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Abstract: This study describes a direct oxidative C-2 arylation of
benzoxazoles using arylsulfonyl hydrazides as the aryl sources. A
simple catalyst system [Pd(OAc)2 and Ph3P] allows the reactions to
proceed smoothly under oxidative reaction conditions. Other
heteroarenes such as caffeine and benzothiazole are also applicable
substrates. Notably, this catalytic system tolerates halogen substitu-
ents which provides a useful complement to the current cross-
coupling reactions which use aryl halides.
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Cross-coupling protocols have been successful in modern
modular organic syntheses for the connection of two dif-
ferent fragments via the formation of carbon–carbon
and/or carbon–heteroatom bonds.1 To prepare useful bi-
aryl motifs,2 coupling methods such as Hiyama, Kumada,
Negishi, Stille and Suzuki–Miyaura coupling have been
found to be versatile in the past few decades.1 Even
though these reactions are effective, some intrinsic draw-
backs still exist in which the corresponding organometal-
lic nucleophiles must be prepared in situ (e.g. ArMgBr,

ArZnCl) or require isolation, in general, prior to the catal-
ysis [e.g. ArB(OH)2]. Thus, the assembling and subse-
quent disposal of stoichiometric organometallic agents
are relatively not desirable. In fact, direct C–H functional-
ization of heteroarenes is actually more straightforward.
This protocol serves as an attractive alternative to conven-
tional coupling protocols in terms of better atom econo-
my, environmental friendliness and more streamlined
chemical synthesis.3,4

In continuing our research focus of applying arylsulfonyl
compounds as effective aryl sources,5 we envisioned that
arylsulfonyl hydrazides could be employed as versatile
arylating agents. Indeed, arylsulfonyl hydrazides are sta-
ble under air and can be simply prepared in one step from
commonly available arylsulfonyl chlorides and hydrazine
hydrates. During the process of this work, Tian and co-
workers reported the first palladium-catalyzed Heck-type
reaction of alkenes with arylsulfonyl hydrazides.6 To the
best of our knowledge, the direct C–H arylation of benz-
oxazoles remain sporadically studied.7 In fact, with re-
spect to the reaction of olefins, the arylation of
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heteroarenes is known to be even more challenging be-
cause of the undesirable homocoupling outcome and de-
composition of heteroarenes is often observed under
oxidative conditions. In continuation of our research pro-
gram on C-2 functionalization of benzoxazoles,8 we here-
in report our efforts in the palladium-catalyzed direct
C–H arylation of benzoxazoles using arylsulfonyl hydra-
zides under oxidative reaction conditions.

We initially probed the efficacy of arylsulfonyl hydrazide
as the aryl source in the direct C–H arylation of hetero-
arenes (Table 1). Benzoxazole and 4-tolylsulfonyl hydra-
zide were used as benchmark substrates. Among
commonly used solvents screened, dioxane provided the
best results (entries 1–7). There were little differences in
product yield observed in the model reaction when other
palladium precursors were investigated (entries 1 and 8–13).

The palladium complex associated with triphenylphos-
phine gave slightly higher yield (entry 9 vs. entry 13).
Common inorganic/organic oxidants were also surveyed
(entries 1 and 14–21). Copper(II) acetate gave the best re-
sults while BQ and O2 provided inferior product yields. In
light of the successful initial results achieved, we next ex-
amined the effect of phosphine ligands in this reaction
(Scheme 1). Palladium(II) acetate with triphenylphos-
phine promoted the reaction and gave the highest product
yield. Yet, catalytic systems employing our previously de-
veloped tunable indolylphosphine ligands L1–L5 showed
moderate efficiency (Scheme 1).9

With our optimized reaction conditions in hand, we next
tested the scope of arylsulfonyl hydrazides (Table 2).10

The coupling reaction of sterically hindered 2-tolylsulfo-
nyl hydrazide proceeded smoothly (entry 3). Halogen sub-

Table 1  Initial Screening of Oxidative Arylation of 4-Methylbenzenesulfonyl Hydrazide and Benzoxazolea

