

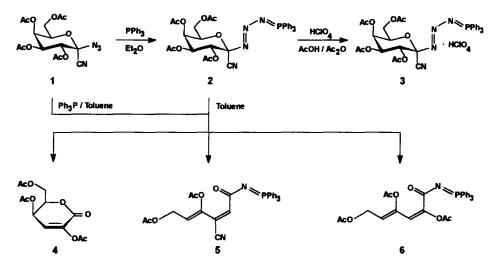
PII: S0040-4020(97)01055-7

Unexpected Reactions of (1R)2,3,4,6-Tetra-O-acetyl-1-azido-D-galactopyranosyl Cyanide and the Derived Carboxamide with Triphenylphosphine

József Kovács^a, István Pintér^{a*}, Mária Kajtár-Peredy^a, Laszló Somsák^b

*Central Research Institute for Chemistry. Hungarian Academy of Sciences, H-1525 Budapest, P.O.Box 17, Hungary

^bDepartment of Organic Chemistry, Lajos Kossuth University, H-4010 Debrecen, P.O.Box 20, Hungary


Abstract: Staudinger reaction of acetylated (1R)-1-azido-D-galactopyranosyl cyanide (1) with triphenylphosphine in diethyl ether led to the isolation of a crystalline phosphazide (2), unprecedented in carbohydrate chemistry. Spontaneous decomposition of 2 in toluene furnished the mixture of the unsaturated lactone 4, as minor product, and two major products: the triphenylphosphoranylidene derivatives of (2Z, 4Z)-3-cyano-4.6-diacetoxy-2.4-hexadienoic amide (5), and (2E, 4Z)-triacetoxy-2.4-hexadienoic amide (6), respectively. owing to an unusual pyranoid ring opening between C-5 and the pyranose oxygen. The carboxamide analogue (10) of 1 underwent a regular phosphinimine formation affording the equilibrium mixture of both anomers 11 and 12.

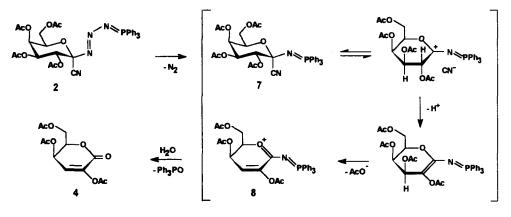
© 1997 Published by Elsevier Science Ltd.

The Staudinger reaction¹ - transformation of organic azides with tertiary phosphines to produce iminophosphoranes (phosphinimines) - is a versatile tool in organic syntheses.² The use of the phosphinimine method in the carbohydrate field provides an easy access to various N-containing sugars (carbodiimides, cyclic carbamates, epimines, ureido- and guanidino derivatives e.t.c.).³ In the course of our studies on the synthesis and transformation of sugar phosphinimines, recently, a particular interest has been aimed at the Staudinger reaction of glycosyl azides bearing an additional functional group at the anomeric carbon. First, we described the reaction of tetra-O-acetyl-D-glucopyranosylidene 1,1-diazide⁴ with triphenylphosphine to give a fused ν -triazolo-pyranosyl phosphinimine.⁵

Now we report on the anomalous Staudinger reaction of (1R)2,3,4,6-tetra-O-acetyl-1-azido-Dgalactopyranosyl cyanide⁶ (1) and its carboxamide analogue^{6b} 10, respectively. Reaction of 1 with triphenylphosphine in molar ratio 1:1 in dry diethyl ether did not give the expected phosphinimine but the phosphazide 2 which precipitated from the reaction mixture in 80% yield. Phosphazides, as primary adducts of the Staudinger reaction, were isolated in several cases,⁷ however, to our best knowledge 2 is the first one isolated in the sugar field. ¹H-NMR data of 2 exhibited signals of the peracetylated galactopyranose moiety (Table 1). The ³¹P-NMR spectrum of 2 displayed a signal at δ 25.92 (Table 2) which is in good agreement with previously reported values of phosphazides.^{7,8} Unlike sugar phosphinimines,^{3c,d,5} the anomeric carbon of 2 (δ 94.27, Table 2) has no coupling with the phosphorus atom, as a consequence of the four bonds sequence between them.

