

Available online at www.sciencedirect.com

Polyhedron 26 (2007) 4147-4155

Gallium(III) halide complexes with phosphines, arsines and phosphine oxides – a comparative study

Fei Cheng, Hannah L. Codgbrook, Andrew L. Hector, William Levason, Gillian Reid *, Michael Webster, Wenjian Zhang

School of Chemistry, University of Southampton, Highfield, Southampton SO17 1BJ, UK

Received 26 March 2007; accepted 4 May 2007 Available online 22 May 2007

Abstract

The phosphine oxide complexes $[GaX_3(Me_3PO)]$ and $[(GaX_3)_2\{\mu-o-C_6H_4(CH_2P(O)Ph_2)_2\}]$ have been prepared and characterised by microanalysis, IR and multinuclear NMR (¹H, ¹³C{¹H}, ³¹P{¹H} and ⁷¹Ga) spectroscopy. The structures of $[GaCl_3(Me_3PO)]$, $[(GaBr_3)_2\{\mu-o-C_6H_4(CH_2P(O)Ph_2)_2\}]$ and of the ionic product $[GaI_2(Me_3PO)_2][GaI_4]$ have been determined and show that the Lewis acidity of the gallium halides towards phosphinoyl ligands diminishes as the halogen becomes heavier. The $[GaX_3(Ph_3E)]$ (X = Cl, Br or I; E = P or As) and $[(GaX_3)_2\{\mu-o-C_6H_4(CH_2PPh_2)_2\}]$ (X = Br or I) have been prepared and their structural and spectroscopic properties compared with those of the phosphinoyl complexes. The results, and competitive solution NMR studies, show that Ga(III) binds the hard R₃PO in preference to the softer phosphine or arsine ligands. Hydrolysis of gallium(III) phosphines is shown to lead to $[R_3PH][GaX_4]$, but in contrast to some other p-block halides, GaX₃ do not promote air-oxidation of R₃P to R₃PO.

Keywords: Gallium; Phosphine oxide; Phosphine; Phosphonium; NMR spectroscopy

1. Introduction

The heavier p-block metals and metalloids have a rich, albeit poorly explored, coordination chemistry, which is significantly different to that of the transition elements [1,2]. The differences arise from the limited range of oxidation states in the p-block and also from the different metalligand bonding which utilises only s and p orbitals and where necessary multicentre orbitals or M–X σ^* (X = halogen, etc.) as acceptor orbitals [3–5]. We have recently explored the complexes of Sn(IV) [6–10], Bi(III) [11–13], Tl(I) [14] and Sb(III) [11,15,16] with a variety of P, As, S, Se and Te donor ligands. Here we report a comparative structural and spectroscopic study of gallium(III) halide complexes with soft P or As (R₃E) and hard R₃PO donor

E-mail address: gr@soton.ac.uk (G. Reid).

ligands. There are limited reports of gallium(III) halide complexes of phosphorus or arsenic donor ligands [17–27], and only one phosphine oxide complex, [GaCl₃(Ph₃PO)], has been thoroughly characterised [28]. We have also explored whether gallium(III) promotes or catalyses air-oxidation of R_3P to R_3PO as established previously for Sn(IV) and Bi(III) halides [29,30].

2. Results and discussion

2.1. Ga(III) phosphine oxides

Reaction of the appropriate GaX₃ (X = Cl, Br or I) with Me₃PO in a 1:1 mol. ratio in CH₂Cl₂ under anhydrous conditions gave the white [GaX₃(Me₃PO)]. The diphosphine dioxide complexes [(GaX₃)₂{ μ -o-C₆H₄(CH₂P(O)Ph₂)₂}] were obtained similarly using a 2:1 GaX₃:o-C₆H₄(CH₂P-(O)Ph₂)₂ ratio. The isolated complexes are air-stable in the solid state and easily soluble in a range of organic

^{*} Corresponding author. Tel.: +44 023 80593609; fax: +44 023 80593781.

^{0277-5387/\$ -} see front matter @ 2007 Elsevier Ltd. All rights reserved. doi:10.1016/j.poly.2007.05.008

Table 1 Selected bond lengths (Å) and angles (°) for [GaCl₃(Me₃PO)]

	8 () 8		/1
Ga1–O1	1.828(6)	Ga1–Cl1	2.162(2)
Ga1–Cl2	2.161(2)	Ga1-Cl3	2.159(2)
P1-O1	1.518(7)		
O1-Ga1-Cl3	108.9(3)	O1-Ga1-Cl2	106.5(2)
Cl3-Ga1-Cl2	109.60(11)	O1-Ga1-Cl1	109.9(2)
Cl3-Ga1-Cl1	111.28(10)	Cl2-Ga1-Cl1	110.52(12)
P1–O1–Ga1	147.9(4)		

solvents. Crystals of [GaCl₃(Me₃PO)] were obtained from CH₂Cl₂-hexane and showed the expected pseudo-tetrahedral structure (Table 1, Fig. 1). The d(P-O) (1.518(7) Å) is lengthened from the value in Me₃PO itself (1.489(6) Å) [31] and d(Ga-O) 1.828(6) Å is similar to the value in $[GaCl_3(Ph_3PO)]$ (1.818(10) Å) [28], although in the latter the phosphine oxide coordination is linear by symmetry (although adp ellipsoids suggest some disorder [28]), compared to the significantly bent geometry in the present complex (angle Ga–O–P = 148°). The three [GaX₃(Me₃PO)] complexes show strong v(P=O) stretches in the IR spectra at $\sim 1100 \text{ cm}^{-1}$, lowered from 1166 cm⁻¹ in Me₃PO, and v(GaX) are typical of tetrahedral Ga(III) (Table 2, Section 6). In chlorocarbon solvents the ¹H NMR spectra show sharp doublets for the Me resonances, and the ${}^{31}P{}^{1}H{}$ NMR spectra are sharp singlets with substantial high frequency coordination shifts from Me₃PO ($\delta = 38$). The chemical shifts fall with halogen: $\delta = 73.5$ (Cl), 72.0 (Br), 70.5 (I), suggesting the Lewis acidity of the GaX₃ also falls in this order. All exhibit relatively sharp singlets in the ⁷¹Ga NMR spectra¹ at ambient temperatures (Table 2), which will be discussed further below. Although the spectroscopic data on $[GaI_3(Me_3PO)]$ showed only the neutral species present, a solution in CH₂Cl₂-hexane produced a small number of colourless crystals which were shown to be the ionic product, [GaI₂(Me₃PO)₂][GaI₄]. The structure is shown in Fig. 2 (Table 3) and contains a tetrahedral $[GaI_4]^-$ anion (d(Ga–I) = 2.548(2) Å) and a pseudo-tetrahedral cation with d(Ga-O) = 1.854(8), 1.848(8) Å and d(Ga-I) = 2.488(2), 2.500(2) Å, with Ga-O-P angles of 136.8(6) and 140.6(6)°. The Ga-I distances are somewhat shorter in the cation than the anion as expected, but the notable difference is the longer d(Ga-O) (1.851 (av) Å), compared to the neutral $[GaCl_3(Me_3PO)]$ (1.828 Å) (above). In spite of the crystallographic evidence for $[GaI_2(Me_3PO)_2]^+$, $[GaCl_2(Me_3PO)_2]^+$ could not be prepared from [GaCl₃(Me₃PO)], Me₃PO and either FeCl₃ or SbCl₅ (as chloride abstractors).

