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Abstract—The reactions of chlorophosphines 1 with (S)- or (R)-1-methylbenzylamines 2 proceed stereoselectively to give
N-(1-methylbenzyl)aminophosphines 3, which were isolated as crystalline borane complexes with 100% diastereomeric purity. The
absolute configuration of the new chiral compounds was established by X-ray analysis and chemical extrapolation. © 2003
Elsevier Science Ltd. All rights reserved.

Chiral trivalent organophosphorus compounds having
a sterogenic phosphorus centre are important subjects
of investigation due to the widespread use of these
compounds as ligands for transition metal catalysis.
The numerous patented chiral phosphines and
aminophosphines are proof of the interest in such cata-
lytic reactions from the industrial world.2,3

A few years ago, we reported a method for the asym-
metric synthesis of phosphinic and phosphinous acid
esters using the reaction of chiral alcohols with racemic
nonsymmetrically substituted chlorophosphines in the
presence of tertiary bases.4 Proceeding with these stud-
ies, we have examined the reaction of the chlorophos-
phines 1 with the (S)- or (R)-enantiomers of
N-(1-methylbenzyl)amine 2, resulting in the formation
of diastereomerically enriched N-(1-methylbenzyl)-
aminophosphines 3 which, upon treatment with borane,
provide the enantiomerically pure aminophosphines 3
(Scheme 1).

The diastereoselective reaction of chiral amines with
phosphorus(III) chlorides has not been described previ-
ously, although the reaction of the amines 2 with
phosphorus(V) chlorides has literature precedence.5,6

The stereoselectivity of the reaction between
chlorophosphines 1 and N-(1-methylbenzyl)amine 2 in
the presence of tertiary bases depends strongly on the
reaction conditions and the nature of the base, solvent,
temperature and ratio of starting reagents all affect the
stereochemical outcome (Scheme 1). Under certain con-
ditions this reaction proceeds with sufficient stereoselec-
tivity to give diastereomerically enriched amino-
phosphines 3 (Scheme 1, entries 1 and 12). The
aminophosphines 3 are colorless liquids that can be
distilled under vacuum. The yields of aminophosphines
after distillation are 75–80%.

The subsequent treatment of aminophosphines 3a with
borane in tetrahydrofuran (THF) leads to the forma-
tion of the stable crystalline adduct 4 in essentially
quantitative yield. The complexes 4 were then purified
by crystallization from hexane. 1H, 13C and 31P NMR
analyses of the borane complex 4a indicated the forma-
tion of only one diastereomer.7 The BH3 group of the
phosphine–borane complex 4a was removed on treat-
ment with a large excess of diethylamine to furnish the
initial aminophosphine 3a in 100% stereochemical
purity.8 This reaction has been proven to proceed in a
stereospecific manner with retention of configura-
tion.9,10

The reaction permits facile access to enantiomerically
pure aminophosphines 3, which are potential starting
materials for the synthesis of numerous chiral
organophosphorus compounds (Scheme 2).
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Scheme 1. The asymmetric synthesis of aminophosphines 3.

Scheme 2. R*=CH(Me)Ph.

Figure 1.
Thus, the (Rp,S)-aminophosphine 3a was allowed to
react with methanol to give the methyl (S)-(−)-tert-
butylphenylphosphinate 5. The hydrolysis of (Rp,S)-N-
(1-methylbenzyl)amino-t-butylphenylphosphine 3a in
aqueous dioxane (80°C, 12 h) or acidolysis of 3a with
formic acid in toluene (15–30 min, 0°C) resulted in the
formation of optically active (S)-(−)-t-butylphenylphos-
phine oxide 5.11 The specific rotation and other physical
data for compound 5, synthesized by us, and of (S)-(−)-
t-butylphenylphosphine oxide, described in the litera-
ture, are identical.12a–c

The oxidation of aminophosphine (Rp,S)-3a by hydro-
gen peroxide in dioxane afforded only the (Sp,S)-
diastereomer of aminophosphine oxide 7a in a very
good yield. The oxidation of the (Rp,S)+(Sp,S)-

diastereomer mixture 3a using the same conditions
provided a diastereomeric mixture of (Sp,S)- and
(Rp,S)-aminophosphine oxides 7a.

The diastereomers 7 were separated by flash-chro-
matography. The products (Sp,S)- and (Rp,S)-7 were
crystalline13,14 and a single crystal X-ray structural
analysis established the absolute configuration of
(Sp,S)-7 (Fig. 1).15 The thionation of the compounds 3a
gave the pure (Sp,S)-diastereomer of the phosphine
sulfide 8, which was isolated by crystallization from
hexane as a colorless stable solid in �100%
diastereoisomeric purity.16,17
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In summary, we have developed an accessible method
for the preparation of chiral aminophosphines, which
can be used as starting compounds for the asymmetric
synthesis of organophosphorus compounds or as chiral
ligands. We are currently studying the borane com-
plexes 4 as chiral catalysts for the asymmetric reduction
of C�O and C�N groups and the results of these studies
will be reported in due course.
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