<4%) were detected by quantitative GC analysis of the gas phase. When deuterated solvents were used, no deuterium incorporation into the products was observed. 10 The ³¹P{¹H} NMR spectrum of **5** exhibits two sharp doublets of equal intensity at δ 89.2 and 45.1 ppm, flanked by ¹⁹⁵Pt satellites. The large ³¹P-³¹P coupling $(^2J_{\rm PP}=392.8~{\rm Hz})$ shows that both nuclei are mutually trans, in agreement with the observed ¹⁹⁵Pt-³¹P coupling constants (${}^{1}J_{PtP} = 3193.5$ and 2992.1 Hz, respectively). The low-field shift of δ 89.2 reflects a deshielding effect of this phosphorus atom due to the sixmembered ring. 9,11 The signal at δ 45.1 is in a range normally observed for $(\eta^1$ -phosphine)platinum(II) complexes.⁹ The Pt-H ligand appears in the IR at $\nu = 1964$ cm⁻¹ and in the ¹H NMR as a virtual triplet at δ -7.00 (cis ${}^{2}J_{PH} = 18.4$ Hz, flanked by ${}^{195}Pt$ satellites (${}^{1}J_{PtH} =$ 773.2 Hz). These values are typical for a hydride trans to a σ -bonded alkyl. 12 FD-MS analysis shows the molecular ion (M⁺, m/e 695) and an expected logical isotope pattern.

By contrast, heating of the thermally more stable trans-Pt(II)CH₃ complex 3 with 5 equiv of HSiR₃ ($R_3 =$ Et₃, Me₂Ph) in C₆D₆ at 100 °C (120 h in a sealed vessel) resulted in quantitave formation of complex 4 and CH₄. Surprisingly, formation of 5 and CH₃SiR₃ was not observed by NMR, IR, and GC-MS analysis of the product solution. Complex 5 is stable under the reaction conditions and would have been easily detected spectroscopically had it been formed. Thus, as opposed to the reactivity of the cis isomer 2, in the case of the trans isomer 3 formation of complex 4 and CH₄ is kinetically (and probably thermodynamically) preferred over C-Si bond generation. Significantly, complex 4 is thermally stable under the reaction conditions and was recovered unchanged even after heating with 5 equiv of HSiMe₂-Ph in C₆H₆ at 150 °C for 48 h. Thus, it cannot be an intermediate in the formation of complex 5. These experiments indicate that for the selective C-Si bond formation the cis geometry of the metal complex is required.

While reactions of various silanes with (dmpe)Pt(Me)-(OTf) and with MeRh(PMe₃)₄ as well as the competitive

C-H and C-Si reductive elimination from Ir(III) complexes are strongly influenced by the electronic properties of the substituents on silicon (Scheme 1), ^{5a,b,6} no such an influence was observed here.

Interestingly, it is possible to reverse the cyclometalation of 2 by the use of mild H₂ pressure. Treating complex 2 with H₂ (30 psi) in C₆H₆ at 60 °C (72 h in a Fischer-Porter pressure vessel) resulted in quantitative formation of the new trans-dihydride complex 6 and CH4 (Scheme 2). This complex, which was isolated and fully characterized by ${}^{1}H$, ${}^{1}H\{{}^{31}P\}$, ${}^{31}P\{{}^{1}H\}$, and ${}^{31}P-{}^{1}H$ HQMC NMR, IR, FD-MS, and elemental analysis, exhibits spectroscopic features similar to those of analogous Pt(II) trans-dihydride complexes. 13 No other complexes were detected. In the ³¹P{¹H} one sharp singlet appears at δ 53.7 ppm flanked by ¹⁹⁵Pt satellites (${}^{1}J_{PtP}$ = 2882.2 Hz), indicating that both phosphorus atoms are magnetically equivalent. The hydride ligands appear in the ¹H NMR as a characteristic triplet resonance at δ -3.15 ppm (cis ${}^{2}J_{PH} = 17.5 \text{ Hz}$; ${}^{1}J_{PtH} = 796.0 \text{ Hz}$), which collapses into a singlet upon ³¹P{¹H} decoupling. The IR spectrum shows a strong Pt-H band at $\nu = 1744$ cm $^{-1}$, which is in the region usually observed for $\nu(Pt-$ H) of *trans*-dihydrides (1710–1820 cm⁻¹).¹³ Formation of 1 equiv of CH₄ was determined by quantitative GC analysis of the gas phase. Thermolysis of 6 in C₆D₆ at 100 °C (120 h in a sealed vessel) resulted in selective formation of complex 5 and presumably H₂ (Scheme 2). Formation of complex 4 was not observed, in contrast to thermolysis of complexes 2 and 3, which results in quantitative formation of complex 4 and CH₄.9 Presumably, the σ-bonded Pt-CH₃ group promotes C-H activation. Complex 5 is considerably more stable than complex 2 and was recovered unchanged when treated with H₂ (15 psi) in C₆H₆ at 80 °C for 24 h. The fact that 5 was not detected in the reaction of 2 and H₂ suggests that benzylic C-H reductive elimination is kinetically preferred over CH₄ formation.

