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Abstract: Total syntheses of cepaciamides A and B were accomplished. In the preparation of two 
fatty acid segments, (S)-malic acid was used as a chiral source to introduce (2S)-configuration. A 
known ehiral cydopropane derivative was introduced in the segment of cepaciamide A. The formation 
of (Z)-olefin in the segment of cepaciamide B was achieved by means of partial reduction of the 
acetylenic bond. Esterification between fatty acid segments and amide segment with DCC/DMAP and 
subsequent oxidative deprotection of the MPM group with CAN gave cepaciamides. 
© 1999 Elsevier Science Ltd. All rights reserved. 

In the preceding paper, x we have described the revised structure of cepaciamide A ( la )  and the structural 
determination of cepaciamide B (2a) closely related to l a  (Fig. 1). Cepaciamides are novel fungitoxic 3-amino- 
2-piperidinone-containing lipids against Botryfis cinerea and PeniciUium expansum, which cause the storage rot 
of beet roots, and are considered to be a promising biocontrol agent.2 However, it is difficult to obtain a 
sufficient amount of cepaciamides from Pseudomonas cepacia D-202 because of its low productivity. 
Furthermore, a large amount of various phospholipids, which occur closely near the cepaciamide fraction, 
interfere with isolation and purification. In order to examine the structure-activity relationship of cepaciamides 
and their derivatives, stereochemically pure compounds must be supplied synthetically. We describe here the 
total syntheses of cepaciamides A ( la )  and B (2a). 
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Fig. 1 Structures of cepaciamides and their segments 

Since the common amide-segment ( l b  = 2b)  for cepaciamides has been prepared as described in the 
preceding paper, x carboxylic acid-segments ( l e  and 2e) are required. While use of a non-protected segment x 
for the direct synthesis of 2a  failed, use of a TBDPS-protected segment 1 for esterification with DCC/DMAP 
gave an ester in moderate yield (65%). However, subsequent desilylation with TBAF or HF-pyridine gave 2a 
in only 0-3% yield. From these preliminary results, we selected an MPM protective group which would be 
deprotected oxidatively on our substrates in a neutral medium. In the syntheses of l c  and 2c, (S)-malic acid 3a 
was used instead of (R)-glycidol as a chiral source to introduce (2S)-configuration because 3a  is considered to 
be optically pure and cheaper than (R)-glycidol. 3 
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Total Synthesis of Cepaciamide A 
(S)-Malic acid 3a  was reduced with BH3.SMe ~ and B(OMe)3 to give triol 3b  4 which was converted to p- 

methoxybenzylidene acetals 4a  (1,3-acetal, as a single diastereomer) 5 and 5 (1,2-acetal, as a mixture of two 
diastereomers) in ccz 10:1 ratio 6 (Scheme 1). The ratio was increased up to ctz 30:1 by column chromatography. 
Protection of  4a  by the TBDPS group gave 4b  which could be obtained as a single diastereomer by column 
chromatography. DIBAL-H reduction 7 of 4b  gave primary alcohol 6 as the sole product because 4b  was 
regioselectively reduced from the less-hindered site. The structure of 6 was confirmed from the ~H-tH-COSY 
spec~,um of the acetate of 6. Cross-coupling between a tosylate of 6 and a Grignard reagent in the presence of 
CuI proceeded to give a C5-elongated derivative which was converted to bromide 7 via deprotection and 
subsequent bromination. By treating 7 with triphenylphosphine in refluxing CH3CN , phosphonium salt 8 was 
obtained quantitatively. The phosphonium ylide generated from 8 was subjected to Wittig reaction with an 
aldehyde obtained from known chiral cyclopropane 98 to give olefm 10 as a mixture of geometric isomers (E:Z 
= c~z 1:5). Further elongation of the Cs-unit was achieved by Wittig reaction for an aldehyde which was 
derived from 10 v/a deprotection and subsequent oxidative cleavage of  a diol. Thus, Clg-diene 11 equipped 
with all requisite carbons was obtained as a mixture of four geometric isomers. A further four-step conversion, 
including diimide reduction 9 of diene and oxidation to carboxylic acid, gave I c as the segment of  l a .  
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Scheme 1: [A] (1) BHySMo2, B(OMe)3 / THF, quant., (2) p-methoxybenzaldehyde, PPTS / benzene, 92%, [B] TBDPSC1, 
imidazole / DMF, 100%, [(2] DIBAL-H / toluene, 82 %, [D] (1) TsCI, pyr. / CH2C12, 97%, (2) MgBr(CH2)5OTHP, CuI / 
THF, (3) PPTS / EtOH (4) CBr4, Ph3P / CH2C12, 88%, 3 steps, [E] Ph3P / CH3CN, quant., [F] n-BuLi / THF, [G] Swern 
oxid., (82% as Wittig reaction), [H] (1) PPTS / EtOH, 72%, (2) NaIO4 / TI-IF-H20, (3) Ph3P+-(CH2)4CHyBr -, n-BuLi / TI-IF, 
93%, [I] (1) TBAF / THF, 99%, (2) KO.2CN=NCO2K, AcOH / pyridine, 97%, (3) Swern oxid., (4) NaC102, NaH2PO4, 2- 
methyl-2-butene / t-BuOH-H20 , 98%, 2 steps, [J] (1) DCC, DMAP / toluene, 80%, (2) CAN / CH3CN-CHC13-H20 , 80%. 