The outcome of the reaction is practically not influenced by the molar ratio of the reactants; both with 2 and 0.5 equiv triphenylphosphine the yield of 2 (calculated for 1) was 74% and 33%, respectively, while the

reactant used in excess was not consumed. Formation of 2 from 1 accords well with the anomalous Staudinger reaction of α -azidodiphenylacetonitrile which furnished a phosphazide with Z configuration⁷. Similar geometry of the phosphazide moiety of 2 might be assumed, but in the lack of suitable crystals for X-ray analysis it could not be proved.

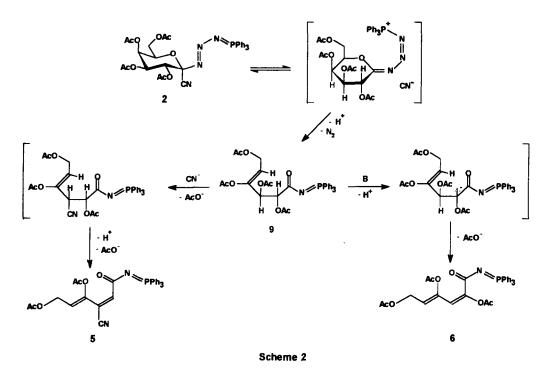

On treatment with perchloric acid in acetic anhydride 2 was transformed into the protonated salt 3, pro-viding evidence for the phosphazide structure of the molecule. Both 2 and its perchlorate salt (3) are stable in solid state, however in chloroform solution they decompose to give multicomponent mixtures.

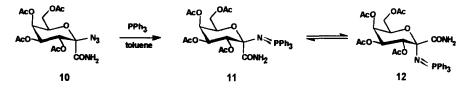
Attempts to transform 2 into the corresponding phosphinimine by heating in toluene led to a dark comp-lex mixture with tarry precipitation. However, when a solution of 2 in toluene was left to stand at room temperature for 3 d, tlc showed the disappearance of the phosphazide and formation of several products. The main components of the reaction mixture could be separated by column chromatography to give the unsaturated lactone $4^{9,10}$ (9%), the crystalline (2Z, 4Z)-3-cyano-4,6-diacetoxy-N-(triphenylphosphoranylidene)-2,4-hexadienoic amide (5, 44 %) and (2E, 4Z)-2,4,6-triacetoxy-N-(triphenylphosphoranylidene)-2,4-hexadienoic amide (6, 18%), besides triphenylphosphine oxide (15%).

¹H-, ¹³C- and ³¹P-NMR spectra of the unsaturated aliphatic phosphinimines 5 and 6 revealed the constitution of both molecules and pointed to the close analogy of their structure (Tables 1 and 2). The exact structure of 5 was proved by X-ray diffraction.¹² In the case of 6 Z configuration of the C-4 \div C-5 double bond was corroborated by NOE measurement, indicating the closeness of H-3 and H-5. Otherwise, the large value of the coupling ³J_{CO,H-3} =7.8 Hz, determined by selective 2D INEPT measurement¹³, proved the *trans* relationship of H-3 and the imide carbonyl, which corresponds to the 2E configuration. Thus, disregarding the CN-substituent in 5, the iminophosphoranes 5 and 6 contain the same carbon skeleton.

When the reaction of 1 with triphenylphosphine (molar ratio 1:1.05) was performed in dry toluene the same products were obtained as from the isolated phosphazide, but in this case the triacetate 6 was formed predominantly. The hexadienoic phosphinimines 5 and 6 are quite stable compounds. In contrast to sugar phosphinimines they do not react with carbon dioxide, owing to their resonance-stabilized structure.

As for the reaction mechanism, transformation of the phosphazide (2) in solution may proceed in two different ways. The side-reaction (Scheme 1) leading to the unsaturated lactone 4 involves the formation of 1-cyano-1-phosphinimine 7 which can be stabilized by releasing the cyanide anion and eliminating acetic acid to give an unsaturated lactone-imino phosphonium salt (8). Formation of the enollacton 4 is attributed to the hydrolysis of 8 during the reaction or chromatographic separation.




