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ABSTRACT:  A concise synthesis of monobenzofused 1,4-azaborine 
phosphine ligands (Senphos) is described. These Senphos ligands 
uniquely support Pd-catalyzed trans-selective hydroboration of termi-
nal and internal 1,3-enynes to furnish corresponding dienylboronates 
in high efficiency and diastereoselectivity. X-ray structural analysis of 
the Senphos-Pd(0) complex reveals a κ2-P-η2-BC coordination mode, 
and this isolated complex has been shown to serve as a competent 
catalyst for the trans-hydroboration reaction. This work demonstrates 
that the expanded chemical space provided by the BN/CC isosterism 
approach translates into the functional space in the context of stereose-
lective catalytic transformations.  

BN/CC isosterism, i.e., the replacement of a CC bond unit with the 
isoelectronic and isosteric BN bond unit, has recently emerged as a 
viable strategy to increase the structural diversity of organic molecules.1 
While early applications have appeared in the area of materials science2 
and biomedical research,3 efforts taking advantage of expanded chemi-
cal space provided by BN/CC isosterism in ligand-supported catalysis 
for organic synthesis have lagged behind.4-6 This is surprising in view of 
tremendous opportunities for achieving new reactivity and selectivity 
in catalytic transformations that the electronic tuning through BN/CC 
isosterism could potentially provide. In a recent example, we disclosed 
that the 1,4-azaborine-based pyridine ligand A (Scheme 1) exhibits a 
κ2-η2-BC coordination with group 10 transition metals and that the 
phosphine derivative B in conjunction with Pd could uniquely catalyze 
the hydroboration of a terminal enyne in a trans-selective fashion.7 In 
contrast to B, the corresponding carbonaceous phosphine ligand 
isostere C behaves more similarly to a monodentate phosphine such as 
PPh3 in terms of hydroboration selectivity and yield, producing prefer-
entially allenes via 1,4-hydroboration; bisphosphine ligands such as 
1,2-bis(diphenylphosphino)ethane (dppe) furnish syn-hydroboration 
products exclusively.8 Despite this promising preliminary result, our 
trans-hydroboration reaction still needed optimization with regard to 
yield and selectivity. More importantly, we wondered whether we 
could develop a trans-hydroboration protocol for internal enynes, a 
substrate class that is considered significantly more challenging (vide 
infra).  

To date, only a handful of metal-catalyzed systems have been 
demonstrated to achieve trans-hydroboration of alkynes.9 Miyaura 
reported the first example in 2000 using Ir or Rh catalysts (Scheme 
2).10 In 2012, Leitner showed that a Ru/PNP pincer complex can pro-
duce Z-vinylboronates via trans-hydroboration of alkynes with H-
Bpin,11 and Chirik introduced a Co-based system in 2015.12 What these 
systems have in common is that they require the presence of the termi- 

Scheme 1.  An application of BN/CC isosterism in catalysis 

 
nal alkyne proton due to the operating reaction mechanisms. Metal 
vinylidene species have been proposed for the Miyaura10 and Leitner11 
catalysts whereas the Chirik system involves a Co-alkynyl12 intermedi-
ate. Thus, internal enynes would not be suitable substrates for these 
systems. Lee and Yun reported very recently a Copper(I)−thiophene-
2-carboxylate/DPEphos catalyzed trans-hydroboration of terminal 
aryl-alkynes in which the terminal alkyne proton does not undergo a 
migration that is observed in the Miyaura, Leitner, and Chirik sys-
tems.13 To the best of our knowledge, the only metal-catalyzed system 
that can achieve the trans-hydroboration of internal alkynes is the 
[Cp*Ru(MeCN)3]PF6 system by Fürstner.14 This system works par-
ticularly well with symmetrical internal alkynes, and enynes have been 
pointed out as a problematic substrate for Fürstner’s Ru catalyst.  

