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ABSTRACT: The dinuclear β-diketiminato NiII tert-butoxide {[Me3NN]Ni}2(μ-
OtBu)2 (2), synthesized from [Me3NN]Ni(2,4-lutidine) (1) and di-tert-butylperoxide,
is a versatile precursor for the synthesis of a series of NiII complexes [Me3NN]Ni−FG
(FG = functional group) to illustrate C−C, C−N, and C−O bond formation at NiII via
radical capture. {[Me3NN]Ni}2(μ-O

tBu)2 reacts with nitromethane, alkyl and aryl
amines, acetophenone, benzamide, ammonia, and phenols to deliver the corresponding
mono- or dinuclear [Me3NN]Ni−FG species (FG = O2NCH2, R−NH, ArNH,
PhC(O)NH, PhC(O)CH2, NH2, and OAr). Many of these NiII complexes are capable
of capturing the benzylic radical PhCH(•)CH3 to deliver the corresponding
PhCH(FG)CH3 products featuring C−C, C−N, or C−O bonds. Density functional theory studies shed light on the mechanism
of these transformations and suggest two competing pathways that depend on the nature of the functional groups. These radical
capture reactions at [NiII]−FG complexes outline key C−C, C−N, and C−O bond forming steps, foreshadowing families of nickel
radical relay catalysts.

■ INTRODUCTION

Nickel complexes serve as highly effective catalysts for cross-
coupling reactions.1 Alongside palladium, nickel has been used
extensively for both Suzuki−Miyaura and Negishi cross-
couplings.2 Over the past few decades, the scope of cross-
coupling reactions has improved well beyond more conven-
tional biaryl synthesis and now includes several types of
coupling partners. For instance, Ni-catalyzed protocols for
Csp

3−Csp
3 bond formation with alkyl halides and organic

nucleophiles bound to Mg, B, Si, Zn, Sn, and Zr can furnish
high yields along with high stereoselectivity in some cases
(Figure 1a).3

Nickel catalysis also enables cross-electrophile coupling
between sp3 and sp2 as well as sp3 electrophiles (Figure 1b).4a−f

A commonly accepted mechanism involves the oxidative
addition of R−X that generates a X−[NiII]−R species followed
by attack of an alkyl radical R′• generated from R′−X′ under
reductive conditions to give the R−R′ coupled product. These
reactions can also proceed via metallaphotoredox conditions
that generate the alkyl radical R′• from carboxylic acids,
organoborate salts, alkylsilicates, and aryl halides, as well as
from sp3 C−H bonds via H atom abstraction (Figure 1c).4g−r

Attack of the alkyl radical R′• on X-[NiII]−R provides a NiIII

complex X−[NiIII](R)(R′) susceptible to reductive elimination
(Figure 1d). Alternatively, this NiIII intermediate can be
generated from a NiI organometallic [NiI]−R′ upon the
oxidative addition of R−X.4s−u In either case, the coupling
partners assemble to form a NiIII intermediate that enables R−
R′ bond formation.

As Csp
3−H bonds are ubiquitous in organic molecules,

discovering new methods to carry out Csp
3−H functionaliza-

tion opens new opportunities to modify existing molecules.
Several Csp

3−H functionalization protocols catalyzed by first-
row transition metals such as Mn,5 Fe,6 Co,7 Ni,8 and Cu9 are
proposed to proceed via capture of an organic C-based radical
(R•) by the metal center [M]−FG (where FG is the desired
functional group) to furnish the organic product R−FG. In
particular, several groups have successfully used nickel as an
efficient catalyst for Csp

3−H functionalization to form Csp
3−C

and Csp
3−N bonds via a radical-relay mechanism (Figure 2).8

For instance, Ni(acac)2 has been used as an effective catalyst in
Csp

3−Csp
2 bond formation in the presence of tBuOOtBu as an

external oxidant (Figure 2a,b).8 Similarly, Ni(acac)2 was shown
to be an effective catalyst for N-alkoxyamidation of simple
aliphatic hydrocarbons under oxidative conditions (Figure
2f).8f Recently, alkynylation of simple (cyclo)alkanes with
terminal alkynes has been reported via a multimetal catalyzed
reaction strategy in which Csp