The structure of $[(GaBr_3)_2\{\mu$ -o-C₆H₄(CH₂P(O)Ph₂)_2]] (Table 4, Fig. 3) shows a bridging diphosphine dioxide coordinated to two pseudo-tetrahedral gallium moieties, which are staggered to minimise steric crowding. The Ga–O distances 1.892(4) and 1.858(4) Å are surprisingly

Fig. 1. View of the structure of $[GaCl_3(Me_3PO)]$ with atom numbering scheme adopted. Ellipsoids are drawn at the 50% probability level and H atoms are omitted for clarity.

different, but the other parameters seem unexceptional, including the non-linear Ga–O–P angles of 148° and 153°. Spectroscopically the three [(GaX₃)₂{µ-o-C₆H₄-(CH₂P(O)Ph₂)₂}] complexes show similar trends to those with Me₃PO described above, notably the significant fall in v(PO) on coordination and the high frequency coordination shifts in δ (³¹P) which vary with halogen Cl > Br > I (Table 2). Curiously, we were unable to observe a ⁷¹Ga NMR resonance for any of the diphosphine dioxide complexes over the temperature range 295–180 K, presumably due to the line broadening resulting from fast relaxation of the quadrupolar gallium nucleus in these large and asymmetric molecules.

2.2. Gallium phosphine and arsine complexes

As indicated in Section 1, it is of interest to compare the spectroscopic and structural consequences of changing the hard R₃PO donor for a soft R₃P or R₃As ligand. Initially $[GaX_3(Me_3P)]$ were prepared, but were found to be very poorly soluble in solvents suitable for spectroscopic studies (cf. Ref. [19]), and we have therefore used $[GaX_3(Ph_3P)]$ and [GaX₃(Ph₃As)] as comparator complexes (the R group is expected to have a minimal effect on the trends). These complexes have been reported previously and some data presented [20-23,26]. The complexes were obtained in high yield by reaction of the appropriate GaX₃ and Ph₃E in anhydrous diethyl ether. X-ray crystal structures were determined for $[GaX_3(Ph_3P)](X = Cl \text{ or } Br)$ (Table 5, Figs. 4 and 5). There are two reports [20,21,26] of the crystal structure of $[GaI_3(Ph_3P)]$ both in the trigonal space group R3, but with one using hexagonal and the other rhombohedral basis vectors. The Ga-P (2.416(5), 2.413(4) Å) and Ga-I (2.5212(9), 2.518(2) Å) are in excellent agreement, as are the I-Ga-I (ca. 113.8°) and I-Ga-P (ca. 104.6°) angles. [GaCl₃(Ph₃P)] and [GaBr₃(Ph₃P)] show the expected pseudo-tetrahedral monomer geometry. The Ga-P distances increase along the series Cl $(2.372(2)) \rightarrow Br$ $(2.385(1)) \rightarrow I (2.416(5) \text{ Å})$ consistent with reduced Lewis

¹ ⁷¹Ga, I = 3/2, 39.9%, $\Xi = 30.49$ MHz, $Q = 0.112 \times 10^{-28}$ m²; ⁶⁹Ga, I = 3/2, 60.1%, $\Xi = 24.00$ MHz, $Q = 0.178 \times 10^{-28}$ m² [32].

Table 4

Table 2Selected spectroscopic data

Complex	$v(P=O)/cm^{-1}$	$\delta(^{31}\mathrm{P})^{\mathrm{a}}$	$\delta(^{71}\text{Ga})^{\text{b}}$
[GaCl ₃ (Me ₃ PO)]	1100	73.5	230
[GaBr ₃ (Me ₃ PO)]	1095	72.0	106
[GaI ₃ (Me ₃ PO)]	1102	70.5	-242
[GaCl ₃ (Ph ₃ PO)] ^c	1144	45.9	230
$[(GaCl_3)_2{\mu-o-$	1088, 1070	52.5	n.o.
$C_6H_4(CH_2P(O)Ph_2)_2\}$]			
[(GaBr ₃) ₂ {μ- <i>o</i> -	1091, 1080	52.0	n.o.
$C_6H_4(CH_2P(O)Ph_2)_2\}]$			
$[(GaI_3)_2 \{\mu - o -$	1086, 1076	51.4	n.o.
$C_6H_4(CH_2P(O)Ph_2)_2\}]$			
[GaCl ₃ (Ph ₃ P)]		-5.5(m)	264
			(d,
			J = 721 Hz)
[GaBr ₃ (Ph ₃ P)]		-10.7(m)	152
			(d,
			J = 693 Hz)
[GaI ₃ (Ph ₃ P)]		-29.7(m)	-151
			(d,
			J = 466 Hz)
[GaCl ₃ (Ph ₃ As)]			264
[GaBr ₃ (Ph ₃ As)]			132
[GaI ₃ (Ph ₃ As)]			-203

^a Relative to external 85% H₃PO₄, ligand shifts are Me₃PO $\delta = 38$, o-C₆H₄(CH₂P(O)Ph₂)₂ $\delta = 30.8$, PPh₃ $\delta = -6$.

^b Relative to $[Ga(H_2O)_6]^{3+}$ in water at pH = 0, $[GaCl_4]^- \delta = 251$, $[GaBr_4]^- \delta = 64$, $[GaI_4]^- \delta = -455$.

^c Data from Ref. [28].

Fig. 2. View of the structure of the cation in $[GaI_2(Me_3PO)_2][GaI_4]$ with atom numbering scheme adopted. Ellipsoids are drawn at the 50% probability level and H atoms are omitted for clarity.

Tal	ble	3

Selected	bond	lengths	(Å)	and	angles	(°)	for	[GaL ₂ (Me ₂	PO)	_ ∏ (GaL	1
Delected	oona	lenguis	(11)	unu	ungies	U)	101	LOurz	11103	· 0,	2112	Jul	. L.

