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Design and synthesis of substrate-mimic inhibitors of mycothiol-S-
conjugate amidase from Mycobacterium tuberculosis
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Abstract—The Staudinger reaction between a polymer-supported triphenylphosphine reagent and pseudo-disaccharide azides is suc-
cessfully applied to synthesize a variety of substrate-mimic mycothiol analogs. Screening of this new group of analogs against the
mycobacterial detoxification enzyme mycothiol-S-conjugate amidase (MCA) yielded several modest inhibitors (IC50 values around
50 lM) and provided additional structure–activity relationships for future optimization of inhibitors of MCA and its homologs.
� 2006 Published by Elsevier Ltd.
Mycothiol (MSH, 1, Fig. 1) is a low molecular weight
thiol1–3 found exclusively in actinomycetes,4 a group
that includes the pathogen Mycobacterium tuberculosis.
Mycothiol functions analogously to glutathione in
Gram-negative bacteria and eukaryotes and plays an
important role as a detoxifying agent by covalently
binding to toxins, electrophiles, and drugs to form myc-
othiol-S-conjugates (MSE).5 This conjugate subsequent-
ly is cleaved at the amide bond by a detoxification
enzyme mycothiol-S-conjugate amidase (MCA) to yield
a mercapturic acid conjugate that is ultimately exported
from the cell.5 Mycothiol also is involved in maintaining
a redox equilibrium within the cell that is critical for a
reducing cellular environment.4

The absence of MSH in eukaryotes and Gram-negative
bacteria, along with the compelling evidence for in-
creased sensitivity of MSH-deficient mutants toward
electrophiles, free radicals, and antibiotics6, suggest that
enzymes involved in MSH biosynthesis and MSH-de-
pendent detoxification (namely MCA and biosynthetic
enzymes MshA–MshD) are potential targets for new
classes of antibiotics. Moreover, because inhibitors of
these enzymes may lead to new classes of compounds
that target with some specificity to mycobacteria, they
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are excellent choices for rational drug design and screen-
ing of small molecule inhibitors.

Previously, we and others have reported the total synthe-
sis of MSH and mycothiol bimane (Fig. 1, MSmB)7,8

which are key for performing structural studies of sub-
strates and inhibitors.9 In addition, we have identified
natural products and natural product-like synthetic
inhibitors that have shown inhibitory activities against
MCA.10–13 Here, as part of our ongoing effort to discover
new generations of anti-mycobacterial agents, we report
synthesis and evaluation of novel substrate-mimic inhib-
itors of MCA built upon a quinic acid-derived scaffold.

Our synthetic strategy to produce MSH-inspired sub-
strate-mimic analogs centered on incorporation of a qui-
nic acid template to replace the inositol ring of natural
MSH. This strategy is attractive for a number of rea-
sons: incorporation of quinic acid circumvents the
otherwise laborious and low-yielding transformations
to obtain optically pure myo-DD-inositol-containing ana-
logs;14,15 quinic acid is commerically available as a single
isomer; it can be coupled to a glycosyl donor with high
efficiency to produce a variety of analogs; and the pres-
ence of a relatively unreactive tertiary hydroxyl group as
a site of attachment for linkers makes the synthetic
scheme amenable to parallel synthesis.

Retrosynthetic analysis (Scheme 1) of quinic acid-con-
taining analogs led us to envision the use of protected
acceptor 3, readily derived from quinic acid; and glyco-
syl donor 5 that could be obtained from DD-mannopyra-
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Scheme 4. Glycosylation reaction.
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Figure 1. Mycothiol (1, MSH), MCA substrate mycothiol bimane (MSmB), and mycothiol-S-conjugate (MSE).
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Scheme 1. Retrosynthetic analysis.
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nose derivative 4. Glycosylation of 3 with 5 would then
furnish the core structure 6 for subsequent Staudinger
amidation to produce diverse mycothiol analogs.

The forward synthesis of target analogs proceeded with
preparation of glycosylation counterparts 3 and 5. Qui-
nic acid was transformed to protected acceptor 3 in four
steps according to published procedures (Scheme 2).16,17

Treatment of acid 2 with 2,2-dimethoxypropane under
acidic conditions gave the protected lactone that upon
reduction with NaBH4 gave triol 7. Subsequent protec-
tion of the vicinal diol of 7 provided compound 3 in
65% overall yield.