3−Csp bond formation takes place
at Ni (Figure 2e).8a,c While these C−H functionalization
reactions are not as mechanistically well-defined, alkyl radicals
R• are thought to be involved en route to R−FG formation.
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The longest known system for catalytic C−H functionaliza-
tion that involves radical capture is the copper-catalyzed

Khasrasch−Sosnovky reaction.9 Seminal work by Kharasch and
Sosnovsky introduced Cu as an effective catalyst for the
formation of C−O bonds from a peroxyester.9j In the presence
of cuprous salts, tert-butyl perbenzoate (tBuO-OC(O)Ph)
reacts with various olefins to construct new Csp

3−O bonds in
the corresponding allylic benzoates.9j It is thought that a
radical R• generated via H atom abstraction of R−H from an
alkoxy radical reacts with a [CuII]−FG complex to deliver R−
FG products. Kochi demonstrated that a range of CuII

complexes containing the anions FG− (FG = O2CR, Cl, Br,
I, SCN, N3, and CN) lead to R−FG bond formation.10 More
recently, we have unequivocally demonstrated radical capture
by [CuII]−FG complexes (FG = anilide, phenoxide) formed by
acid−base reaction between [CuII]−OtBu and H−NHAr or
Ac−OAr enables C−H amination and etherification (Figure
3).11 Such radical-relay mechanisms have also been used for
C−C bond formation.12

To expand the scope of functional groups that can be
installed via sp3 radicals, we were intrigued by the possibility of
related radical capture reactions at corresponding nickel
complexes [NiII]−FG (Figure 3). We hypothesized that such
nickel complexes could generally be more thermally stable than
corresponding [CuII]−FG complexes that can be prone to
reduction to [CuI], either via H atom abstraction to form H−
FG11c or via formation of FG−FG bonds (e.g., FG =
NHPh).11g This study outlines a general pathway for the
formation of a wide range of [NiII]−FG species from a
common [NiII]2(μ-O

tBu)2 intermediate that features a basic
tert-butoxide group that enables facile acid−base reactions with
a range of H−FG species. Many of these [NiII]−FG species
undergo radical capture with the PhCH(•)Me radical,
foreshadowing new potential families of nickel catalysts for
radical relay reactions.

■ RESULTS AND DISCUSSION13

Synthesis and Characterization of Dinuclear Nickel(II)
tert-Butoxide 2. Since β-diketiminato [CuII]−OtBu com-
plexes allow for acid−base reactions with diverse H−FG
species to form [CuII]−FG intermediates that function in

Figure 1. Ni-catalyzed cross-coupling reactions.

Figure 2. Csp
3−H functionalization catalyzed by Ni through alkyl

radical capture.

Figure 3. Top: C−N and C−O bond formation by radical capture at
a copper(II) anilide and phenolate. Bottom: Radical capture at related
NiII complexes investigated in this work.
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radical relay catalysis,11 we sought the synthesis of the
corresponding nickel analogue. Addition of excess tBuOOtBu
to a solution of nickel(I) complex [Me3NN]Ni(2,4-lutidine)
(1)14 in Et2O at RT results in the precipitation of the NiII

alkoxide {[Me3NN]Ni}2(μ-O
tBu)2 (2) in 82% isolated yield as

a dark green solid (Figure 4). Slow vapor diffusion of
tBuOOtBu into a toluene solution of 1 forms dark green
crystals suitable for single-crystal X-ray diffraction. The solid-
state structure of dinuclear 2 consists of two monomeric
[Me3NN]Ni

II−OtBu units in which the two Ni centers are
related by an inversion center with a Ni···Ni separation of
3.058 Å (Figure 4). Complex 2 exhibits pseudotetrahedral
coordination at Ni with twist angles between N−Ni−N and
O−Ni−O planes of 83.01° and Ni−O distances of 1.9527(14)
and 1.9828(14) Å. Dinuclear 2 is structurally similar to
{[Me3NN]Ni}2(μ-OCy)2 (Cy = cyclohexyl) originally synthe-
sized by reaction of ONOCy with [Me3NN]Ni