1.854(8)	Ga1–O2	1.846(8)
2.4997(17)	Ga1–I2	2.4875(16)
2.5472(16)	Ga2–I4	2.5482(15)
2.5461(15)	Ga2–I6	2.5258(16)
1.523(9)	P2–O2	1.525(8)
101.3(4)	O2–Ga1–I2	111.8(3)
106.7(3)	O2-Ga1-I1	109.8(3)
109.2(3)	I2–Ga1–I1	116.89(6)
136.8(6)	Ga1–O2–P2	140.6(6)
	$\begin{array}{c} 1.854(8)\\ 2.4997(17)\\ 2.5472(16)\\ 2.5461(15)\\ 1.523(9)\\ 101.3(4)\\ 106.7(3)\\ 109.2(3)\\ 136.8(6) \end{array}$	$\begin{array}{ccccc} 1.854(8) & Ga1-O2 \\ 2.4997(17) & Ga1-I2 \\ 2.5472(16) & Ga2-I4 \\ 2.5461(15) & Ga2-I6 \\ 1.523(9) & P2-O2 \\ 101.3(4) & O2-Ga1-I2 \\ 106.7(3) & O2-Ga1-I1 \\ 109.2(3) & I2-Ga1-I1 \\ 136.8(6) & Ga1-O2-P2 \\ \end{array}$

4149

acidity of the gallium as the halide becomes less electronegative, whilst the changes in Ga–X follow the changes in covalent radii of X. The literature structure of [GaI₃(-Ph₃As)] [20,21] is isomorphous with the Ph₃P analogue ($R\bar{3}$) with a slightly shorter Ga–I (2.509(1) Å) and with Ga–As = 2.490(1) Å. We note that in the series containing the silyl phosphine, [GaX₃{P(SiMe₃)₃}](X = Cl, Br, I), [17] the Ga–P distances decrease Cl \rightarrow Br \rightarrow I, which is the reverse of that observed in organophosphine complexes.

The ³¹P{¹H} NMR spectra of [GaX₃(Ph₃P)] are notable in showing resolved ³¹P-^{69/71}Ga couplings. [GaCl₃(Ph₃P)] in CH₂Cl₂ solution shows no ³¹P{¹H} NMR resonance at room temperature, but a broad feature appears on cooling the solution to 273 K, and at 183 K this has resolved into a broad multiplet which approximates to two overlapping quartets due to coupling to the I = 3/2 ⁶⁹Ga and ⁷¹Ga. For [GaBr₃(Ph₃P)] the room temperature ³¹P{¹H} NMR resonance is an ill-defined multiplet, becomes a quartet at 273 K (although the lines are too broad to show resolved couplings to the separate gallium isotopes). For [GaI₃(Ph₃P)] two superimposed quartet couplings are

ruore i								
Selected	bond	lengths	(Å)	and	angles	(°)	for	[(GaBr ₃) ₂ {µ-o-C ₆ H ₄ -
CH DO	UDL)	11						

$(CH_{2}(0)H_{2})_{2}$			
Ga1–O1	1.892(4)	Ga1–Br1	2.2669(9)
Ga1–Br3	2.2952(8)	Gal-Br2	2.3133(8)
Ga2–O2	1.858(4)	Ga2–Br5	2.2853(9)
Ga2–Br4	2.2983(8)	Ga2–Br6	2.2990(8)
P2-O2	1.520(4)	P1–O1	1.525(4)
O1–Ga1–Br1	109.11(11)	O1–Ga1–Br3	106.88(10)
Br1-Ga1-Br3	112.50(3)	O1–Ga1–Br2	101.93(11)
Br1-Ga1-Br2	113.99(3)	Br3–Ga1–Br2	111.62(3)
O2–Ga2–Br5	105.55(13)	O2-Ga2-Br4	102.32(11)
Br5–Ga2–Br4	113.41(3)	O2-Ga2-Br6	107.24(12)
Br5-Ga2-Br6	114.01(3)	Br4-Ga2-Br6	113.10(3)
P1–O1–Ga1	148.3(2)	P2–O2–Ga2	153.9(2)

Fig. 3. View of the structure of $[(GaBr_3)_2\{o-C_6H_4(CH_2P(O)Ph_2)_2\}]$ with the atom numbering scheme adopted. Ellipsoids are shown at the 50% probability level and H atoms are omitted for clarity.

Table 5 Selected bond lengths (Å) and angles (°) for $[GaX_3(Ph_3P)]$

	X = Cl	X = Br (Gal)	X = Br (Ga2)
Gal–Pl	2.3717(16)	2.3848(13)	2.3879(13)
Ga1–X1	2.1677(15)	2.3134(7)	2.3133(7)
Ga1–X2	2.1679(16)	2.3048(7)	2.3212(7)
Ga1–X3	2.1696(15)	2.3225(7)	2.3082(8)
X1–Ga1–P1	104.17(6)	105.83(4)	106.71(4)
X2–Ga1–P1	104.08(6)	107.45(4)	106.88(4)
X3–Ga1–P1	111.46(6)	107.50(4)	105.93(4)
X1-Ga1-X2	112.98(6)	111.79(3)	111.68(3)
X1–Ga1–X3	112.40(6)	114.27(3)	112.39(3)
X2–Ga1–X3	111.24(6)	109.63(3)	112.73(3)

For comparison $[GaI_3(Ph_3P)]$ has Ga-I = 2.5212(9) or 2.518(2) Å (Refs. [26,20] respectively), Ga-P = 2.416(5) or 2.413(4) Å and $[GaI_3(Ph_3As)]$ has Ga-I = 2.509(1) Å and Ga-As = 2.490(1) Å (Ref. [21]).

^a For the second molecule the data are for Ga2, P2, X4, X5 and X6.

Fig. 4. View of the structure of $[GaCl_3(Ph_3P)]$ showing the atom numbering scheme adopted. Ellipsoids are drawn at the 50% probability level and H atoms are omitted for clarity.

clearly resolved at ambient temperatures; the lines sharpen on cooling to 273 K (Fig. 6) and then broaden on further cooling. The changes with halide and temperature reflect the different electric field gradients in the three compounds and how these affect the quadrupolar relaxation rates of the gallium nuclei over this temperature range. The ⁷¹Ga NMR spectra of all three compounds show clear doublet couplings to ³¹P (Table 2) with ¹J(³¹P-⁷¹Ga) falling from $Cl \rightarrow Br \rightarrow I$.