While the reason for the surprising, exclusive C–Si bond formation is uncertain, we suggest that the following speculative mechanism can account for the observations. Complex 2 can undergo phosphine dissociation, promoted by the strong trans influence of the σ benzyl ligand and the steric hindrance of the cyclometalated ligand. H–Si or H–H oxidative addition may afford a Pt(IV) species such as A (Scheme 3). The silyl or hydride ligands can labilize the benzyl group (ArCH₂–Pt) trans to it. The strong trans influence of silyl ligands is similar or even higher than that of

⁽¹⁰⁾ Formation of **5**, **6**, CH_3SiR_3 , and disiloxanes was observed at 55 °C. Reaction of **2** with 5 equiv of $HSiPh_3$ in C_6D_6 at 55 °C (24 h in a sealed vessel) resulted also in the formation of **5**, **6**, CH_3SiPh_3 , and $Ph_3SiOSiPh_3$. Only traces of CH_4 (<4%) were detected. The formation **6** and disiloxanes could be suppressed using silanized glassware, suggesting that adventitious water is involved in this process.

⁽¹¹⁾ Pregosin, P. S. In *Phosphorus-31 NMR-Spectroscopy in Stere-ochemical Analysis*; Verkade, J. G., Quin, L. D., Eds.; VCH: Deerfield Beach, FL, 1987.

⁽¹²⁾ Moulton, C. J.; Shaw, B. L. *J. Chem. Soc., Dalton Trans.* **1976**, 1020.

^{(13) (}a) Packett, D. L.; Trogler, W. C. J. Am. Chem. Soc. 1986, 108, 5036. (b) Yoshida, T.; Otsuka, S. J. Am. Chem. Soc. 1977, 99, 2134. (c) Clark, H. C.; Goel, A. B.; Ogino, W. O. J. Organomet. Chem. 1978, 157, C16. (d) Immirzi, A.; Musco, A.; Garturan, G.; Belluco, U. Inorg. Chim. Acta 1975, 12, L23. (e) Shaw, B. L.; Uttley, M. F. J. Chem. Soc., Chem. Commun. 1974, 918. (f) Goel, A. B.; Goel, S. Inorg. Chim. Acta 1982, 65, L77, 78. (g) Gerlach, D. H.; Kane, A. R.; Parshall, G. W.; Jesson, J. P.; Muetterties, E. L. J. Am. Chem. Soc. 1971, 93, 3543. (h) Fornies, J.; Green, M.; Spencer, J. L.; Stone, F. G. A. J. Chem. Soc., Dalton Trans. 1977, 1006.

⁽¹⁴⁾ Bubbling CO through a benzene solution of $\bf 2$ at room temperature for 1 h results in displacement of the η^1 -phosphine: Van der Boom, M. E.; Milstein, D. Unpublished results. (15) An analogous Pt species with $R'=CH_3$ was postulated to be

⁽¹⁵⁾ An analogous Pt species with $R' = CH_3$ was postulated to be an intermediate in the selective formation of complex 2 and CH_4 (Scheme 2).9.