I(lut).15 As
suggested by its tetrahedral geometry around the Ni center,
complex 2 is paramagnetic in solution with a μeff of 3.3(4) B.M.
in toluene-d8 by the Evans method,16 indicating some degree
of antiferromagnetic coupling.
Despite the dinuclear nature that renders it rather insoluble

in common hydrocarbon solvents, 2 reacts readily with a
number of mildly acidic substrates H−FG to provide
mononuclear [NiII]−FG and dinuclear [NiII]2(μ-FG)2 com-

plexes (FG = NO2CH2, CH2C(O)Ph, NHC(O)Ph, NHAr,
NHR, or OAr) as illustrated in Figure 5.

Synthesis and Characterization of Mononuclear
Nickel(II) Nitromethanoate 3, Enolate 4, and Benza-
mide 5. {[Me3NN]Ni}2(μ-O

tBu)2 (2) reacts with nitro-
methane to form mononuclear complex [Me3NN]Ni(κ

2-
O2NCH2) (3) isolated as red crystals from ether in 78%
(Figure 6a). Complex 3 exhibits a somewhat unusual O,O′-
nitromethanoato coordination mode17 that gives rise to square
planar coordination at the NiII center. The Ni−O distances in
3 are 1.9064(13) and 1.9281(13) Å with O−N−O and O−
Ni−O angles of 110.03(14)° and 69.20(5)°, respectively
(Figure 6a). The CN distance is significantly shortened to
1.280(2) Å that indicates substantial CN double-bond
character as compared to a normal C−N single bond at 1.47 Å
(Figure 6a). This square planar complex is diamagnetic whose
NMR spectra in benzene-d6 exhibit effective C2v symmetry.
The IR spectrum of 3 shows νNO bands at 1608 and 1624 cm−1

along with νCN at 1529 cm−1 in accordance with reported
literature values.17

Upon reaction with 2 equiv of acetophenone, complex 2
furnishes [Me3NN]Ni(η

3-CH2C(O)Ph) (4) as yellow crystals
from ether in 60% isolated yield. While there are several early
transition-metal−enolate structures with either κ2- or η3-O-
binding coordination bonding modes,18 complex 4 is a
particularly rare, first-row transition-metal−enolate with both
O- and C-coordination, joined by only [NNN]Cu(κ1-OC(C
C(Me)Ph) recently reported by Tolman.18c The phenyl
enolate ligand binds to the nickel center through an η3-
interaction involving the O,C, and C atoms in the delocalized
π-system. The Ni−CCH2

and Ni−O bond distances in 4 are
2.0570(16) and 1.9055(11) Å, respectively, while the Ni−
Ccarbonyl bond length is 2.0400(16) Å (Figure 6b). The IR
spectrum of 4 shows a νCO band at 1651 cm−1. Similarly, 2
reacts with 2 equiv of benzamide to yield an analogous
[Me3NN]Ni(κ

2-NHC(O)Ph) (5) complex isolated in 55%
yield as brown crystals. Benzamide complex 5 exhibits square
planar structure (Figure 6c) closely related to that of 4. The
Ni−Namide and Ni−O bond distances in 5 are 1.948(19) and
1.906(13) Å, respectively, while the Ni−Ccarbonyl bond length is
2.316(5) Å. Thus, 5 is best considered κ2-N,O with the Ni
center only 33.95° out of the benzamide O−C−N plane,

Figure 4. Synthesis and crystal structure of complex 2.

Figure 5. Synthetic pathways for the synthesis of NiII complexes 3−11.
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whereas in η3-O,C,C-acetophenone enolate 4, the Ni center is
64.20° out of the enolate O−C−C plane.
Diamagnetic 4 and 5 exhibit fluxional 1H NMR spectra in

toluene-d8. At −80 °C, 4 and 5 each shows two sets of two
distinct β-diketiminato N-aryl ortho-Me, para-Me, and back-
bone Me resonances (Figures S21−S22) consistent with their
solid-state structure that possess two different donors in square
planar 4 and 5. Warming results in coalescence of these sets of
resonances indicating a symmetrization within the coordina-
tion wedge that may proceed via three-coordinate κ1-enolate
and κ1-benzamide intermediates or tetrahedral κ2-intermedi-
ates. The barrier is higher for enolate derivative 4 than for

benzamide 5 with ΔG⧧(288 K) = 13.9(4) kcal/mol and
ΔG⧧(207 K) = 10.3(2) kcal/mol, respectively (Figures S21
and S22).