The *o*-xylyl diphosphine o-C₆H₄(CH₂PPh₂)₂ is somewhat pre-organised for chelation by the central *o*-phenylene backbone, and functions as a chelate to many late transition metals, despite forming a seven-membered ring in the process [33]. However, on reaction with GaX₃ it behaves as a bridging bidentate, forming [(GaX₃)₂-{o-C₆H₄(CH₂PPh₂)₂}] as confirmed by the crystal structure of the iodo-complex (Table 6, Fig. 7). The molecule has approximate twofold symmetry and the ligand conforma-

Fig. 5. View of the structure of $[GaBr_3(Ph_3P)]$ showing the atom numbering scheme adopted. Ellipsoids are drawn at the 50% probability level and H atoms are omitted for clarity. The other molecule in the asymmetric unit is very similar.

Fig. 6. ${}^{31}P{}^{1}H{}$ NMR of [GaI₃(Ph₃P)] in CH₂Cl₂ at 273 K.

tion places the two GaI₃ groups '*anti*' to minimise steric interactions (Ga1–P1···P2–Ga2 = 161°). Spectroscopically these complexes (Table 2) are similar to those of Ph₃P, but provide a useful comparison with the diphosphine dioxide compounds described above.

3. Some comparisons of the effect of donor types on gallium(III)

The spectroscopic and structural data set out in previous sections clearly support the expected conclusion that Lewis acidity decreases in the gallium(III) halides Cl > Br > I,

Table 6 Selected bond lengths (Å) and angles (°) for $[(GaI_3)_2 \{\mu - o - C_6H_4 - (CH_2PPh_3)_3\}]$

$(CH_2PPh_2)_2\}$			
Ga1–P1	2.3891(9)	Ga2–P2	2.3872(9)
Ga1–I1	2.5312(4)	Ga2–I4	2.5143(4)
Ga1–I2	2.5286(4)	Ga2–I5	2.5211(4)
Ga1–I3	2.5194(4)	Ga2–I6	2.5516(5)
P1–Ga1–I1	111.78(2)	P2–Ga2–I4	109.57(2)
P1-Ga1-I2	102.22(2)	P2-Ga2-I5	109.66(2)
P1–Ga1–I3	105.87(2)	P2-Ga2-I6	99.97(2)
I1–Ga1–I2	112.752(15)	I4–Ga2–I5	111.195(15)
I1–Ga1–I3	111.335(15)	I4–Ga2–I6	115.297(15)
I2–Ga1–I3	112.337(16)	I5–Ga2–I6	110.526(14)

Fig. 7. View of the structure of $[(GaI_3)_2\{o-C_6H_4(CH_2PPh_2)_2\}]$ showing the atom numbering scheme adopted. Ellipsoids are drawn at the 50% probability level and H atoms are omitted for clarity.

towards both hard and soft donor ligands. The second point to note is the trends in bond lengths about the gallium centre with Ga–Cl (~2.15 Å), Ga–Br (~2.3 Å), Ga–I (~2.5 Å), Ga–O (~1.85 Å), Ga–P (~2.4 Å) and Ga–As (~2.5 Å). It is clear that the Ga–X and the Ga–O bond lengths are *ca*. 0.1 Å shorter than the sum of the covalent radii, [34] whilst the Ga–P(As) are rather longer than expected, suggesting that the softer donors are more weakly bound. Support for this came from *in situ* ³¹P{¹H} NMR measurements (CH₂Cl₂ solution) which showed that Me₃PO displaced Ph₃P or Ph₃As (L) from their [GaCl₃L] complexes, but that [GaCl₃(Me₃PO)] was unaffected by the presence of excess L.

The ⁷¹Ga NMR spectra show progressive low frequency shifts with halide $Cl \rightarrow Br \rightarrow I$, but the trends with neutral donor are more variable, giving evidence that several competing factors are involved.

4. Studies on oxidation and hydrolysis of gallium phosphines

In the presence of dioxygen, tin(IV) halides readily convert phosphines to phosphine oxides [8,10,29] and similar behaviour, although less thoroughly explored, is observed with Bi and Sb halides [11,30]. In order to explore whether $[GaX_3(Ph_3P)]$ forms Ph_3PO in chlorocarbon solvents, solutions of all three complexes in anhydrous CH_2Cl_2 were placed in 10 mm o.d. NMR tubes, the tubes filled with dry O₂ and the ³¹P{¹H} NMR spectra monitored at regular intervals over a three week period. The spectra showed no evidence for phosphine oxide formation (although some $[R_3PH][GaX_4]$ were evident due to trace hydrolysis). We conclude that, in marked contrast to the Group 15 MX₃ and especially the Sn(IV) systems, gallium halides do not promote phosphine oxidation under these conditions.

In rigorously anhydrous chlorocarbons (CH₂Cl₂ or CHCl₃ and their deuterated analogues), gallium(III) halide phosphine and diphosphine complexes exhibit ${}^{31}P{}^{1}H$ NMR spectra consistent with the presence of a single species in each. In favourable cases with the (C_{3v}) GaPX₃ donor sets, ⁷¹Ga NMR spectra lead to the same conclusions. However, even brief exposure of the solutions of $[GaX_3(R_3P)]$ to air resulted in the appearance of new resonances. In the ${}^{31}P{}^{1}H{}$ NMR spectra the new features were broad with ill-defined structure and typically to high frequency of that of the gallium complex, and were assigned to the corresponding phosphonium cations $[R_3PH]^+$ both by comparison of their chemical shifts with literature values [35], and from the ¹H-coupled ³¹P NMR spectra which showed doublets due to ¹ J_{PH} (300–700 Hz).² The ⁷¹Ga spectra also showed resonances due to the corresponding $[GaX_4]^-$ anion at X = Cl: $\delta = 251$; X = Br: $\delta = 64$; X = I: $\delta = -455$ [32]. All of the complexes we examined showed a tendency to form phosphonium salts, although it is particularly evident with alkyl phosphines, probably because these are the strongest proton bases [36].

Addition of small amounts of water to the solutions resulted in immediate and complete loss of the resonances due to $[GaX_3(R_3P)]$ and the only species evident in the ⁷¹Ga NMR spectra were the $[GaX_4]^-$ anions. The formation of phosphonium salts was also observed in the gallium–diphosphine complexes, and we note that Sigl et al. [37] identified the hydrolysis product of $[GaCl_2-{o-C_6H_4(PPh_2)_2}][GaCl_4]$ as $[o-C_6H_4(PPh_2)(PPh_2H)][GaCl_4]$ by an X-ray crystal structure.

