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Abstract: TMDS has been found to be an efficient hydride source
for the reduction of tertiary and secondary phosphine oxides using
a catalytic amount of Ti(Oi-Pr)4. All classes of tertiary phosphine
oxides, such as triaryl, trialkyl, and diphosphine, were effectively
reduced.

Key words: phosphorus, reductions, titanium, hydrosiloxane,
phosphine oxides

Transition-metal complexes incorporating phosphines
and diphosphines as the ligands are frequently used cata-
lysts in hydrogenation, hydroformylation, hydrocyana-
tion, allylic substitution, hydrosilylations, and palladium-
and nickel-catalysed coupling reactions.1 The reduction of
phosphine oxides in the final stage of a synthetic route
constitutes a widely used synthesis of phosphine ligands.
Indeed, because of the ease of interconversion of phos-
phine oxides and phosphines, it is possible to consider the
oxo function as a protecting group on phosphorus.2

Consequently, the search for safe and practical reducing
reagents of phosphine oxides is of great importance.

A survey of the literature3 showed a number of possible
methods for the reduction of phosphine oxide. The exist-
ing reducing agents, though efficient in producing high
yields of desired product, are pyrophoric such as metal hy-
dride,4 or harmful reagents such as silylhydride reagents.5

Furthermore, these reagents, which have remained the
reagent of choice for reduction of phosphine oxides, are
used at temperatures far above their boiling points.6 Thus,
alternative reductions have been studied using an oxygen
acceptor, such as chlorinated methyl disilanes,7 hexachlo-
rosilane,8 POCl3/(Et2N)3P,9 or a CO/Cl2/H2 system.10 It
was shown that the deoxygenation step with sterically hin-
dered or electron-deficient phosphine oxides can be im-
proved using an oxygen acceptor, such as Ph3P or (EtO)3P
in the presence of HSiCl3.

11 Stoichiometric reagents, such
as SmI2/HMPA12 or transition-metal-based systems13

have also been used for the reduction of tertiary phosphine
oxides.

Hydrosiloxane derivatives have emerged as potent reduc-
ing reagents. However, these compounds are not suffi-
ciently potent hydride sources themselves and require
activation. The combination of titanium(IV) isopropoxide
with triethoxysilane efficiently converted esters to the
corresponding primary alcohols.14 The first example of
catalytic reduction of phosphine oxides was described by
Coumbe et al.15 using this reducing system in THF. Two
equivalents of triethoxysilane are needed for successful
conversion. The proposed catalytic cycle involves reduc-
tion by a titanium hydride species generated by hydride
transfer from the silane to titanium via a s-bond meta-
thesis process.15,16 However, triethoxysilane can be dis-
proportionated by titanium(IV) isopropoxide to form
SiH4, a pyrophoric gas.17 Polymethylhydrosiloxane (PM-
HS)18 (Figure 1) which is a free-flowing liquid polymer,
soluble in most organic solvents and inert to air and mois-
ture, can be a suitable substitute for (EtO)3SiH, eliminat-
ing the risk of generating SiH4, but involved the used of a
stoichiometric amount of Ti(Oi-Pr)4.

15 The low reactivity
of this system towards phosphine oxide reduction may be
explained by the polymeric nature of the hydride source.
Another disadvantage connected to the use of PMHS was
the formation of a gel during the workup that may limit the
recovery of the product.

Figure 1 Structure of the polymethylhydrosiloxane (PMHS) and
tetramethyldisiloxane (TMDS)

It therefore appeared reasonable that by using hydrosil-
oxane oligomers activated by an efficient catalyst we
could significantly streamline the reduction of phosphine
oxides. By switching to lower molecular weight commer-
cially available hydrosiloxane, such as 1,1,3,3-tetrameth-
yldisiloxane (TMDS, Figure 1) we could expect a more
efficient catalytic process.19 This idea was tested in a
model study involving the reduction of triphenyl-
phosphine oxide in the presence of catalytic amounts of
Ti(Oi-Pr)4 in an aliphatic solvent (Table 1).
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As a prelude to that goal, we re-examined the reduction of
triphenylphosphine oxide using PMHS (Table 1, entry 1)
according to Coumbe et al.15 A 10 mol% catalytic amount
of Ti(Oi-Pr)4 refluxed in THF for 5 hours gave only mod-
erate conversion (25%) justifying the use of the stoichio-
metric amount of Ti(Oi-Pr)4.