Entry Pd source Solvent Oxidant Yield (%)b

1 Pd(OAc)2 dioxane Cu(OAc)2 51

2 Pd(OAc)2 DMF Cu(OAc)2 6

3 Pd(OAc)2 DMA Cu(OAc)2 39

4 Pd(OAc)2 NMP Cu(OAc)2 10

5 Pd(OAc)2 DMSO Cu(OAc)2 34

6 Pd(OAc)2 toluene Cu(OAc)2 16

7 Pd(OAc)2 H2O Cu(OAc)2 0

8 Pd(TFA)2 dioxane Cu(OAc)2 48

9 PdCl2 dioxane Cu(OAc)2 52

10 Pd(acac)2 dioxane Cu(OAc)2 47

11 PdCl2(MeCN)2 dioxane Cu(OAc)2 57

12 PdCl2(PCy3)2 dioxane Cu(OAc)2 46

13 PdCl2(PPh3)2 dioxane Cu(OAc)2 54

14 Pd(OAc)2 dioxane Cu(OAc)2H2O 36

15 Pd(OAc)2 dioxane Cu(acac)2 28

16 Pd(OAc)2 dioxane CuCl2 0

17 Pd(OAc)2 dioxane CuBr2 0

18 Pd(OAc)2 dioxane AgOAc 0

19 Pd(OAc)2 dioxane BQ 0

20 Pd(OAc)2 dioxane K2S2O8 0

21 Pd(OAc)2 dioxane O2 0

a Reaction conditions: 4-tolylsulfonyl hydrazide (0.45 mmol), benzoxazole (0.3 mmol), Pd catalyst (5 mol%), solvent (3 mL) and oxidant 
(0.6 mmol) were stirred at 120 °C for 18 h under air.
b Calibrated GC yields were reported using dodecane as internal standard.
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stituents (F, Cl, Br) on the arylsulfonyl hydrazide were
found to be compatible under these reaction conditions
(entries 4–6). Particularly noteworthy is that the tolerance
of chloro and bromo groups can offer an avenue for fur-
ther versatile functionalization using traditional cross-
coupling protocols.1

In addition to a variety of arylsulfonyl hydrazides exam-
ined, the substituted benzoxazoles were found to be feasi-
ble substrates (Table 3). Fluoro and chloro groups
remained intact during the course of the reaction (entries
5 and 6). Apart from benzoxazole, other heteroarenes
were applicable. Caffeine and benzothiazole could be ap-

Table 2  Palladium-Catalyzed Oxidative Arylation of Benzoxazole Using Arylsulfonyl Hydrazidesa

Entry ArSO2NHNH2 Benzoxazole Product Yield (%)b

1c 3aa 76

2 3ba 78

3d 3ca 72

4 3da 66

5c 3ea 60

6d 3fa 59

7 3ga 67

a Reaction conditions: arylsulfonyl hydrazide (0.45 mmol), benzoxazole (0.3 mmol), Pd(OAc)2 (5 mol%), Ph3P (10 mol%), dioxane (3 mL), 
Cu(OAc)2 (0.6 mmol) were stirred for 18 h at 120 °C under air.
b Isolated yields. 
c The reaction was conducted at 110 °C.
d The reaction was conducted at 100 °C.
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Scheme 2 Palladium-catalyzed direct C–H arylation of caffeine and benzothiazole with arylsulfonyl hydrazides
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plied in this catalytic system (Scheme 2). Moderate-to-
good product yields were observed. In particular, the
product 5 is a useful fluorescent molecule for cell imag-
ing.11

In summary, we have reported an oxidative protocol for
C-2 arylation of benzoxazoles using readily available and
easy-to-handle arylsulfonyl hydrazides as the aryl sourc-
es. Particularly noteworthy is that only a simple catalyst
system [Pd(OAc)2 and Ph3P] is required for this coupling
reaction. This methodology is a useful complement to the
current cross-coupling protocols as it tolerates halogen
substituents on both arylsulfonyl hydrazide and hetero-
arene coupling partners. Detail mechanistic study is cur-
rently under way.
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