Final confirmation of the identity of the hydrolysis products comes from the crystal structure of $[Me_2PhPH]$ $[GaCl_4]$ (Fig. 8). Colourless crystals of which were obtained from a solution shown by NMR spectroscopy to contain mainly $[GaCl_3(Me_2PhP)]$, showing the ionic species crystallise preferentially. $[GaCl_3(Ph_3P)]$ is quantitatively converted into $[Ph_3PH]$ [GaCl_4] by treatment with HCl gas in CH₂Cl₂ solution, which provides the most convenient synthesis for these phosphonium species.

² The broad lines arise from incomplete decoupling of the P–H proton under normal broad band decoupling settings.

Fig. 8. View of the structure of the cation in [Me₂PhPH][GaCl₄] with numbering scheme adopted. Ellipsoids are drawn at the 50% probability level and H atoms (except that on P1) are omitted for clarity. Selected bond lengths (Å) and angles (°): P1–C1 1.788(4); P1–C2 1.784(3); P1–C3 1.788(3); C–P1–C 110.08(16)–111.50(17); Ga1–Cl 2.1657(11)–2.1770(11).

5. Conclusions

These results show that the Lewis acidity of GaX_3 decreases as the halide becomes heavier and that the maximum coordination number at the gallium in these species is four. With only one exception, all the complexes were neutral with X_3O or X_3E (X = Cl, Br or I; E = P or As) donor sets. Competitive NMR studies on the GaCl₃ systems show that R₃PO are preferred to R₃E suggesting that GaCl₃ is quite a hard Lewis acid.

6. Experimental

All the reactions and manipulations were performed in an inert atmosphere (N_2) glovebox or using Schlenk techniques. Diethyl ether and hexane were dried by distillation over sodium/benzophenone and dichloromethane was dried by distillation from CaH₂. Infrared spectra were measured as Nujol mulls between CsI plates on a Perkin-Elmer PE983 spectrometer. ¹H NMR spectra were recorded in CDCl₃ solution on a Bruker AV300, ³¹P{¹H} and ⁷¹Ga NMR spectra on a Bruker DPX400 and referenced to 85% H₃PO₄ and $\left[Ga(H_2O)_6\right]^{3+}$ respectively. Me₃PO (Aldrich) was freshly sublimed prior to use. o-C₆H₄(CH₂P(O)Ph₂)₂ was obtained as a white solid by stirring a CH₂Cl₂ solution of o-C₆H₄- $(CH_2PPh_2)_2$ in dry air with a catalytic amount of SnI_4 [29] followed by hydrolysis, extraction with CH₂Cl₂ and drying (MgSO₄). ¹H NMR (CDCl₃): $\delta = 3.90$ (d, [4H], CH₂, ²J_{PH} = 13.0 Hz), 6.68 (m, [2H], o-C₆H₄), 6.78 (m, [2H], o-C₆H₄), 7.30–7.67 (m, [20H], Ph). ${}^{13}C{}^{1}H$ NMR (CDCl₃): $\delta = 35.9$ $(d, CH_2, {}^{1}J_{PC} = 66.4 \text{ Hz}), 126.6-133.3 \text{ (aromatic C)}, {}^{31}P{}^{1}H$ NMR (CDCl₃): 30.8. IR (Nujol): v = 1181 br s (P=O) cm⁻¹.

6.1. [GaCl₃(Me₃PO)]

 $GaCl_3$ (0.19 g, 1.09 mmol) in CH_2Cl_2 (5 mL) was combined with a CH_2Cl_2 solution (10 mL) of Me₃PO (0.10 g,

1.09 mmol) and the reaction mixture was stirred under N₂ for *ca.* 2 h. The volatiles were then removed *in vacuo* and the white solid rinsed with hexane and dried *in vacuo*. Yield 0.26 g, 88%. *Anal.* Calc. for C₃H₉Cl₃GaOP: C, 13.4; H, 3.4. Found: C, 13.7; H, 3.4%. ¹H NMR (CDCl₃, 298 K): $\delta = 1.83$ (d, Me, ²J_{PH} = 12.8 Hz). ¹³C{¹H} NMR (CDCl₃): $\delta = 17.1$ (d, Me, ¹J_{PC} = 70.6 Hz). ³¹P{¹H} NMR (CDCl₃): $\delta = 73.5$. ⁷¹Ga NMR (CDCl₃): $\delta = 230$. IR (Nujol): v = 1100 br s (P=O), 387, 358 (Ga–Cl) cm⁻¹.

6.2. $[GaBr_3(Me_3PO)]$

Method as above, but using GaBr₃. White solid (62%). *Anal.* Calc. for C₃H₉Br₃GaOP: C, 9.0; H, 2.6. Found: C, 9.1; H, 2.0%. ¹H NMR (CDCl₃, 298 K): $\delta = 1.85$ (d, Me, ²J_{PH} = 13.0 Hz). ¹³C{¹H} NMR (CDCl₃): $\delta = 17.3$ (d, Me, ¹J_{PC} = 70.2 Hz). ³¹P{¹H} NMR (CDCl₃): $\delta = 72.0$. ⁷¹Ga NMR (CDCl₃): $\delta = 106$. IR (Nujol): v = 1095 br s (P=O), 283, 244 (Ga–Br) cm⁻¹.

6.3. [GaI₃(Me₃PO)]

Method as above, but using GaI₃. White solid (65%). *Anal.* Calc. for C₃H₉GaI₃OP · CH₂Cl₂: C, 7.6; H, 1.8. Found: C, 7.4; H, 1.8%. ¹H NMR (CDCl₃, 298 K): $\delta = 1.85$ (d, Me, ²J_{PH} = 13.0 Hz). ¹³C{¹H} NMR (CDCl₃): $\delta = 17.0$ (d, Me, ¹J_{PC} = 70.5 Hz). ³¹P{¹H} NMR (CDCl₃): $\delta = 70.5$. ⁷¹Ga NMR (CDCl₃): $\delta = -242$. IR (Nujol): v = 1102 (P=O), 250 (Ga–I) cm⁻¹.

6.4. $[(GaCl_3)_2 \{\mu - o - C_6H_4(CH_2P(O)Ph_2)_2\}]$

Method as above, but using a 2:1 GaCl₃:diphosphine ratio. White solid (89%). *Anal.* Calc. for C₃₂H₂₈Cl₆Ga₂O₂-P₂ · 0.25CH₂Cl₂: C, 44.0; H, 3.3. Found: C, 44.1; H, 2.6%. ¹H NMR (CDCl₃, 298 K): $\delta = 4.08$ (d, CH₂, 4H, ²J_{PH} = 12.4 Hz), 6.51 (m, *o*-C₆H₄, 2H), 6.98 (m, *o*-C₆H₄, 2H), 7.50–7.78 (m, Ph, 20H). ¹³C{¹H} NMR (CDCl₃): $\delta = 33.7$ (d, CH₂, ¹J_{PC} = 68.1 Hz), 124.3–135.4 (aromatic C). ³¹P{¹H} NMR (CDCl₃): $\delta = 52.5$. ⁷¹Ga NMR (CDCl₃): not observed. IR (Nujol): v = 1088 br s, 1070 sh (P=O), 397, 356 (Ga-Cl) cm⁻¹.