The main pathway (Scheme 2) resulting in the formation of acyclic unsaturated iminophosphoranes 5 and 6 requires an unusual ring opening between C-5 and the pyranose oxygen. The reason for this might be the relative stability of the phosphazide system in the Z configuration which allows an interaction between the pyranose oxygen and the positively charged phosphorus atom. This anchimeric effect may help on the pyranose ring opening. Subsequent deprotonation at C-4 and splitting of nitrogen make the reaction irreversible furnishing a 4,5-unsaturated aldonyl phosphinimine (9) which may serve as a key intermediate for both final products. On one hand, replacement of AcO-3 by the cyanide anion (S_N2 reaction) followed by release of H-3 and subsequent β -elimination of the acetate anion from C-2 leads to the product 5. Alternatively, 9 may be stabilized by deprotonation from C-2 and β -elimination of AcO-3 to give the triacetate 6. The influence of the reaction conditions on the yields of the products is being investigated.

A similar acetoxy-group elimination process affording heterocycles with penta-dienyl side chain was observed¹⁴ in the anomalous Wittig reaction of aldonic thioamide derivatives.

In contrast to the very fast transformation of 1 with triphenylphosphine, the carboxamide analogue 10^{6b} reacts very slowly under the same conditions. With 1.1 equiv triphenylphosphine in diethyl ether at room

temperature the reaction was not complete even in two weeks. Therefore, 2 equiv triphenylphosphine was used in toluene at 80° C for 10 h and the reaction mixture was chromatographed to give 3,4,5,7-tetra-O-acetyl-2deoxy-2-(triphenylphosphoranylideneamino)- β -D-galacto-hept-2-ulopyranosonamide (11) and its α -anomer (12) in 36% and 21% yield, respectively. Both anomers are stable in neat form, however, during six weeks in chloroform solution they anomerize to give a 15:85 mixture of 11 and 12 as shown by NMR measurements. The preponderance of 12 in the equilibrium mixture - indicated also by tlc and the change of optical rotation may be explained by the strong anomeric effect of the phosphinimino-group¹⁵ and the reverse anomeric effect of the carbamoyl group.¹⁶

The ¹H-NMR spectra (Table 1) of both 11 and 12 indicated the acetylated galactopyranose moieties to be in the ⁴C₁ conformation. The theoretically possible ring closure between the phosphinimine function and the carbamoyl group to form a spirobicycle could be ruled out by the heterocorrelated 2D ¹H-¹⁵N NMR spectrum of the equilibrium mixture of 11 and 12 which proved that in both anomers the two NH protons belong to the same nitrogen atom. Selective ¹H-{¹H} NOE measurements helped to assign the stereochemistry of 11 and 12.

	H-2	H-3	H-4	H-5	H-6a	49-H	Phenyl		Acetyl	HN
	$(J_{2,3})$	(13.4)	(74.5)	$(J_{5,6a})$	(Joa.6b)	$(J_{5,6b})$	Hortho H _{para} H _{meta}	H _{mcta}		(INTER)
2	5.73	5.29	5.52	4.42	4.20	4.13	7.72 7.64 7.52	7.52	2.14, 2.02, 1.97, 1.67	:
	(10.5)	(3.2)	(1.3)	(6.8)	(11.2)	(6.2)				
3	5.47	5.22	5.51	4.38	4.15	4.12	7.7-7.8 7.89 7.7-7.8	.7-7.8	2.17, 2.04, 1.97, 1.81	ł
	(10.5)	(3.2)	(1.3)	(6.3)	(11.3)	(6.5)				
4	1	6.64	5.43	4.92	4.37	4.35			2.28, 2.12, 2.11	1
		(6.3)	(2.6)	(0.9)	(11.6)	(6.5)				
s	6.91		1	6.05	4.51	4.51	7.74 7.61	7 50	2.01, 1.61	1
				(6.5)		(6.5)				
6	1	6.10 ^b	ł	5.64	4.53	4.53	7.76 7.56	7.47	2.21, 1.97, 1.71	1
				(6:9)		(6.9)				
=	5.12	5.95	5.38	5.03	3.69	3.66	7.69 7.49	7.43	2.11, 1.90, 1.88, 1.84	8.03, 5.70
	(10.7)	(3.6)	(2.0)	(6.4)	(10.9)	(6.8)				(0:9)
12	5.41 ^c	5.83	5.59	4.78	4.12	4.00	7.76 7.46	7.39	2 12, 2 00, 1 98, 1 91	6.20, 4.67
	(10.2)	(3.5)	(1.5)	(5.6)	(11.2)	(2.3)				(4.0)
^a Listed according to parent sugar	ng to parent su		g. ^b J _{3,5} ≈ 1 Hz	. J _{3,6} ≈1 Hz. °	numbering. ^b $J_{3,5} \approx 1 \text{ Hz}. J_{3,6} \approx 1 \text{ Hz}. c_{H,2,P} = 5.0 \text{ Hz}.$					