Scheme 2.  Transition-metal catalyzed trans-selective hydrobo-
ration of alkynes 

 
In this communication, we disclose a Pd-catalyzed trans-selective 

hydroboration of both terminal and internal 1,3-enynes with high site- 
and stereo-selectivity that is supported by 1,4-azaborine-based phos-
phine ligands. Key to the successful development of this reaction is a 
new, concise synthesis of monobenzofused 1,4-azaborine phosphines 
(Senphos), which we report here as well. 
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Our original synthesis of Senphos-type ligands via ring-closing me-
tathesis7 was unfortunately not amenable to scale-up15 and ready modi-
fication of the C(3) position, which we believe could play an important 
role due to its proximity to the catalytically active Pd metal. This syn-
thetic limitation significantly hampered our ability to develop a general 
and versatile trans-hydroboration protocol. Recognizing that N-vinyl-
B-Cl intermediate D (Scheme 3, top) contains a nucleophilic enamine 
and an electrophilic boron atom, we envisioned that D could be poised 
to undergo intramolecular electrophilic cyclization16 to furnish C3-
substituted monobenzofused 1,4-azaborine E after aromatization, thus 
circumventing the limiting ring-closing-metathesis approach. Interme-
diate D should be accessible from commercially available 2-
bromoaniline, a variety of acyl chlorides, and (diisopropylamino)boron 
dichloride. 

Scheme 3.  Retro-synthetic analysis and preparation of 
Senphos Ligands L2-L6 

 
With a new synthetic strategy in hand, we began our synthesis of a 

library of ligands with the acylation and methylation of 2-bromoaniline 
to provide amides 1a-c. The critical enamine functionality was intro-
duced using a protocol developed by Nagashima.17 Treatment of 1 with 
polymethylhydrosiloxane (PHMS) in the presence of 0.05 mol% of 
Vasaka’s complex (PPh3)2(CO)IrCl as a catalyst furnished the corre-
sponding enamines 2a-c in 63-86% yield. Subsequent lithium-halogen 
exchange followed by addition of i-Pr2NBCl2 and distillation of the 
resulting reaction mixture under attenuated pressure afforded directly 
the versatile B-Cl-substituted monobenzofused 1,4-azaborines 3a-c.18 
The structure of 3a is further unambiguously confirmed by single crys-
tal X-ray diffraction analysis (see supporting information). Finally, the 
substitution reaction of 3a-c with phosphine-containing organolithium 
nucleophiles gave targeted SenPhos ligands L2-6.  

We chose terminal E-1,3-enyne 4a as our initial substrate to probe 
the effects of the ligand structure on the trans-hydroboration selectivi-
ty. In the presence of 4 mol% catalyst “L1 (= B)/Pd(0)”, reaction of 4a 
with 1 equivalent of catecholborane (HBCat) in CH2Cl2 at room tem-
perature and subsequent transesterification with pinacol19 afforded the 
corresponding trans-hydroboration product 5a with decent trans-
hydroboration stereo-selectivity (93 : 7) in 59% yield (Table 1, entry 
1). No background reaction was observed in the absence of the catalyst 
under otherwise identical reaction conditions. The C3-substituent in L 
plays an important role in the optimization of stereo-selectivity. For 
example, when L4, which bears the sterically more demanding i-Pr 
group at the C3 position, is used as the ligand, the reaction gave superi-
or (> 98:2) trans-hydroboration selectivity compared to those with the 

smaller substituents (Table 1, enty 4 vs. entries 1-3). Switching the 
boron substituent from o-diphenylphosphinophenyl to 2-
diphenylphosphinonaphth-1-yl group did not result in obvious trends 
in terms of both reactivity and stereo-selectivity (Table 1, entries 2 vs. 
5, and entry 3 vs. 6). The isolated yield of dienylboronate ester 5a 
could be elevated to 86% when 1.5 equivalents of CatBH is used in-
stead of 1.0 equivalent (Table 1, entry 7). 

Table 1. Ligand survey of trans-hydroboration of terminal 1,3-
enyne 4a catalyzed by L/Pd(0) 

 
Under optimized reaction conditions, various terminal E-1,3-enynes 

4 were subjected to the trans-selective hydroboration, and the results 
are summarized in Table 2. High yield and trans-selectivity were ob-
served consistently with an array of electronically and sterically differ-
ent substituents on the alkene. The stereochemistry of dienylboronate 
5a was confirmed by single crystal X-ray diffraction analysis (Table 2). 