Synthesis and Characterization of Dinuclear Nickel(II)
Alkylamide 6, Anilide 7, and Parent Amide 8. Both
phenethylamine and 3,5-dimethylaniline undergo an acid−base
reaction with 2 to provide dinuclear complexes {[Me3NN]-
Ni}2(μ-NHCH2CH2Ph)2 (6) and {[Me3NN]Ni}2(μ-
NHPh3,5‑Me2)2 (7) isolated as red crystals in 58 and 62%
yields, respectively (Figures 7a,b). X-ray structures of 6 and 7
reveal dinuclear, slightly distorted square planar structures
bridged by amide or anilide ligands to give Ni centers related

Figure 6. Crystal structures of complexes 3, 4, and 5. Ellipsoids are shown at 50% (3 and 4) and 30% (5) probability. H atoms have been omitted
for clarity with the exception of the C−H bonds in nitromethanoato and enolato ligands in 3 and 4, respectively, as well as the amido N−H bond in
5.

Figure 7. Crystal structures of complexes 6, 7, and 8. Ellipsoids are shown at 30% (6 and 7) and 50% (8) probability levels and hydrogen atoms
have been omitted for clarity with the exception of the N−H bonds in amido and anilido ligands.

Figure 8. Crystal structures of complexes 9 (left), 10 (middle), and 11 (right). Ellipsoids are shown at 30% (9) and 50% (10 and 11) probability
levels and hydrogen atoms have been omitted for clarity except the N−H bonds in the anilido ligand of 11.
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by inversion symmetry with Ni···Ni separations of 2.949 and
2.998 Å, respectively (Figures 7a,b). The Ni−Namido distances
in 6 are 1.918(3) and 1.922(3) Å, whereas 7 shows Ni−Namido
bond lengths of 1.9462(13) and 1.9551(13) Å. In both
complexes 6 and 7, the Ni centers adopt a twisted square
planar geometry with angles of 20.02 and 22.14° between the
Nβ‑dik−Ni−Nβ‑dik and opposing N3−Ni−N3′ planes, respec-
tively. In solution, 7 is diamagnetic and possesses a 1H NMR
spectrum in C6D6 at room temperature (Figure S15) that
features a β-diketiminato C−H backbone resonance at δ 4.51
ppm with two different signals for the β-diketiminato N-aryl
meta-Ar−H sites at δ 6.880 and 6.464 ppm. Thus, 7 maintains
its dimeric, square-planar structure in solution at room
temperature with one anilido NArMe2 group above and below
the N3−Ni−N3′ plane.
A particularly novel complex, the parent amido species

{[Me3NN]Ni}2(μ-NH2)2 (8), was isolated in 91% yield as
orange crystals by slow diffusion of NH3 into a solution of
{[Me3NN]Ni}2(μ-O

tBu)2 (2) (Figure 8c). As compared to
dinuclear amido complexes 6 and 7, parent amide 8 possesses
the shortest Ni−Namide bond distances of 1.9001(11) and
1.9017(11) Å that result in a shortened Ni···Ni separation of
2.919 Å (Figure 7c). The twist angle between the Nβ‑dik−Ni−
Nβ‑dik and Namide−Ni−Namide planes of 18.42° deviates least
from idealized square planar geometry, likely a result of the
minimal steric demands of the amido ligands. Unfortunately, 8
is not soluble in organic solvents even at elevated temper-
atures, which hampers its solution characterization. FT-IR
spectrum of 8 shows two peaks at 3430 and 3413 cm−1 as a
result of two N−H stretching modes of the amido ligand.
Synthesis and Characterization of Dinuclear and