Table 1. ¹H-NMR data^a measured for CDCl₃ solutions at 400 MHz (δ [ppm], J [Hz])

Table	2. ¹³ C- and	Table 2. ¹³ C- and ³¹ P-NMR data ^{abe} for CDCl ₃ solutions ^d	t data ^{ab.c} f	or CDCl ₃	solutions ^d										
	C-1	C-2	C-3	C-4	C-5	C-6	C ipso	Contho	C _{meta}	Cpara	CH₃ <u>C</u> O	CH ₃ CO CH ₃ CO	CN	CONH ₂	Ч
2	94.27	68.21	70.28	66.80	71.55	61.05	125.90 (95.9)	133.67 (9.2)	128.98 (12.0)	133.10 (2.9)	170.26 170.20	20.67 20.62	114.49	;	25.92
											169.90	20.57			
											168.26	20.30			
<u>س</u>	92.85	66.13°	69.47	66.79°	72.68	60.58	117.06	134.34	130.40	136.23	170.19	20.62	112.13	1	39.00
							(102)	(11.7)	(13.9)	(3.0)	169.92	20.60			
											169.61	20.44			
											168.25	20.16			
4	157.53	141.85	124.42	62.97	76.13	61.27	1	1	1	1	170.39	20.67	;	:	ł
											169.76	20.51			
											168.08	20.35			
v.	172.10	144.19	111.17	142.41	119.25	58.65	126.96	133.21	128.88	132.77	170.53	20.75	117.07	;	20.91
	(1.4)	(23.6)	(2.6)				(66.5)	(10.3)	(12.5)	(2.9)	167.72	19.92			
9	169.88	148.15	116.82	144 47	117.35	58.99	127.48	133.21	128.68	132.41	170.71	20.84	1	1	22.08
	(0.2)	(25.3)	(1.4)				(69.7)	(10.1)	(12.5)	(2.7)	169.34	20.81			
											168.26	20.19			
11	90.65	74.13	69.49	68.31	70.80	62.02	132.70	132.84	128.10	131.27	170.49	21.16	1	174.52	5.20
	(8.7)	(2.6)					(101.8)	(10.1)	(12.2)	(2.7)	170.27	20.90			
	-										169.97	20.75			_
											169.92	20.73			
12	91.15	71.01	69.92	69.22	67.14	62.73	132.70	132.81	128.00	131.09	170.54	20.88	1	172.58	8.68
	(6:1)	(16.8)					(102.1)	(8.6)	(12.1)	(2.7)	170.47	20.87			
											170.44	20.81			
	_										170.39	20.67			
"Listed a	according to	^a Listed according to parent sugar nur	r numberin	e. ^b Chemics	l shifts (õ l	poml). "Col	In the second se	of ³¹ P with	1 the correst	onding ¹³	C in parent	mbering ^b Chemical shifts (6 hom)) "Couplings (Hz) of ³¹ P with the corresponding ¹³ C in parenthesis "Recorded at 101 MHz, t^{13} C) and 162	ded at 101	MH ₂ (¹³ C)	and 162
				-	-		- -			0					

15046

MHz (31 P), respectively. ^eAssignments may be interchanged.