⁽¹⁶⁾ As pointed out by a reviewer, direct H—Si oxidative addition to give a hexacoordinate Pt(IV) species, followed by a selective C—Si reductive elimination, cannot be excluded.

Scheme 2

Scheme 3

$$\begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \\ \\ \end{array} \end{array} \begin{array}{c} \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \end{array} \begin{array}{c} \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \end{array} \begin{array}{c} \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \end{array} \begin{array}$$

hydride ligands. 6,17 Thus, ArCH2-H formation might be preferred over that of CH₄ or CH₃SiR₃ elimination.¹⁸ Since both C-H and C-Si reductive elimination processes are possible, 4-6,19,20 it can be suggested that the overall process is kinetically controlled by electronic factors in the (unobserved) Pt(IV) intermediate A. Consequently, CH_3-R' (R'=H, SiR_3) elimination occurs from \mathbf{B} , 15 to afford a Pt(0) species \mathbf{C} . 10,21 As is well documented, cis-alkyl(hydrido)Pt(II) and Pt(IV) species are very unstable toward C-H reductive elimination.¹⁹ cis-Alkyl(silyl)Pt(II) species are postulated intermediates in the hydrosilylation processes of olefins. 1,2 Ozawa et al. showed that C-Si reductive elimination from cis-

(17) (a) Zlota, A. A.; Frolow, F.; Milstein, D. J. Chem. Soc., Chem. Commun. 1989, 1826. (b) Haszeldine, R. N.; Parish, R. V.; Setchfield, J. H. J. Organomet. Chem. 1973, 57, 279.

(18) Recent examples of reverse-cyclometalation as the following. (a) Pd: Beller, M.; Riermeier, T.-H.; Haber, S.; Kleiner, H.-J.; Herrmann, W. A. *Chem. Ber.* **1996**, *129*, 1259. (b) Pt: Thorn, D. L. *Organometallics* **1998**, *17*, 348. (c) Ir: Aizenberg, M.; Milstein, D. Organometallics 1996, 15, 3317.

(19) C-H reductive elimination from Pt(IV): (a) Jenkins, H. A.; Yap, G. P. A.; Puddephatt, R. J. Organometallics 1997, 16, 1946. (b) Hill, G. S.; Rendina, L. M.; Puddephatt, R. J. Organometallics 1995, 14, 4966. (c) Stahl, S. S.; Labinger, J. A.; Bercaw, J. E. *J. Am. Chem. Soc.* **1996**, *118*, 5961. C—H reductive elimination from Pt(II): (d) Abis, L.; Sen, A.; Halpern, J. J. Am. Chem. Soc. 1978, 100, 2915.
 (20) Levi, C. J.; Puddephatt, R. J. Organometallics 1995, 14, 5019.

Pt(Me)(SiPh₃)(PMePh₂)₂ is a facile process and proceeds by dissociation of a phosphine. Selective C-H reductive elimination from PtMe₂(H)(bis(2-pyridylmethyl)amine)Cl was recently observed by Puddephat et al. 19a

Complex C can undergo cyclometalation to yield 5 or may be trapped by H₂ to give **6**, ^{10,13} thermolysis of which gives **5**. Activation of benzylic C–H bonds by Pt(0) and Pt(II) complexes was reported.^{9,22} While intermediacy of an isomer of A in which the silane is in the apical position and the hydride in the basal one is also possible, it seems less likely on steric grounds.²³

Conclusions

Addition of $H-SiR_3$ ($R_3 = Et_3$, $EtMe_2$, Me_2Ph) to the Pt(II) alkyl complex 2 results in kinetically preferred exclusive alkyl-SiR₃ bond formation to yield complex **5**. Interestingly, the cis geometry and the presence of the metallacycle, which readily opens up, play a key role in the selective product formation. The overall process involves a series of reactions that are influenced by electronic and steric factors. The C-Si coupling is probably directed by the strong trans influence of the ligands, while formation of the trans-Pt(II)H complex **5** is sterically influenced by the bulky phosphine ligand 1.