I 

Estefification between l c  and previously synthesized l b  ~ was carried out with DCC and DMAP to give 
the desired ester in 80% yield. Final oxidative deprotection of the MPM group was first attempted with DDQ in 
CH2CI2-H2 Ot° to give l a  in only 24% yield. This reaction took a relatively long time (20 h) in contrast to 
general cases of  MPM-deprotection. Ceric (IV) ammonium nitrate (CAN) in CH3CN-CHCI3-H20~ was next 
used for depotection. In this case, the reaction was completed in 30 minutes to give l a  as a colorless oil in 80% 
yield. The spectral data of  synthetic l a  were identical with those of natural l a .  12 In this way, the in'st total 
synthesis of  l a ,  which is regarded as diastereomerically pure, was accomplished. 

Total Synthesis of Cepaciamide B 
Carboxylic acid segment 2e was synthesized from common intermediate 6 (Scheme 2). According to the 

same procedure as for preparation of 7, except for using the C6-unit as the Grignard reagent, bromide 12 was 
obtained from 6. Lithium acetylide of  1-octyne (Cs-unit) was alkylated with 12 to give the Cls-alkyne equipped 
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with all requisite carbons whose TBDPS group was deprotected with TBAF to give 13. By a further three-step 
conversion, including partial reduction to (Z)-olefin and oxidation to carboxylic acid, 2c as the carboxylic acid 
segment of 2a was obtained. Esterification between 2c and 2b (= l b )  ~ was carried out to give the desired ester 
in 76% yield under the same conditions as used in the synthesis of 1 a. Final oxidative deprotection of the MPM 
group with CAN" gave 2a as a colorless oil in 76% yield. Although there are no spectral data of natural 2a 
alone, the 1H-NMR spectrum of synthetic 2a corresponded to that of the mixture of l a  and 2a. Other spectral 
data substant ia~ the structural validity of 2a. ~3 In this way, the fast total synthesis of 2a, which is regarded 
as diastereomerically pure, was accomplished. 
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Scheme 2: [A] (1) TsC1, pyr. / CH2C12, 97%, (2) MgBr(CH2)6OTHP, CuI / TI-IF, (3) PPTS / EtOH (4) CBr4, Ph3P / 
CH2CI 2, 79%, 3 steps, [B] (1) n-BuLi, 1-octyne / THF-HMPA, (2) TBAF / TI-IF, 86%, 2 steps, [C] (1) H2, Lindlar cat. / 
EtOAc, 100%, (2) Swern oxid. (3) NaC102, NaH2PO 4, 2-methyl-2-butene / t-BuOH-H20, 97%, 2 steps, [D] (1) DCC, 
DMAP / toluene, 76% (2) CAN / CH3CN-CHCI3-H20, 76%. 

Synthesis of Ornithine-Amide 
It is suspected from the occurrence of omithine-containing lipids 14 closely related to cepaciamides that 

cepaciamides are artifacts. Therefore, an ornithine-amide was synthesized in order to examine its property. 
Known (S)-ornithine derivative 1415:6 was coupled with a carboxylic acid derived from (3R)-ester 15 t to give 
amide 16. Catalytic hydrogenolysis gave ornithine-amide 17 which was converted to methyl ester 18 with 
diazomethane in acidic medium. While 17 did not cyclize in the range of room temperature to 60 °C or during 
chromatographic purification on silica gel with CHC13-MeOH as an eluent, whose system was used for 
separation of natural products, the corresponding ester 18 cyclized spontaneously to give 3-amino-2- 
pipeddinone-amide 19. Such conversions have been u ~  in determining the stereochemistry of the 
omithine-part by the CD spectrum. 17Js Ornithine-containing lipids so far isolated have been shown not to 
cyclize during chromatographic operation similar to ours, 14'~7'ts and only (S)-ornithine was identified from 
some omithine-containing lipids. Therefore, it is strongly suggested that cepaciamides are not artifacts. 
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Scheme 3: [A] TFA / CH2C12, [B] (1) DEPC, Et3N / CH2C12, 85% from 14, [C] H2, 10% Pd-C / MeOH, 93%, 
[D] CH2N2 / Et20-1M HCI, 99% 

In conclusion, the f'ast total syntheses of cepaciamides A ( la )  and B (2a) were accomplished, and the 
synthetically obtained cepaciamides are regarded as diastereomerically pure. Furthermore, our method makes it 

possible to synthesize all stereoisomers of cepaciamides, their analogs, and omithine-contalning lipids required 
for study of the structure-activity relationship. 
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