Glycosyl donor 3,4,6-tri-O-acetyl-2-azido-2-deoxy-a-DD-
glucopyranosyl chloride (5) was obtained starting from
commercially available 1,3,4,6-tetra-O-acetyl-b-DD-
mannopyranose (4) (Scheme 3). Following published
protocols,7,18 compound 4 was converted to its corre-
sponding triflate by treatment with Tf2O in Py/CH2Cl2,
and the triflate was reacted with sodium azide to give 8
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with inversion of configuration at C-2 (Scheme 3).
Treatment of 8 with a,a-dichloromethyl methyl ether
(DCMME) and ZnCl2 in refluxing chloroform gave gly-
cosyl chloride 5 in good yield (Scheme 4).

The reaction between acceptor 3 and donor 5 was effect-
ed by activation with silver triflate in the presence of
2,6-di-tert-butyl-4-methylpyridine (DTBMP) in dichlo-
romethane to give pseudo-disaccharide 6 with high a
selectivity (5:1 a/b ratio) and 71% yield.19

Inspired by recent reports describing the use of a poly-
mer-supported triphenylphosphine reagent for derivati-
zation of azides, we explored a similar method to
derivatize 6 efficiently.20–22 Thus, azido pseudo-disac-
charide 6 was treated with polymer-supported triphenyl-
phosphine reagent followed by in situ trapping of the
iminophosphorane intermediate with 14 varied acid
chlorides (Scheme 5).23 This sequence produced the
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Table 1. Yields of analogs 9a–9n and inhibition of mycothiol-S-

conjugate amidase
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desired amide analogs 9a–n cleanly and with good yields
ranging from approximately 40 to 80% (Table 1).
Among the acid chlorides used for derivatization, reac-
tion with p-nitrobenzoyl chloride (to give 9f) and p-tri-
fluoromethyl benzoyl chloride (to give 9g) gave the
highest overall yields (�80%), while the reaction with
p-(N,N-dimethyl amino) benzoyl chloride (to give 9e)
gave the lowest yield (�40%) for its amide product.
These differences likely arise from the respective electron
withdrawing versus electron donating character of the
para substituents of the acid chlorides used to generate
9f/g versus 9e, and their respective activating or deacti-
vating effect on the carbonyl center that undergoes at-
tack by the iminophosphorane intermediate. The final
stages of the synthesis were accomplished by global
deprotection to give the desired mycothiol analogs 9a
through 9n.

Compounds 9a–n were tested for inhibition of recombi-
nant MCA using a fluorescence detected HPLC assay
employing mycothiol bimane (MSmB, Fig. 1) or its
cyclohexyl thioglycoside analog13 as substrate as de-
scribed previously.11 Compounds were tested at two
concentrations, namely 100 lM and 50 lM, and results
from screening at 50 lM are summarized in Table 1.
Compounds 9d and 9e were found to be the most active
against MCA inhibiting the enzyme by approximately
45% at 50 lM to indicate that derivatization with nitro-
gen-containing moieties such as pyridinyl or para-amino
phenyl groups contributes favorably to binding of this
scaffold to MCA.

Recent reports describing high density mutagenesis or
systematic gene silencing in M. tuberculosis have provid-
ed further evidence that MSH is essential for growth and
survival of this pathogen.24,25 Discovery and synthesis
of small molecule inhibitors and probes of MSH biosyn-
thesis and detoxification will thus continue to be of great
importance in relation to the need for new antitubercu-
lars. Previously, Knapp and co-workers demonstrated
that the cyclitol present in natural MSH can be replaced
by a cyclohexyl unit to obtain mycothiol conjugates and
analogs that can function, respectively, as substrates14

or inhibitors.15 On the other hand, through synthesis
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Scheme 5. Staudinger amidation employing polymer-supported tri-

phenylphosphine reagent.
of MSH precursors DD-GlcN-myo-DD-Ins and DD-GlcN-
myo-LL-Ins we showed previously that the stereochemis-
try of the hydroxyl groups on the cyclitol are critical
as myo-LL-Ins-containing substrates were tolerated by
the biosynthetic or detoxification enzymes.26
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The work described here, which incorporates a new moi-
ety in place of myo-DD-Ins, namely a quinic acid-derived
ring system, provides further insight into the specificity
of MSH-associated enzymes and their substrates. In
summary, starting from quinic acid and a suitable azido
glycosyl chloride intermediate, we have generated with
efficiency a small but diverse library of new MCA inhib-
itors by employing a Staudinger reaction using polymer-
supported triphenylphosphine. The discovery that two
of these compounds inhibit the M. tuberculosis enzyme
MCA with IC50 values around 50 lM provides a start-
ing point for future elaboration of these scaffolds, which
may yield more potent MCA inhibitors and provide
additional structure–activity relationships.
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