Experimental Section

The procedures and spectroscopic analysis are similar to those previously reported.⁹ All reactions were carried out

(22) Hackett, M.; Whitesides, G. M. J. Am. Chem. Soc. 1988, 110,

(23) Oxidative addition of silanes to Ir(I) has been found to proceed with 98% stereoselectivity: Johnson, C. E.; Eisenberg, R. J. Am. Chem. Soc. 1985, 107, 6531.

⁽²¹⁾ Formation of C was observed upon reacting 2 equiv of 1 and 5 equiv of HSiMe₂Ph with (COD)Pt(CH₃)₂ at room temperature. This reaction is not selective since CH₄ and SiMe₃Ph were detected. The $^{31}P\{^{1}H\}$ NMR of the reaction mixture shows a broadened signal at δ 61.15 (${}^{1}J_{PtP} = 4220 \text{ Hz}$; compare (${}^{1}Pr_{3}P$)₂Pt, ${}^{1}J_{PtP} = 4202 \text{ Hz}$ (Mann, B. E.; Musco, A. J. Chem. Soc., Dalton Trans. 1980, 776)). Thermolysis results in quantitative formation of complex **5**. Apparently, the metallacycle of **2** plays a key role in the selective C–Si formation.

Reaction of Complex 2 with HSiR₃ ($\mathbf{R}_3 = \mathbf{Et}_3$, $\mathbf{Me}_2\mathbf{Et}$, $\mathbf{Me}_2\mathbf{Ph}$) at $\mathbf{100}$ °C.¹⁰ A colorless solution of complex $\mathbf{2}$ (36 mg, 0.050 mmol) and a 5-fold excess of HSiR₃ in C_6D_6 (1.5 mL) was heated using a pressure flask at 100 °C for 5 days. Quantitative analysis of the gas phase by GC showed only traces of CH₄ (<4%). The product solution was analyzed by ¹H, ¹H{³¹P}, ³¹P{¹H} NMR, IR, GC-MS, and FD-MS showing the quantitative formation of complex $\mathbf{5}$ (vide infra) and MeSiR₃. ¹H NMR and GC-MS analysis showed traces of Et₄-Si, HSiMe₃, Me₂SiPh₂, Me₃SiPh, and disiloxanes; formation of the latter could be suppressed using silanized glassware.

Formation of the trans-Dihydride 6. A colorless solution of 2 (43 mg, 0.06 mmol) in benzene (10 mL) was loaded in a Fischer-Porter and pressurized with 30 psi of H₂. The yellowish solution was stirred at 60 °C for 3 days. Quantitative analysis of the gas phase by GC showed formation of 1 equiv of CH4. Subsequently, the solvent was removed in a vacuum and the resulting brownish solid was recrystallized from pentane to afford complex 6 (33 mg, 80%) as a colorless crystalline powder. FD-MS (m/z): 697 (calcd M+, 697; correct isotope pattern). Anal. Calcd for $C_{32}H_{55}P_2Pt$: C, 55.24; H 7.82. Found: C, 54.94; H, 7.42. ¹H NMR (400.19 MHz; C₆D₆): δ -3.15 (t, ${}^{2}J_{PH} = 17.5$ Hz, ${}^{1}J_{PtH} = 796$ Hz, 2 H, Pt*H*), 1.05 (q, ${}^{3}J_{HH} = 7.5 \text{ Hz}, 12 \text{ H}, PCH(CH_{3})_{2}, 1.20 \text{ (vq. } {}^{3}J_{HH} = 7.4 \text{ Hz}, 12$ H, $PCH(CH_3)_2$), 1.95 (m, 4 H, $PCH(CH_3)_2$), 2.14 (s, 6 H, p-ArC H_3), 2.48 (s, 12 H, o-ArC H_3), 3.31 (vt, ${}^2J_{PH} = 3.4$ Hz, ${}^3J_{PtH}$ $= 36.2 \text{ Hz}, 4 \text{ H}, PCH_2Ar), 6.79 \text{ (s, 4 H, Ar}H). ^{31}P\{^{1}H\} \text{ NMR}$ (161.9 MHz; C_6D_6): δ 53.7 (s, ${}^{1}J_{PtP} = 2882.2$ Hz). IR (film): $\nu(\text{Pt-H}) = 1744 \text{ cm}^{-1}$.