15 Starting conditions using
TMDS (Table 1, entry 2) revealed encouraging reaction
features, i.e. moderate yields (56%) under the same con-
ditions. Interestingly enough, no phosphinated side prod-
uct or intermediary was detected during the course of the
reaction. Moreover, the boiling point of TMDS (71 °C) is
close to the reaction temperature and therefore suspected
TMDS evaporation. Thus, the reaction was done in a
sealed tube at 67 °C (Table 1, entries 3 and 4).20 As ex-
pected, no improvement was noticed with PMHS (entry
3). The reaction appeared to be solvent- and temperature-
driven (entries 5–10). Switching THF for methylcyclo-
hexane (entry 5) improved the conversion and increasing
the temperature to 100 °C (entry 9) yielded triphenyl-
phosphine in five hours, using 10 mol% catalyst and a
Si–H:P=O ratio of 2.5. The workup was straightforward.
The reaction was cooled and concentrated in vacuum. The
residue was suspended in pentane and insoluble triphen-
ylphosphine was filtrated and washed with pentane.21

Under those conditions, the conversion was 90% using
PMHS (entry 10). Numerous types of catalysts have been
used in combination with PMHS to reduce a wide range
of organic functional groups.16 The most frequently used
catalyst are titanium species. We evaluated different

titanium- and zirconium-based catalysts [Cp2TiCl2;
Zr(Oi-Pr)4–HOi-Pr; Zr(OEt)4; TiCl4) but from our work
no reduction of triphenylphosphine oxides could be
observed.

We decided to evaluate the scope of this new protocol
with other phosphine oxides (Table 2).22 Diphosphine
oxides were effectively reduced to give diphosphine in
excellent yields (Table 2, entries 1–3). We highlight the
milder and safer conditions used for reducing phosphine
oxides employing HMDS/Ti(Oi-Pr)4 (110 °C) rather
than HSiCl3/Et3N,23 PhSiH3/HSiCl3

2 or HSiCl3/Ph3P
methods.11

This is particularly important in the reduction of the chiral
BINAPO compound (Table 2, entry 4) where no racemi-
sation was observed and the BINAP was obtained in high
yield.24 At the end of the reaction, the reaction mixture
was cooled and filtered to give the diphosphine as a pure
solid.21

Trialkylphosphine oxides25 (Table 2, entries 5 and 6) and
secondary phosphine oxides26 (Table 2, entries 7 and 8)
are also efficiently reduced by Ti(Oi-Pr)4/TMDS. 31P
NMR analyses showed a completed conversion after 10
hours at 100 °C in methylcyclohexane. Pure trialkylphos-
phines and secondary phosphines could be recovered by
distillation or could be isolated as borane complexes.25,26

At the end of the reaction, the reaction mixture was cooled
and BH3–THF was added carefully and aqueous workup
yielded pure borane complexes.21

Table 1 Reduction of Triphenylphosphine Oxide by Hydrosilane with a Catalytic Amount of Ti(Oi-Pr)4

Entry Hydrosiloxane Solvent Temp (°C) Conditions Yield (%)a

1 PMHS THF 67 flask 25

2 TMDS THF 67 flask 56

3 PMHS THF 67 sealed tube 25

4 TMDS THF 67 sealed tube 50

5 TMDS methylcyclohexane 67 sealed tube 77

6 PMHS methylcyclohexane 67 sealed tube 19

7 TMDS toluene 100 sealed tube 100

8 PMHS toluene 100 sealed tube 87

9 TMDS methylcyclohexane 100 sealed tube 100b

10 PMHS methylcyclohexane 100 sealed tube 90

11 TMDS methylcyclohexane 100 flaskc 100

a As calculated from 31P NMR.
b Isolated yield.
c TMDS was added in four portions.
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In conclusion, we have shown that phosphine oxides are
readily converted into the corresponding phosphine in
high yield by the use of air-stable Ti(Oi-Pr)4 and TMDS.
TMDS is more reactive than PMHS and could be pro-
posed as a safer, easy-to-handle hydride source for the
catalytic reduction of secondary and tertiary phosphine
oxides.
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Yield 
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6 100d 95e