Mononuclear Nickel(II) Phenolates 9 and 10 and
Mononuclear Anilide 11. Nickel(II) complexes [NiII]−FG
that bear weaker donors give rise to dinuclear or mononuclear
species that are paramagnetic. For instance, addition of 2 equiv
of phenol to {[Me3NN]Ni}2(μ-OBu

t)2 (2) in ether at RT gives
the dinuclear phenoxide complex {[Me3NN]Ni}2(μ-OPh)2
(9) as dark green crystals (Figure 8a). The X-ray structure
of 9 reveals a distorted tetrahedral environment around the
NiII centers with Ni−O distances of 1.966(3) and 1.967(3) Å
along with a Ni···Ni separation of 3.115 Å, which is the longest
in the series of dinuclear complexes 6, 7, and 8 (Figures 8a−c).
This complex is paramagnetic in solution with a μeff of 2.7(2)
B.M. in benzene-d6 by the Evans method.16

Addition of the bulky, electron-poor 2,4,6-trichlorophenol or
2,4,6-trichloroaniline to 2 provided deep blue [Me3NN]Ni−
OPh2,4,6‑Cl3 (10) or teal [Me3NN]Ni−NHPh2,4,6‑Cl3 (11)
isolated in 49 and 40% yields, respectively (Figures 8b,c).
These structures feature much shorter Ni−N and Ni−O
distances to the anilido or phenoxy donors, 1.8765(19) and
1.8812(12) Å, respectively, than observed in the dinuclear
structures of 7 and 9. Interestingly, these structures are best
described as pseudotetrahedral due to coordination of one of
the ortho-Cl atoms with Ni−Cl distances of 2.4811(6) and
2.4595(5) Å in anilido 10 and phenoxy 11, respectively.
Accordingly, each is paramagnetic in solution with magnetic
susceptibilities (benzene-d6) of 2.8(1) and 2.6(2) B.M.,16

respectively. This is consistent with S = 1, high-spin d8

electronic structures.
Capture of the PhCH(•)Me Radical by [NiII]−FG

Complexes. We explored the radical capture ability of each
[Me3NN]Ni−FG complex 3−11 through the in situ
generation of the secondary benzylic radical PhCH(•)Me

from the aliphatic azo compound (E/Z)-azobis(α-phenyl-
ethane) at 100 °C (Figure 9).19 Reaction of complexes 3−7
and 9 with (E/Z)-azobis(α-phenylethane) at 100 °C in
fluorobenzene solvent gave 25−67% yields of the correspond-
ing radical capture products PhCH(FG)Me. Thus, radical
capture at [NiII]−FG complexes results in the formation of C−
C (59% for 3 and 61% for 4), C−N (67% for 5, 55% for 6, and
25% for 7), and C−O (48% for 9) bonds. In the case of
complex 7, concomitant formation of diazene ArNNAr (Ar
= 3,5-Me2C6H3) was observed in 49% GC yield along with
25% yield of the amination product PhCH(NHAr)Me. For the
parent amide complex {[Me3NN]Ni}2(μ-NH2) (8) only a
trace amount of the C−H amination product PhCH(NH2)Me
was detected by GC-MS analysis, attributed to its poor
solubility, even at elevated temperatures.
In contrast, mononuclear complexes [Me3NN]Ni−FG with

bulky, electron-poor functional groups (FG = OArCl3 (10) or
NHArCl3 (11)) did not result in radical capture. Rather, only
erythro and threo isomers of the ethylbenzene radical dimer
PhCH(Me)−CH(Me)Ph are observed. In fact, this product of
PhCH(•)Me radical dimerization occurs in comparable
amounts across all reactions. Control experiments show no
radical capture at room temperature after overnight stirring of
the complexes with (E/Z)-azobis(α-phenylethane) in PhF.