(24) Clark, H. C.; Manzer, L. E. J. Organomet. Chem. 1973, 59, 411.

Formation of 5 from 6. A solution of **6** (14 mg, 0.02 mmol) in C₆D₆ (1 mL) was transferred to a 5 mm screw cap NMR tube. The sealed NMR tube was placed in an oil bath at 100 °C and monitored by ³¹P{¹H} NMR at room temperature. After 5 days ${\bf 6}$ was selectively converted to ${\bf 5}$; removal of the solvent in a vacuum afforded a white powder. Performing the thermolysis of 6 in the presence of a 5-fold excess of HSiMe₂Ph resulted also in the selective formation of complex 5; no influence of the silane on the progress and the product formation was observed by ${}^{31}P\{{}^{1}H\}$ NMR. FD-MS (m/z): 695 (calcd M⁺, 695; correct isotope pattern). Anal. Calcd for C₃₂H₅₃P₂Pt: C, 55.32; H 7.69. Found: C, 55.21; H, 7.41. ¹H NMR (400.19 MHz; C_6D_6): $\delta -7.00$ (br t, ${}^2J_{PH} = 18.4$ Hz, ${}^2J_{PH}$ = 773.2 Hz, 1 H, Pt*H*), 0.86 (dd, ${}^{2}J_{PH}$ = 14.2 Hz, ${}^{3}J_{PH}$ = 7.0 Hz, 6 H, PCH(CH₃)₂), 1.00-1.10 (m, 12 H, PCH(CH₃)₂), 1.15 $(dd, {}^{2}J_{PH} = 13.9 \text{ Hz}, {}^{3}J_{HH} = 7.0 \text{ Hz}, 6 \text{ H}, PCH(CH_3)_2), 1.66 \text{ (m},$ 1 H, PCH(CH₃)₂), 1.85 (m, 3 H, PCH(CH₃)₂), 2.13 (s, 3 H, ArCH₃), 2.18 (s, 3 H, ArCH₃), 2.30 (s, 6 H, o-ArCH₃), 2.44 (m, partly overlapped, 2 H, ArCH₂Pt), 2.46 (s, 3 H, ArCH₃), 2.84 (m, ${}^{3}J_{PtH} = 37.3 \text{ Hz}$, 2 H, ArC $H_{2}P$), 3.26 (dd, ${}^{2}J_{PH} = 3.2 \text{ Hz}$, ${}^{3}J_{PtH} = 10.2 \text{ Hz}, 2 \text{ H}, ArCH_{2}P), 6.70-6.80 (m, 4 \text{ H}, ArH). {}^{31}P$ {¹H} NMR (161.9 MHz; C₆D₆): δ 45.1 (d, ² J_{PP} = 392.8 Hz, ¹ J_{PPt} = 2992.1 Hz, 1 P), 89.2 (d, ${}^{2}J_{PP}$ = 392.8 Hz, ${}^{1}J_{PtP}$ = 3193.5 Hz, 1 P). IR (film): $\nu(Pt-H) = 1964 \text{ cm}^{-1}$.

Acknowledgment. This work was supported by the Israel Science Foundation, Jerusalem, Israel, and by the MINERVA foundation, Munich, Germany. J.O. thanks the DAAD foundation for a fellowship. D.M. is the holder of the Israel Matz Professorial Chair in Organic Chemistry. We thank R. Fokkens (University of Amsterdam, Amsterdam, The Netherlands) for performing the FD-MS experiments.

OM9802818