In 11 NOE-s were measured between H-2 and the ortho phenyl protons, while irradiation of H-3 resonance gave enhancement of the amide proton signals. On the contrary, spatial proximity was observed between H-2 and the amide protons, moreover, between H-3, H-5 and the phenyl protons in 12. These results are in agreement with the vicinal coupling value between the amide carbonyl and H-2 which, knowing the conformation (${}^{4}C_{1}$) of the pyranoid ring, allowed to establish the absolute configuration of the anomeric carbon in both anomers. Thus, ${}^{3}J_{CONH2,H-2} = 5.7$ Hz measured in 11 corresponds to the antiperiplanar (*trans*) orientation of H-2 and the amide carbonyl (S configuration), while ${}^{3}J_{\text{CONH,H-2}} = 1.5$ Hz for 12 indicates a gauche coupling (R configuration). These values accord well with the corresponding three bond couplings of the parent azido-amide 10 and those of other glycopyranosylidene derivatives having a C-substituent at the anomeric carbon.⁶ Both C-1 and C-2 (according to parent sugar numbering) couple with phosphorus, however, a striking difference was found in the ${}^{2}J_{C-1,P}$ value for 11 (8.7 Hz) and that for 12 (1.9 Hz) and, especially, in the ${}^{3}J_{C-2,P}$ value for 11 (2.6 Hz) and that for 12 (16.8 Hz). On the basis of the stereospecificity of ${}^{3}J_{C,P}$ couplings¹⁷ the latter large value indicates the γ -anti orientation of P-N and C-1 + C-2 bonds in the molecule 12, stabilized by the exo-anomeric effect.¹⁸ In contrast, the small value of ${}^{3}J_{C,2P}$ in 11 reflects a conformation in which the orientation of the P-N bond is γ -gauche related to the C-1 + C-2 bond. The latter conformation being opposite to that measured in acetylated glycosyl phosphinimines^{3c,d} might be stabilized by an interaction between phosphorus and the oxygen atom of the carbamoyl group. Of course, this stabilizing P-O interaction can also work in the case of the thermodynamically more stable anomer 12. The ³¹P-NMR spectra of 11 and 12 exhibited signals of phosphorus at very high field (δ 5.20 in 11 and δ 8.60 in 12) in comparison to those of various imino-phosphoranes.^{3c.d.7}. This may be the consequence of the special structural feature that in **11** and **12** the phosphinimino group is bonded to an electrondeficient quaternary carbon.

These sugar phosphinimines of new type have low reactivity; both 11 and 12 remained intact on treatment with methyl iodide as well as in the attempted aza-Wittig reaction with carbon dioxide. This latter reaction was unsuccessful, as reported very recently¹⁹, even if the azido-amide 10 was treated with tri-n-butyl-phosphine in the presence of carbon dioxide. On the contrary, the phosphinimine method has been successfully applied to a D-*ribo* configurated, furanoid azido-amide providing a facile synthetic route to (+)hydantocidin²⁰

EXPERIMENTAL

Tlc was performed on DC-Alurolle, Kieselgel 60 F_{254} (Merck); detection by UV light and charring with H_2SO_4 . For column chromatography Kieselgel 60 (Merck) was used. Melting points were measured in open capillary tubes in a Büchi apparatus or on a Koffler hot-stage and are uncorrected. Optical rotations were determined with a Zeiss Polamat A polarimeter at 25 °C. Ir spectra were taken with a Nicolet FT 205 spectrometer. The Raman spectra were recorded on a Nicolet 950 FT Raman spectrometer. NMR spectra were recorded on a Varian VXR-400 spectrometer. Chemical shifts refer to signals of tetramethylsilane in the case of ¹H- and ¹³C spectra and to 85 % aqueous phosphoric acid in the case of ³¹P spectra. Fast-atom bombardment (FAB) mass spectra were obtained with a VG ZAB-2SEQ mass spectrometer (using 3-nitro-benzylalcohol matrix). Microanalyses were performed in the Microanalytical Laboratory of the Institute.

J. KOVÁCS et al.

(1R)2,3,4,6-Tetra-O-acetyl-1-(3-triphenylphosphazido)-D-galactopyranosyl cyanide [3,4,5,"-tetra-Oacetyl-2-deoxy-2-(3-triphenylphosphazido)- β -D-galacto-hept-2-ulopyranosono-nitrile] **2.** (a) To a stirred solution of **1**° (159 mg, 0.4 mmol) in dry diethyl ether (3 ml) was added a solution of triphenylphosphine (110 mg, 0.42 mmol) in the same solvent (4 ml). A white solid precipitated within 1 min. After stirring for 10 min at room temperature the product was collected and washed with dry ether to give practically pure **2** (211 mg, 80 %), mp 92-93 °C; [α]_D +99 (c1.5. CHCl₃); IR (KBr): v 1756 (OAc), 1430, 1113, 723, 694 cm⁻¹ (Ph); Raman (solid): v 2235 (CN), 1756 (OAc), 1586, 1103, 1027, 997 cm⁻¹ (Ph); MS: 661 [M+H]⁺. Anal. Calcd for C₃₃H₃₃N₄O₉P (660.64): C, 60.00; H, 5.04; N, 8.48. Found: C, 59.83; H, 4.89; N, 8.13.