6.5. $[(GaBr_3)_2 \{\mu - o - C_6H_4(CH_2P(O)Ph_2)_2\}]$

Method as above, but using a 2:1 GaBr₃:diphosphine ratio. White solid (94%). *Anal.* Calc. for $C_{32}H_{28}Br_6Ga_2O_2-P_2 \cdot CH_2Cl_2$: C, 32.8; H, 2.5. Found: C, 32.4; H, 2.1%. ¹H NMR (CDCl₃, 298 K): $\delta = 4.11$ (d, CH₂, 4H, ²J_{PH} = 12.3 Hz), 6.50 (m, *o*-C₆H₄, 2H), 6.95 (m, *o*-C₆H₄, 2H), 7.50–7.77 (m, Ph, 20H). ¹³C{¹H} NMR (CDCl₃): $\delta = 34.1$ (d, CH₂, ¹J_{PC} = 68.0 Hz), 124.2–135.4 (aromatic C). ³¹P{¹H} NMR (CDCl₃): $\delta = 52.0$. ⁷¹Ga NMR (CDCl₃): not observed. IR (Nujol): $\nu = 1091$ s, 1080 s (P=O), 296, 230 (Ga–Br) cm⁻¹.

6.6. $[(GaI_3)_2 \{\mu - o - C_6H_4(CH_2P(O)Ph_2)_2\}]$

Method as above, but using a 2:1 GaI₃:diphosphine ratio. White solid (65%). *Anal.* Calc. for C₃₂H₂₈Ga₂I₆O₂P₂: C, 27.3; H, 2.0. Found: C, 27.4; H, 1.7%. ¹H NMR (CDCl₃, 298 K): $\delta = 4.15$ (d, CH₂, 4H, ²J_{PH} = 12.6 Hz), 6.50 (m, *o*-C₆H₄, 2H), 6.95 (m, *o*-C₆H₄, 2H), 7.50–7.80 (m, Ph, 20H). ¹³C{¹H} NMR (CDCl₃): $\delta = 33.6$ (d, CH₂, ¹J_{PC} = 68.1 Hz), 124.1–135.3 (aromatic C). ³¹P{¹H} NMR (CDCl₃): $\delta = 51.4$. ⁷¹Ga NMR (CDCl₃): not observed. IR (Nujol): $\nu = 1086$ s, 1076 s (P=O), 240 (Ga–I) cm⁻¹.

6.7. [GaCl₃(Ph₃P)]

A solution of Ph₃P (0.300 g, 1.14 mmol) in diethyl ether (5 mL) was added dropwise to a stirred solution of GaCl₃ (0.201 g, 1.14 mmol) in diethyl ether (4 mL). After stirring at room temperature for 15 h, the resultant white precipitate was filtered off, washed with diethyl ether (2 mL) and dried *in vacuo*. Yield 0.32 g, 65%. *Anal*. Calc. for C₁₈H₁₅Cl₃GaP: C, 49.3; H, 3.5. Found: C, 48.7; H, 3.8%. ¹H NMR (CDCl₃): 295 K not observed; 273 K $\delta = -5.4$ (m). ⁷¹Ga NMR (CDCl₃): $\delta = 264$ (br d, J = 721 Hz). IR (Nujol): v = 387 s, 347 m (Ga–Cl) cm⁻¹.

6.8. $[GaBr_3(Ph_3P)]$

Made similarly to the chloro compound. White solid (64%). *Anal.* Calc. for C₁₈H₁₅Br₃GaP: C, 37.8; H, 2.9. Found: C, 38.1; H, 2.8%. ¹H NMR (CDCl₃, 295 K): δ 7.81–7.38 (m, Ph). ³¹P{¹H} NMR (CDCl₃): δ = –10.7. ⁷¹Ga NMR (CDCl₃): δ = 152 (d, *J* = 693 Hz). IR (Nujol): v = 289 s, 234 m (Ga–Br) cm⁻¹.

6.9. $[GaI_3(Ph_3P)]$

Made similarly to the chloro compound. White solid (66%). *Anal.* Calc. for C₁₈H₁₅GaI₃P: C, 30.3; H, 2.1. Found: C, 30.5; H, 2.0%. ¹H NMR (CDCl₃, 295 K): δ 7.81–7.38 (m, Ph). ³¹P{¹H} NMR (CDCl₃): δ = -29.7. ⁷¹Ga NMR (CDCl₃): δ = -151 (d, *J* = 466 Hz). IR (Nujol): *v* = 241 m (Ga–I) cm⁻¹.

6.10. $[(GaBr_3)_2 \{o-C_6H_4(CH_2PPh_2)_2\}]$

Made similarly using a 2:1 Ga:ligand mol. ratio. White solid (76%). *Anal.* Calc. for C₃₂H₂₈Br₆Ga₂P₂: C, 35.2; H, 2.6. Found: C, 35.5; H, 2.5%. ¹H NMR (CDCl₃): 3.72 (d, 4H, CH₂), 6.53–6.97 (m), 7.45–7.75 (m, aromatic H). ³¹P{¹H} NMR (CDCl₃): $\delta = -14.2$ (s). ⁷¹Ga NMR (CDCl₃): $\delta = 156$ (br). IR (Nujol): v = 281 s, 227 m (Ga–Br) cm⁻¹.

6.11. $[(GaI_3)_2 \{o-C_6H_4(CH_2PPh_2)_2\}]$

Prepared similarly to the previous compound. White solid (75%). Anal. Calc. for $C_{32}H_{28}Ga_2I_6P_2$: C, 27.9; H,

2.1. Found: C, 28.2; H, 1.9%. ¹H NMR (CDCl₃): 3.60 (d, 4H, CH₂), 6.97–6.69 (m), 7.63–7.40 (m, aromatic H). ³¹P{¹H} NMR (CDCl₃): $\delta = -33.7$ (s). ⁷¹Ga NMR (CDCl₃): $\delta = -146$ (s). IR (Nujol): v = 234 m (Ga–I) cm⁻¹.