Table 2. Trans-hydroboration of terminal 1,3-enynes 4 cata-
lyzed by L4/Pd(0) 
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The metal-catalyzed trans-hydroboration of internal 1,3-enynes is a 
significantly more demanding problem and has currently no precedent 
in the literature. Internal 1,3-enynes are generally less reactive toward 
hydroboration, and the control of both site- and stereoselectivity is 
more challenging.20 Gratifyingly, when the concentration of the reac-
tion is increased from 0.25 M to 1.25 M,21 the reaction of internal E-
1,3-enyne 6a with CatBH (see eq 1) in the presence of 4 mol% L1/Pd 
was complete within 90 minutes at room temperature, affording 7a in 
89% yield with 90:10 trans-hydroboration selectivity after treatment 
with pinacol. Other regioisomers were not observed. Further optimiza-
tion with regard to the ligand structure revealed that the C3-ethyl sub-
stituted L3 was the best performing ligand producing 7a in 92% yield 
and 96:4 trans-hydroboration selectivity.22 

 
The substrate scope for the trans-hydroboration of internal 1,3-

enynes is summarized in Table 3. In general, 1,4-disubstituted 1,3-
eynes 6 bearing an aryl group at R1 position gave superior trans-
hydroboration selectivity than alkyl groups (Table 3, entries 7h-7l vs. 
7a-7g). Increasing the substituent size of the R3 substituent in 6 reduc-
es trans-hydroboration selectivity (Table 3, entries 7l-7p, in particular 
7l vs. 7p). The bond connectivity of dienylboronate 7a and the hy-
droboration stereoselectivity were unambiguously confirmed by the 
solid-state structure of 7a (Table 3). 

Table 3. Trans-hydroboration of internal 1,3-enynes 6 cata-
lyzed by L3/Pd(0) 

 

Our method is amendable to scale up. As can be seen from eq 2, 
trans-hydroboration of 1,3-enyne 6l (1.138 g, 8.0 mmol) with a re-
duced catalyst loading (1 mol% Pd) furnished the desired product 7l in 
89% yield (1.819 g) without erosion of stereo-selectivity.  

 
Dienylboronate esters such as 7l are versatile intermediates in organic 
synthesis,23 and Scheme 4 illustrates that 7l is capable in engaging in 
subsequent C-C bond forming transformations stereospecifically. For 
example, 7l undergoes Pd catalyzed Suzuki-Miyaura24 coupling with 
bromobenzene to furnish 1,3-diene 8 in 83% yield with complete re-
tention of the olefin stereochemistry (Scheme 4, eq 3). Furthermore, 
Diels-Alder reaction of 7l with N-methylmaleimide afforded bicyclic 9 
containing 4 stereogenic centers with high diastereoselectivity (en-
do/exo>98:2) in 67% yield (Scheme 4, eq 4).25 Finally, homologation 
of 7l with deprotonated carbamate 10 followed by oxidation furnished 
corresponding dienol 11 in 62% yield (Scheme 4, eq 5).26 

Scheme 4.  Functionalization of hydroboration product 7l 

 
We were able to obtain the single crystal X-ray structure of Senphos 

L4 bound to Pd(0)dba. Scheme 5 shows that the κ2-P-η2-BC coordina-
tion mode to Pd(0) in complex 12 is preserved even with the sterically 
demanding i-Pr group at the C(3) position.27,28 Complex 12 is a chemi-
cally and kinetically competent catalyst. Trans-hydroboration of sub-
strate 4a with the isolated Pd(0) complex 12 as the catalyst furnished 
the desired product 5a in the same amount of yield and diastereoselec-
tive within 30 minutes as described in Table 1. 

Scheme 5.  Isolated Pd(0) complex 12 is a competent catalyst for 
trans-hydroboration 
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In summary, we have developed a modular and concise synthesis of 
monobenzofused 1,4-azaborine-based phosphine ligands. Their Pd(0) 
complexes have been found to catalyze trans-hydroboration of both 
terminal and internal E-1,3-enynes with high site- and stereo-selectivity 
under mild conditions. The method is also amendable to gram-scale 
synthesis without erosion of selectivity. Mechanistic studies including 
the origin of trans-hydroboration selectivity and further application of 
Senphos ligands in catalytic transformations are currently underway in 
our laboratory. 
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