(b) When the reaction was carried out in the same way but using 2 equiv triphenylphosphine, 2 was obtained in 74 % yield, identical with the product in (a). Excess of PPh₃ was detected (tlc) in the mother liquor.

(c) Using 0.5 equiv PPh₃ in the same reaction afforded 2 in 33 % yield (calculated for 1), identical with the product in (a). Concentration of the filtrate and crystallization of the residue from EtOH gave unreacted 1 (37 %).

Perchlorate salt (3) *of phosphazide* 2. To a solution of 2 (0.33 g, 0.5 mmol) in an ice-cold mixture of aqueous 70 % perchloric acid (0.2 ml) and acetic anhydride (2 ml) was added diethyl ether (25 ml) to give crude 3 (0.34 g, 89 %), mp 129-133 °C. Precipitation with diethyl ether from dichloromethane solution afforded the pure salt (0.25 g, 66 %) mp 138 °C; $[\alpha]_D + 44$ (c2, CHCl₃); IR (KBr): v 1761 (OAc), 1439, 1119, 732 (Ph), 1100, 623 cm⁻¹ (ClO₄⁻). Anal. Calcd for C₃₃H₃₄ClN₄O₁₃P (761.10): C, 52.08; H, 4.50; N, 7.36. Found: C, 51.94; H, 4.33; N, 7.26.

Transformation of 2 in toluene. (a) A solution of 2 (0.4 g, 0.6 mmol) in dry toluene (8 ml) was stored at room temperature for 3 d. The brown solution was decanted from the tarry residue and concentrated in vacuo to give a complex mixture. Column chromatography on silica gel (eluent: dichloromethane-acetone 9:1) afforded (5R,6R)-3,5-bis(acetoxy)-6-(acetoxymethyl)-5,6-dihydro-2H-pyran-2-one^{9,10} 4 (15 mg, 9 %) as a colourless oil, the crystalline (2Z,4Z)-3-cyano-4,6-diacetoxy-N-(triphenylphosphoranylidene)-2,4-hexadienoic amide 5 (136 mg, 44 %) and (2E,4Z)-2,4,6-triacetoxy-N-(triphenylphosphoranylidene)-2,4-hexadienoic amide 6 (60 mg, 18 %) as a colourless solid and triphenylphosphine oxide (25 mg, 15 %), respectively. For 4: $[\alpha]_D$ -150 (c0.5, CHCl₃). Anal. Calcd for C₁₂H₁₄O₈ (286.24): C, 50.35; H, 4.93. Found: C, 50.58, H, 4.99.

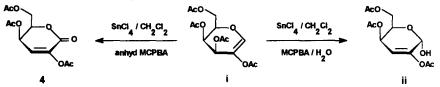
For 5: mp 137 °C (from diethyl ether); IR (KBr): v 2227 (CN), 1769, 1741 (OAc), 1593 (CO), 1440, 1114, 723 cm⁻¹ (Ph); Raman (solid): v 2232 (CN), 1671, 1609 1590 (C=C), 1027, 999 cm⁻¹ (Ph); MS: 513 [M+H]. Anal. Calcd for $C_{29}H_{25}N_2O_3P$ (512.51): C, 67.96; H, 4.92; N, 5.47. Found: C, 67.90; H, 5.03; N, 5.60.

For 6: mp 128-129 °C (from diethyl ether); IR (KBr): v 1763, 1737 (OAc), 1598 (CO), 1439, 1116, 723 cm⁻¹ (Ph); Raman (solid): v 1656, 1590 (C=C), 1029, 1000 cm⁻¹ (Ph), MS: 546 [M+H]⁺. Anal. Calcd for $C_{30}H_{28}NO_7P$ (545.54): C, 66.05; H, 5.17; N, 2.57. Found: C, 66.09; H, 5.26; N, 2.74.

(b) To a solution of 1 (219 mg, 0.55 mmol) in dry toluene (5 ml) was added dropwise a solution of triphenylphosphine (152 mg, 0.58 mmol) in the same solvent (5 ml) during 15 min and the mixture was stored at room temperature for 3 d. Work-up according to (a) furnished 4 (9 mg, 6%) and 5 (54 mg, 19%) and 6 (88 mg, 29%) and triphenylphosphine oxide (32 mg, 21%), respectively, identical with the products in (a).