6.12. [GaCl₃(Ph₃As)]

A solution of Ph₃As (0.220 g, 0.718 mmol) in diethyl ether (10 mL) was added dropwise to a stirred solution of GaCl₃ (0.126 g, 0.718 mmol) in diethyl ether (5 mL). After stirring at room temperature for 4 h, removal of Et₂O gave a white solid, which was dried *in vacuo*. (Yield 0.32 g, 92%). ⁷¹Ga NMR (CDCl₃): $\delta = 264$ (s, $W_{1/2} = 4000$ Hz). IR (Nujol): v = 392 s, 365 m (Ga–Cl) cm⁻¹.

6.13. $[GaBr_3(Ph_3As)]$

Prepared similarly to the chloro compound. White solid (93%). ⁷¹Ga NMR (CDCl₃): $\delta = 132$ (s, $W_{1/2} = 3000$ Hz). IR (Nujol): v = 285 br s, 219 m (Ga–Br) cm⁻¹.

6.14. $[GaI_3(Ph_3As)]$

Prepared similarly to the chloro compound. White solid (90%). ⁷¹Ga NMR (CDCl₃): $\delta = -203$ (s, $W_{1/2} = 2500$ Hz). IR (Nujol): v = 244 m (Ga–I) cm⁻¹.

6.15. [Me₂PhPH][GaCl₄]

Crystals of [PPhMe₂H][GaCl₄] were isolated from solutions of the corresponding [GaCl₃(Me₂PhP)] in CH₂Cl₂ solution by vapour diffusion of *n*-hexane under nitrogen. ¹H-coupled ³¹P NMR (CDCl₃): δ -0.47 (d, ¹J = 511 Hz). ⁷¹Ga NMR: δ = +251 (s).

6.16. X-ray experimental

Crystallographic parameters are given in Table 7. All the crystals were grown from CH₂Cl₂ solutions of the complexes by vapour diffusion of *n*-hexane under dinitrogen. Data collections were carried out with a Bruker-Nonius Kappa CCD diffractometer with graphite-monochromated Mo K α radiation ($\lambda = 0.71073$ Å) and with the crystals held at 120 K in a nitrogen gas stream. The structure solutions were straightforward [38-40] except as indicated below with the hydrogen atoms being introduced into the models in calculated positions with default C-H distances. The phosphonium H atom had P-H fixed at 1.40 Å. $[GaCl_3(Me_3PO)]$ is reported in the space group Cc although the 'checkcif' software raised the possibility of missed symmetry. The Cc-C2/c problem is well known [41,42], but with Z of 4 a C2/c solution would require the molecule to have symmetry (or to be disordered). Attempts to find a C2/c solution failed. [GaI₂(Me₃PO)₂][GaI₄] belongs to one of the 11 pairs of enantiomorphous space groups and the fit to the data was slightly improved by the inclusion of a TWIN command. The data for

Table 7	
Crystallographic	data ^a

Complex	[GaCl ₃ (Me ₃ PO)]	[GaI ₂ (Me ₃ PO) ₂] [GaI ₄]	$\begin{array}{l} [(GaBr_{3})_{2} \\ \{ \textit{o-C}_{6}H_{4}(CH_{2}P(O) \\ Ph_{2})_{2} \}] \end{array}$	$[(GaI_3)_2 \\ \{o\text{-}C_6H_4\text{-} \\ (CH_2PPh_2)_2\}]$	[Me ₂ PhPH] [GaCl ₄]	[GaCl ₃ (Ph ₃ P)]	[GaBr ₃ - (Ph ₃ P)]
Formula	C ₃ H ₉ Cl ₃ GaOP	$C_6H_{18}Ga_2I_6O_2P_2$	$C_{32}H_{28}Br_6Ga_2O_2P_2$	$C_{32}H_{28}Ga_2I_6P_2$	C ₈ H ₁₂ Cl ₄ GaP	C ₁₈ H ₁₅ Cl ₃ GaP	C ₁₈ H ₁₅ Br ₃ - GaP
Formula weight	268.14	1084.98	1125.38	1375.32	350.67	438.34	571.72
Crystal system	monoclinic	tetragonal	triclinic	monoclinic	monoclinic	monoclinic	monoclinic
Space group	Cc (#9)	P4 ₃ 2 ₁ 2 (#96)	P1 (#2)	$P2_1/c$ (#14)	$P2_1/c$ (#14)	C2/c (#15)	$P2_1/c$ (#14)
a (Å)	8.144(2)	12.259(2)	8.8772(15)	25.401(2)	6.705(2)	16.155(2)	16.193(2)
b (Å)	10.216(3)	12.259(2)	13.6809(15)	8.1399(5)	12.499(4)	14.567(2)	14.3938(12)
<i>c</i> (Å)	12.418(4)	32.976(9)	16.2405(15)	20.094(2)	16.848(4)	15.924(2)	17.779(2)
α (°)	90	90	67.503(7)	90	90	90	90
β (°)	105.577(15)	90	87.495(8)	106.943(5)	99.352(16)	98.249(8)	109.652(4)
γ (°)	90	90	87.788(7)	90	90	90	90
$U(\text{\AA}^3)$	995.3(5)	4956.2(18)	1820.0(4)	3974.4(6)	1393.3(6)	3708.6(8)	3902.5(7)
Ζ	4	8	2	4	4	8	8
μ(Mo Kα) (mm ⁻¹)	3.664	9.773	8.183	6.118	2.820	1.998	7.631
R _{int}	0.0604	0.0801	0.0730	0.042	0.0525	0.163	0.088
Total number of reflections	4208	37 005	36009	46651	16050	53745	43 220
Unique reflections	2047	5707	8378	9147	3184	4269	8934
Number of parameters/ restraints	86/2	164/13	397/0	379/0	129/0	208/0	415/0
$R_1^{\rm b} \left[I_{\rm o} > 2\sigma(I_{\rm o}) \right]$	0.054	0.054	0.047	0.024	0.042	0.060	0.042
R_1 [all data]	0.073	0.065	0.075	0.028	0.060	0.155	0.108
$wR_2^{\bar{b}}[I_0 > 2\sigma(I_0)]$	0.110	0.113	0.090	0.050	0.082	0.130	0.069
wR_2 [all data]	0.121	0.121	0.099	0.052	0.088	0.167	0.086

^a Common items: temperature = 120 K; wavelength (Mo K α) = 0.71073 Å; θ (max) = 27.5°.

^b $R_1 = \sum ||F_0| - |F_c|| / \sum |F_0|$. $wR_2 = [\sum w(F_0^2 - F_c^2)^2 / \sum wF_0^4]^{1/2}$.

[GaCl₃(Ph₃P)] was collected in the triclinic system and yielded a solution with Z = 4 in the space group $P\overline{1}$. Inspection of the data and the cell dimensions showed the data could be transformed to a C2/c monoclinic system with Z = 8 with one molecule in the asymmetric unit and this is the solution reported.