7 100d 85e

8 100d 89e

a As calculated from 31P NMR.
b Isolated yield.
c After 7 h at 100 °C.
d After 10 h at 100 °C.
e Isolated as borane complexes.
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dppb Oxides
In a 30 mL sealed tube with a magnetic stirrer were placed 
the diphosphine (2.32 mmol) and methylcyclohexane (5 
mL). Then, TMDS (1.03 mL, 5.8 mmol, 2.5 equiv) was 
added to the reaction vessel followed by Ti(Oi-Pr)4 (0.07 
mL, 0.23 mmol). The flask was heated at 100 °C. After 7 h, 
the 31P NMR analysis showed the complete conversion of 
the starting reagent. The heterogeneous mixture was cooled 
at 0 °C, filtrated over porous glass and washed with 4× 5 
mL of pentane. The resulting white solid was dried under 
vacuum, yielding the desired compound.
1,2-Bis(diphenylphoshino)ethane(dppe): yield 95%, mp 
161 °C. 1H NMR (300 MHz, CDCl3): d = 7.32 (20 H, m), 
2.13–2.08 (4 H, m). 31P NMR (81 MHz, CDCl3): d = –11.3.
1,3-Bis(diphenylphosphino)propane(dppp): yield 91%, mp 
63 °C. 1H NMR (300 MHz, CDCl3): d = 7.39–7.33 (8 H, m), 
7.30–7.28 (12 H, m), 2.21 (4 H, t, J = 7.5 Hz), 1.71–1.55 (2 
H, m). 31P NMR (81 MHz, CDCl3): d = –16.3.
1,4-Bis(diphenylphosphino)butane(dppb): yield 95%, mp 
135 °C. 1H NMR (300 MHz, CDCl3): d = 7.44–7.34 (8 H, 
m), 7.33–7.30 (12 H, m), 2.04 (4 H, t, J = 7.5 Hz), 1.62–1.54 
(4 H, m). 31P NMR (81 MHz, CDCl3): d = –14.9.

(23) Takaya, H.; Akutagawa, S.; Noyori, R. Org. Synth., Coll. 
Vol. VIII 1993, 65-69, 57.

(24) (S)-2,2¢-Bis(diphenylphosphino)-1,1¢-binaphtyl 
(BINAP) (a) In a tube with a magnetic stirrer was placed (S)-
BINAP oxide (1.44 g, 2.2 mmol, 1 equiv) in 5 mL of 
methylcyclohexane. To this heterogeneous mixture was 
added TMDS (0.97 mL, 5.5 mmol, 2.5 equiv) and Ti(Oi-Pr)4 
(70 mL, 0,22 mmol, 0.1 equiv). The tube was sealed and the 
mixture stirred and heated at 100 °C overnight. The hetero-
geneous mixture was cooled at 0 °C and filtrated over porous 
glass, washing 4 to 5 times with cold pentane. The resulting 
white solid was dried under vacuum, yielding 1.26 g (92% 

yield, ee >98%). 1H NMR (300 MHz, CDCl3): d = 7.93 (2 H, 
d, J = 8.5 Hz,), 7.88 (2 H, d, J = 8.1 Hz), 7.51 (2 H, d, J = 8.5 
Hz), 7.39 (2 H, t, J = 7.9 Hz), 7.24–7.10 (20 H, m), 6.95 (2 
H, dd, J = 8.1 Hz), 6.89 (2 H, d, J = 8.5 Hz). 31P NMR (81 
MHz, CDCl3): d = –14.3. [a]D

25 –224 (c 0.365, benzene); lit. 
[a]D

25 –229 (c 0.31, benzene). The ee was determined after 
oxidation with H2O2 according to ref. 24b. Chiral column 
[Daicel Chiralpak AD, 0.46 cm ∅ × 25 cm, 254 nm UV 
detector, r.t., eluent 75:25 (n-heptane–2-PrOH), flow rate 
0.5 mL/min], tR = 14.25 min for S and 18.3 for R. (b) Sekar, 
G.; Nishiyama, H. J. Am. Chem. Soc. 2001, 123, 3603.