3,4,5,7-Tetra-O-acetyl-2-deoxy-2-(triphenylphosphoranylidencamino)- β - (11) and - α -D-galactohept-2-ulopyranosonamide (12). To a solution of 10 (416 mg, 1 mmol) in dry toluene (25 ml) was added triphenylphosphine (0.52 g, 2 mmol) and the mixture was heated at 80 °C for 10 h. After removal of the solvent in vacuo, the residue was chromatographed on a silica gel column using diethyl ether as eluent. First, unreacted triphenylphosphine (239 mg, 46 %) was recovered then the anomeric mixture of 11 and 12 (483 mg, 75 %) was obtained. Repeated column chromatography of the raw product using dichloromethane/acetone 3:1 as eluent gave the syrupy 11 (237 mg, 36 %) and 12 (134 mg, 21 %), respectively.

For 11: $[\alpha]_D$ -12.9 \rightarrow +79.4 (c3.1, CHCl₃); IR (film): v 1749 (OAc), 1685 (CONH₂), 1438, 1109, 715, 696 cm⁻¹ (Ph). Anal. Calcd for C₂₃H₃₅N₂O₁₀P (650.63): C, 60.92; H, 5.42; N, 4.31. Found: C, 60.59; H, 5.27; N, 4.19.


For 12: $[\alpha]_D + 95 \rightarrow + 79.8 (c_{3.2}, CHCl_3)$; IR(film): v 1749 (OAc), 1700 (CONH₂), 1438, 1110, 716, 695 cm⁻¹ (Ph). Anal. Calcd for $C_{33}H_{35}N_2O_{10}P$ (650.63): C, 60.92; H, 5.42; N, 4.31. Found: C, 60.74; H, 5.19; N, 4.21. Solutions of both 11 and 12 in CDCl₃ were proved by NMR to transform into anomeric mixtures of 11 and 12 with the equilibrium ratio of 15:85 within 6 weeks, in accord with the change of the optical rotations.

ACKNOWLEDGEMENT

This work was supported by the Hungarian Scientific Research Fund (OTKA T 14939 and T 19339). We thank Dr. S. Holly for performing and discussing IR and Raman spectra, Mrs. Á. Gömöry for recording MS and Dr. L. Radics for heterocorrelated ¹H-¹⁵N NMR measurements. The authors acknowledge Professor F. W. Lichtenthaler for the valuable discussions on the problem of the enollactone 4.