Computational Analysis of Radical Capture Pathways
at Nickel(II) Nitromethanoate 3 and Benzamide 5. Most
mechanistic proposals for Ni-catalyzed Csp2-Csp3 bond
formation involve radical capture at NiII to form a NiIII

organometallic complex, followed by reductive elimination
(Figures 1d and 10, route a).4,20 A less prominent mechanism
involves concerted bond formation between the PhCH(•)Me
radical at the functional group (Figure 10, route b).21 When
radical capture at the functional group involves bond formation
with an atom that is bound to the metal center, both radical
capture at the metal center and functional group could be
competitive. To illustrate this competition between radical
capture pathways, we computationally considered capture of

Figure 9. PhCH(•)Me radical capture by [NiII]−FG complexes.
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the PhCH(•)Me radical at NiII nitromethanoate 3 and
benzamide 5.
DFT studies at the BP86+GD3BJ/6-311++G(d,p)/SMD-

benzene// BP86/6-31+G(d)/SMD-gas level of theory consid-
er both distinct pathways to form PhCH(FG)Me products
from 3 and 5 with PhCH(•)Me. In all cases, we consider the
NiI solvento species [Me3NN]Ni(η

2-benzene) as the final
product to assess the overall thermodynamics of radical
capture. Accordingly, capture of the ethylbenzene radical by
nitroalkanoate [Me3NN]NiII(κ2-O2N = CH2) (3) and
benzamide [Me3NN]Ni(κ

2-NHC(O)Ph) (5) is thermody-
namically favored with ΔGrxn = −18.2 and −8.1 kcal/mol,
respectively (Figure 11).
We considered in detail the interaction of the ethylbenzene

radical with nitroalkanoate 3 (Figure 11a). Radical capture at
the metal center to form the NiIII organometallic species
[Me3NN]Ni

III(κ2-O2NCH2)(CH(Ph)CH3) is endergonic (ΔG
= +5.8 kcal/mol) and possesses a barrier of 11.3 kcal/mol.
However, direct capture of the radical at the C atom of the
nitroalkanoate ligand in [Me3NN]Ni

II(κ2-O2NCH2) (3) is
significantly exergonic to form [Me3NN]Ni(κ

2-O2NCH2−
CH(CH3)Ph) with ΔG = −15.9 kcal/mol. Importantly, this
direct capture exhibits only a modest barrier of 7.5 kcal/mol,
which is lower in energy than the barrier for the formation of
the NiIII intermediate. Thus, direct C−C bond formation at the
nitromethanoate ligand is favored over initial radical capture at
the metal center.
Examining the interaction of ethylbenzene radical (R•) with

benzamide 5 (Figure 11b), we find that capture at the metal

center to form the NiIII organometallic species [Me3NN]-
NiIII(κ2-NHC(O)Ph)(CH(Ph)CH3) is slightly endergonic at
3.2 kcal/mol with a barrier of 8.8 kcal/mol. The overall barrier
for C−N bond formation comes from the reductive
elimination of [Me3NN]Ni

III(κ2-NHC(O)Ph)(CH(Ph)CH3)
at 13.6 kcal/mol. We also considered the alternative pathway
with the formation of a [Me3NN]Ni

III(κ1-NH(CH(Ph)CH3)-
C(O)Ph) intermediate via radical capture at the functional
group. We took into consideration the binding of the radical at
[Me3NN]Ni

III(κ2-NHC(O)Ph) 5, but a relaxed potential
energy scan found that isomerization occurred prior to radical
binding. We propose that the [Me3NN]Ni(κ

2-NHC(O)Ph)
will isomerize to form a [Me3NN]Ni(κ

1NHC(O)Ph) complex
endergonically at +6.7 kcal/mol with a barrier of 9.4 kcal/mol
(at 298 K). While other isomers of [Me3NN]Ni(κ

2-NHC(O)-
Ph) were considered, we found that the [Me3NN]Ni(κ

1-
NHC(O)Ph) isomer was the most likely pathway (Scheme
S3). The calculated barrier for κ2 to κ1 isomerization is close to
the experimental value ΔG⧧(207 K) = 10.3(2) kcal/mol for
symmetrization determined by variable temperature NMR
(Figure S22). [Me3NN]Ni(κ