(25) General Procedure for the Reduction of 
Trialkylphosphine Oxides
In a 50 mL dried round-bottomed flask fitted with a 
magnetic stirrer and a condenser were placed the phosphine 
oxide (5.2 mmol) and methylcyclohexane (5 mL). Then, 
TMDS (1.14 mL, 6.5 mmol, 1.25 equiv) and Ti(Oi-Pr)4 (154 
mL, 0.52 mmol) were added to the reaction vessel. The 
heterogeneous mixture was stirred at 100 °C under an argon 
atmosphere. After 10 h, 31P NMR analyses showed the 
complete conversion of the starting reagent. The mixture 
was cooled down to 0 °C and 1 M BH3·THF (10.4 mL, 10.4 
mmol, 2 equiv) was added dropwise to the solution. The 
mixture was allowed to warm to r.t. and stirred for 1 h. The 
solution was again cooled down to 0 °C and a 3 N alcoholic 
KOH solution (10 mL) was added dropwise to the reaction 
vessel (caution: abundant foaming). After gas formation has 
subsided, the resulting heterogeneous mixture was stirred at 
50 °C under an argon atmosphere for 2 h. After cooling, the 
mixture was washed with H2O (2× 5 mL), a 10% aq solution 
of HCl (5 mL), and a sat. aq solution of NaHCO3 (5 mL). The 
resulting solution was dried upon MgSO4 and concentrated 
under vacuum, yielding a pale liquid containing only pure 
phosphine borane.
Tri-n-octylphosphine-borane (TOPB): yield 90%. 1H NMR 
(300 MHz, CDCl3): d = 1.61–1.20 (42 H, m), 0.95–0.81 (9 
H, m). 31P NMR (81 MHz, CDCl3): d = 15.6.
Tri-n-butylphosphine-borane (TBPB): yield 95%. 1H NMR 
(300 MHz, CDCl3): d = 1.54–1.35 (18 H, m), 0.90 (9 H, t, 
J = 7.1 Hz). 31P NMR (81 MHz, CDCl3): d = 15.6.

(26) General Procedure for the Reduction of Secondary 
Phosphine Oxides
In a 50 mL dried round-bottomed flask fitted with a 
magnetic stirrer and a condenser were placed secondary 
phosphine oxide (2 mmol) and methylcyclohexane (5 mL). 
Then, TMDS (0.44 mL, 2.5 mmol, 1.25 equiv) and Ti(Oi-
Pr)4 (59 mL, 0.2 mmol) were added to the reaction vessel. 
The heterogeneous mixture was stirred at 100 °C under an 
argon atmosphere overnight. After 10 h, 31P NMR analyses 
showed the complete conversion of the starting reagent. The 
mixture was cooled down to 0 °C and 2 M BH3·DMS (3 mL, 
6 mmol, 3 equiv) was added dropwise to the solution. The 
mixture was allowed to warm to r.t. and stirred for 2 h. The 
crude material was concentrated under vacuum and purified 
by flash chromatography EtOAc–cyclohexane (5:95) to give 
the product as a white solid.
Diphenylphosphine-borane: yield 85%. 1H NMR (300 MHz, 
C6D6): d = 7.44–7.38 (4 H, m), 6.98–6.88 (6 H, m), 5.85 (1 
H, d, J = 378 Hz), 2.40–1.36 (3 H, br m). 31P NMR (81 MHz, 
C6D6): d = 2.9.
Bis(4-methoxyphenyl)phosphine-borane: yield 89%. 1H 
NMR (300 MHz, CDCl3): d = 7.57 (4 H, dd, J = 8.9, 2.3 Hz), 
6.96 (4 H, d, J = 8.7 Hz), 6.23 (1 H, d, J = 378 Hz). 31P NMR 
(81 MHz, CDCl3): d = –1.54.
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