REFERENCES AND NOTES

- 1. Staudinger, H., Meyer, J. Helv. Chim. Acta 1919, 2, 635-646.
- a) Gololobov, Yu. G. Tetrahedron 1992, 48, 1353-1406; b) Molina, P.; Vilaplana, M. J. Synthesis 1994, 1197-1218.
- a) Messmer, A.; Pintér, I.; Szegő, F. Angew. Chem. 1964, 76, 227-228; b) Pintér, I.; Kovács, J.; Messmer, A.; Kálmán, A.; Tóth, G.; Lindberg, B. K. Carbohydr. Res. 1979, 72, 289-296; c) Kovács, J.; Pintér, I.; Messmer, A.; Tóth, G.; Carbohydr. Res. 1985, 141, 57-65; d) Kovács, J.; Pintér, I.; Messmer, A.; Tóth, G.; Carbohydr. Res. 1987, 166, 101-111; e) Cano, F. H.; Foces-Foces, C.; Jiménez-Barbero, J.; Allemany, A.; Bernabé, M.; Martin-Lomas, M. J. Org. Chem. 1987, 52, 3367-3372; f) Rück, K.; Kunz, H. Synthesis 1993, 1018-1028; g) Pintér, I.; Kovács, J.; Tóth, G. Carbohydr. Res. 1995, 273, 99-108; h) Mészáros, P.; Kovács, J.; Pintér, I. Carbohydr. Lett. (in press).
- a) Praly, J-P.; El Kharraf, Z.; Descotes, G. J. Chem. Soc., Chem. Commun. 1990, 431-432; b) Praly, J-P.; Péquery, F.; Di Stéfano, C.; Descotes, G. Synthesis 1996, 577-579.
- 5. Kovács, J.; Pintér, I.; Kajtár-Peredy, M.; Praly, J-P.; Descotes, G. Carbohydr. Res. 1995, 279, C1-C3.
- a) Praly, J-P.; Di Stéfano, C.; Descotes, G.; Faure, R.; Somsák, L.; Eperjesi, I. Tetrahedron Lett. 1995, 36, 3329-3332; b) Somsák, L.; Sós, E.; Györgydeák, Z.; Praly, J-P.; Descotes, G. Tetrahedron 1996, 52, 9121-9136, and refs. therein.
- 7. Molina, P.; López-Leonardo, C.; Llamas-Botía, J.; Foces-Foces, C.; Fernández-Castano, C. Tetrahedron 1996, 52, 9629-9642, and refs. therein.
- Ponomarchuk, M. P.; Kasukhin, L. F.; Shevchenko, M. V.; Sologub, L. S.; Kukhar, V. P. Zh. Obshch. Khim. 1984, 54, 2468-2473.
- 9. Lichtenthaler, F. W.; Rönninger, S.; Jarglis, P. Liebigs Ann. Chem. 1989, 1153-1161.
- 10. The physical and spectral data for the enollactone 4 are at variance with those reported for a product of stucture 4 with mp 159-161 °C and [α]_D -45 (c1, CHCl₃), obtained on SnCl₄ catalyzed 3-chloroperbenzoic acid (MCPBA)-oxidation of 3,4,6-tri-O-acetyl-2-deoxy-D-galactal⁹ (i). These discrepancies were resolved by the finding¹¹ that SnCl₄-promoted peroxidation of (i) with anhydrous MCPBA indeed yields the enollactone 4 as colourless syrup of [α]_D 151.5 (c1, CHCl₃), exhibiting the NMR data reported here (Tables 1 and 2). The crystalline product previously obtained and erroneously taken for enollacton 4, proved to be¹¹ 2,4,6-tri-O-acetyl-3-deoxy-α-D-*threo*-hex-2-enopyranose (ii) of mp 160-161 °C and [α]_D -45 (c1, CHCl₃), ¹H-NMR (CDCl₃): δ 2.07, 2.09, 2.19 (3s, OAc), 4.17 (m, H-5), 4.32 (m, H₂-6), 5.26 (dd, H-4), 5.50 (s, H-1), 6.02 (d, H-3), J_{3,4} =6.1, J_{4,5} = 1.3 Hz.¹¹ Compound ii is formed instead of 4, when the SnCl₄-induced MCPBA-oxidation is not performed under strictly anhydrous conditions (commercial MCPBA contains water up to 35 %).

- 11. Lichtenthaler, F. W. personal communication.
- 12. Argay, Gy.; Kálmán, A.; Kovács, J.; Pintér, I. in preparation.
- 13. Jippo, T.; Kamo, O.; Nagayama, K. J. Magn. Reson. 1986, 66, 344-348.

- 14. Somogyi, L.; Herczegh, P.; Batta, Gy. Heterocycles 1984, 24, 2735-2738.
- 15. Paulsen, H.; Györgydeák, Z.; Friedmann, M. Chem. Ber. 1974, 107, 1590-1613.
- 16. Chmielewski, M.; BeMiller, J. N.; Cerretti, D. P. J. Org. Chem. 1981, 46, 3903-3908.
- a) Buchanan, G. W.; Morin, F. G. Can J. Chem. 1979, 57, 21-26; b) Quin, L. D.; Gallagher, M. J.; Cunkle, G. T.; Chesnut, D. B. J. Am. Chem. Soc. 1980, 102, 3136-3143; c) Duncan, M.; Gallagher, M.J. Org. Magn. Reson. 1981, 15, 37-42.
- 18. Juaristi, E.; Cuevas, G. Tetrahedron 1992, 48, 5019-5087, and refs. therein.
- 19. Õsz, E.; Sós, E.; Somsák, L.; Szilágyi, L.; Dinya, Z. Tetrahedron 1997, 53, 5813-5824.
- 20. Mio, S.; Kumagawa, Y.; Sugai, S. Tetrahedron 1991, 4", 2133-2144.

(Received in UK 4 August 1997; revised 26 August 1997; accepted 28 August 1997)