1-NHC(O)Ph) can then undergo
direct radical capture at the functional group to form
[Me3NN]Ni(NH(CH(CH3)C(O)Ph) complex (ΔGoverall =
−6.4 kcal/mol) with an overall barrier of +14.9 which is
higher in energy than the barrier for the radical capture at the
metal center by 1.3 kcal/mol. While the barrier for radical
capture is slightly higher in energy at the metal center than at
the functional group, the difference between both pathways is
within the range of error suggesting that these pathways could
be competitive.
For [Me3NN]Ni

II(κ2-O2NCH2) (3) radical capture at the
functional group is situated away from the metal center and
thus is the thermodynamically favored pathway. For radical
capture involving [Me3NN]Ni(κ

2-NHC(O)Ph) (5), however,
a rearrangement is necessary for direct bond formation to
occur at the functional group. This barrier is within the same
thermodynamical range as radical capture at the metal center.
The results of this DFT study indicate that the mechanism is
highly dependent upon the functional group. This outlined
mechanism gives new insight into the importance of the
functional group in radical capture allowing for new variables
to be explored to improve catalytic function.

Figure 10. Possible mechanistic routes for [NiII]−FG radical capture
in benzene.

Figure 11. Possible mechanistic routes for radical capture at [Me3NN]Ni
II−FG complexes 3 and 5 in benzene at 298 K. Transition states that are

barriers for the pathway are bolded. All metal complexes are S = 1/2 species except 3,5-κ2-N,O, and 5-κ1-N. All values are in kcal/mol at 298 K.
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■ CONCLUSIONS
{[Me3NN]Ni}2(μ-O

tBu)2 (2) serves as a versatile precursor
for the installation of a variety of functional groups onto the β-
diketiminato NiII center. H−FG reagents such as ammonia,
alkyl amines, anilines, nitromethane, acetophenone, benza-
mide, and phenols cleanly react with 2 to give mono- and
dinuclear β-diketiminato [NiII]−FG species that may be
isolated and fully characterized. Despite the considerably
higher pKa of many of the N−H and C−H bonds in substrates
used to install functional groups at NiII via {[Me3NN]Ni}2(μ-
OtBu)2 (2) as compared to the leaving H−OtBu, the
preference of later first row metals for somewhat softer donors
overcomes this unfavorable pKa difference, in some cases
assisted by chelation. Importantly, the mononuclear S = 0
[NiII]−FG complexes as well as the soluble dinuclear
[NiII]2(μ-FG)2 complexes capture the alkyl radical PhCH(•)-
CH3 to form PhCH(FG)CH3, clearly illustrating the ability of
a range of NiII complexes [NiII]−FG to mediate C−C, C−N,
and C−O bond forming steps via Csp

3 radicals R•. Since nearly
all complexes of 3−7 and 9 that undergo radical capture are
reasonably stable at high temperatures required for PhCH(•)-
CH3 generation from the corresponding diazene RNNR
(Figures S23−S27), it is unlikely that alkyl radical capture
proceeds via ejection of a (•)FG radical from [NiII]−FG
complexes. Rather, alkyl radical capture occurs at somewhat
sterically shielded [NiII]−FG complexes, further supported by
the lack of radical capture when [NiII](κ2-NHC(O)Ph) (5) is
heated with with tBuNNtBu that readily generates the more
hindered tBu(•) radical.22

Curiously, mononuclear S = 1 NiII phenolate 10 and anilide
11 did not provide radical capture products. This suggests that
their rates of radical capture are much slower than those of the
other complexes bearing more electron-rich functional groups.
Thus, there may be an electronic basis for the differential
radical capture behavior since these mononuclear complexes
do not have any obvious steric constraints against radical
capture. Moreover, computational studies identify competing
pathways for R−FG bond formation, indicating that radical
capture at NiII to give a NiIII intermediate is not always the
favored pathway as commonly assumed (Figure 1). Since
[NiII]−OtBu intermediates can be formed via interaction of
tBuOOtBu and [NiI] as well as undergo facile acid−base
reactions with H−FG to form key [NiII]−FG intermediates,
these [NiII]−FG species provide fresh insight into an array of
bond forming reactions that can be realized through C−H
functionalization utilizing new nickel radial relay catalysts.
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