Acknowledgement

We thank RCUK for support (EP/C006763/1).

Appendix A. Supplementary material

Crystallographic data in cif format have been deposited with the Cambridge Crystallographic Data Centre (CCDC) and given numbers 640911 (Cl/O), 640912 (I/O), 640913 (Br/O), 640914 (Cl/P), 640915 (Br/P), 640916 (I/P), 640917 (Cl). The atoms in parentheses denote the atom types bonded to Ga; the final one is the phosphonium salt. These data can be obtained free of charge via http:// www.ccdc.cam.ac.uk/conts/retrieving.html, or from the Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK; fax: (+44) 1223-336-033; or e-mail: deposit@ccdc.cam.ac.uk. Supplementary data associated with this article can be found, in the online version, at doi:10.1016/j.poly.2007.05.008.

References

- F.A. Cotton, G. Wilkinson, M. Bochmann, C.A. Murillo, Advanced Inorganic Chemistry, sixth ed., Wiley, NY, 1998.
- [2] J.A. McCleverty, T.J. Meyer (Eds.), Comprehensive Coordination Chemistry II, vol. 3, Elsevier, Oxford, 2004 (Chapters 4–7).
- [3] N.C. Norman, Chemistry of Arsenic Antimony and Bismuth, Blackie, London, 1998 (Chapter 1).
- [4] P. Pyykkö, Chem. Rev. 97 (1997) 597.
- [5] G.A. Landrum, R. Hoffmann, Angew. Chem., Int. Ed. Engl. 37 (1998) 1887.
- [6] S.E. Dann, A.R.J. Genge, W. Levason, G. Reid, J. Chem. Soc., Dalton Trans. (1996) 4471.
- [7] S.E. Dann, A.R.J. Genge, W. Levason, G. Reid, J. Chem. Soc., Dalton Trans. (1997) 2207.
- [8] A.R.J. Genge, W. Levason, G. Reid, Inorg. Chim. Acta 288 (1999) 142.
- [9] M.F. Davis, W. Levason, G. Reid, M. Webster, Polyhedron 25 (2006) 930.
- [10] M.F. Davis, M. Clarke, W. Levason, G. Reid, M. Webster, Eur. J. Inorg. Chem. (2006) 2773.
- [11] A.R.J. Genge, N.J. Hill, W. Levason, G. Reid, J. Chem. Soc., Dalton Trans. (2001) 1007.
- [12] A.J. Barton, A.R.J. Genge, W. Levason, G. Reid, J. Chem. Soc., Dalton Trans. (2000) 2163.
- [13] A.J. Barton, A.R.J. Genge, W. Levason, G. Reid, J. Chem. Soc., Dalton Trans. (2000) 859.
- [14] N.J. Hill, W. Levason, M.E. Light, G. Reid, Chem. Commun. (2003) 110.
- [15] A.J. Barton, N.J. Hill, W. Levason, B. Patel, G. Reid, Chem. Commun. (2001) 95.

- [16] A.J. Barton, N.J. Hill, W. Levason, G. Reid, J. Chem. Soc., Dalton Trans. (2001) 1621.
- [17] J.F. Janik, R.A. Baldwin, R.L. Wells, W.T. Pennington, G.L. Schimek, A.L. Rheingold, L.M. Liable-Sands, Organometallics 15 (1996) 5385.
- [18] S. Nogai, H. Schmidbaur, Inorg. Chem. 41 (2002) 4770.
- [19] J.C. Carter, G. Jugie, R. Enjalbert, J. Galy, Inorg. Chem. 17 (1978) 1248.
- [20] L.-J. Baker, L.A. Kloo, C.E.F. Rickard, M.J. Taylor, J. Organometal. Chem. 545–546 (1997) 249.
- [21] L.-J. Baker, C.E.F. Rickard, M.J. Taylor, J. Organometal. Chem. 464 (1994) C4.
- [22] A.J. Carty, Can. J. Chem. 45 (1967) 345.
- [23] A.J. Carty, Can. J. Chem. 45 (1967) 3187.
- [24] N. Burford, T.S. Cameron, D.J. LeBlanc, P. Losier, S. Sereda, G. Wu, Organometallics 16 (1997) 4712.
- [25] C. Perchard, J. Angenault, J.-C. Couturier, Spectrochim. Acta A 33 (1977) 793.
- [26] M.A. Brown, J.A. Castro, D.G. Tuck, Can. J. Chem. 75 (1997) 333.
- [27] M. Sigl, A. Schier, H. Schmidbaur, Eur. J. Inorg. Chem. (1998) 203.
- [28] N. Burford, B.W. Royan, R.E.v.H. Spence, T.S. Cameron, A. Linden, R.D. Rogers, J. Chem. Soc., Dalton Trans. (1990) 1521.

- [29] W. Levason, R. Patel, G. Reid, J. Organomet. Chem. 688 (2003) 280.
- [30] G.R. Willey, M.D. Rudd, C.J. Samuel, M.G.B. Drew, J. Chem. Soc., Dalton Trans. (1995) 759.
- [31] L.M. Engelhardt, C.L. Raston, C.R. Whitaker, A.H. White, Aust. J. Chem. 39 (1986) 2151.
- [32] J. Mason, Multinuclear NMR, Plenum, NY, 1987.
- [33] M.D. Brown, W. Levason, G. Reid, R. Watts, Polyhedron 24 (2005) 75.
- [34] J. Emsley, The Elements, OUP, Oxford, 1989.
- [35] J.G. Verkade, L.D. Quin, Phosphorus-31 NMR Spectroscopy in Stereochemical Analysis, VCH, Deerfield Beach, FL, 1987.
- [36] H.R. Hudson, in: F.R. Hartley (Ed.), The Chemistry of Organophosphorus Compounds, vol. 1, Wiley, NY, 1990, p. 474.
- [37] M. Sigl, A. Schier, H. Schmidbaur, Z. Naturforsch., Teil B 53 (1998) 1313.
- [38] G.M. Sheldrick, SHELXS 97, Program for Crystal Structure Solution, University of Göttingen, Germany, 1997.
- [39] G.M. Sheldrick, SHELXL 97, Program for Crystal Structure Refinement, University of Göttingen, Germany, 1997.
- [40] H.D. Flack, Acta Crystallogr., Sect. A 39 (1983) 876.
- [41] W.H. Baur, D. Kassner, Acta Crystallogr., Sect. B 48 (1992) 356.
- [42] R.E. Marsh, Acta Crystallogr., Sect. B 53 (1997) 317.