Journal of Organometallic Chemistry 696 (2011) 141-149

Contents lists available at ScienceDirect

Journal of Organometallic Chemistry

journal homepage: www.elsevier.com/locate/jorganchem

Asymmetric hydrogenation of alkenes with planar chiral 2-phosphino-1-aminoferrocene-iridium(I) complexes

Costa Metallinos*, Lori Van Belle

Department of Chemistry, Brock University, 500 Glenridge Avenue, St. Catharines, Ontario L2S 3A1, Canada

ARTICLE INFO

Article history: Received 30 July 2010 Received in revised form 18 August 2010 Accepted 24 August 2010 Available online 14 October 2010

Keywords: Asymmetric catalysis Hydrogenation Planar chiral Aminoferrocene Iridium P.N-Ligands

1. Introduction

Iridium complexes with chiral bidentate *P.N* ligands [1] represent a class of catalysts that have significantly expanded the application range of asymmetric hydrogenation [2]. Based on the original cationic catalyst designed by Crabtree et al. in 1977 [3] for the hydrogenation of hindered alkenes (1, Fig. 1), Pfaltz and co-workers have made significant contributions to this area by the development Ir(I) complexes containing chiral phosphino- or phosphinito-oxazoline ligands (2, 3) [4]. Combined with non-coordinating counterions such as tetrakis[3,5-bis(trifluoromethyl)phenyl]borate (BAr_F), which inhibit deactivation of the metal [5], a broad range of catalysts tailored to ever increasing types of substrates may developed by changes to chiral ligand structures. To this end, Andersson et al. and Bolm and Lu have reported ligand motifs containing *N*-phosphine (**4**) [6] or sulfoximine (5) [7] groups, while Zhou has investigated phosphinooxazolines with spirocyclic chiral centers (6) [8]. Ferrocenyl P,N ligands [9] which possess elements of both planar and central chirality, such as oxazoline 7 [10] and pyridyl derivative 8 [11], have also been investigated.

Despite the predominance of *P*,*N*-donor ligands in asymmetric iridium catalyzed hydrogenation, the majority of ligands as outlined

ABSTRACT

The first highly enantioenriched and enantiopure planar chiral 2-phosphino-1-aminoferrocene ligands and their $Ir(COD)BAr_F$ complexes are reported. The ligands display bidentate coordination behavior towards iridium, as indicated by trends in ³¹P and ¹H NMR spectra of the phosphine moieties and the α to nitrogen substituents of the amines. All of the new complexes showed good reactivity as catalysts in promoting asymmetric hydrogenation of several prochiral alkenes, with enantioselectivities up to 92%. Iridium complexes of dimethylaminoferrocene derivatives containing *P*–Ar groups [PPh₂ and P(*o*-tol)₂] gave the highest levels of asymmetric induction.

© 2010 Elsevier B.V. All rights reserved.

in Fig. 1 have sp²-hybridized nitrogen donors. In contrast, our group has reported that the Ir(COD)BAr_F coordination complex of racemic 2-diphenylphosphino-1-dimethylaminoferrocene (**9a**), which has an sp³-hybridized nitrogen donor, catalyzes hydrogenation and hydroamination of alkenes [12]. Based on those results and our recent development of an asymmetric synthesis of 2-substituted-1-aminoferrocenes [13], we describe in this paper the synthesis of enantioenriched and enantiopure Ir(COD)BAr_F complexes of several 2-phosphino-1-aminoferrocene ligands [14,15] and assess their effectiveness in catalytic asymmetric hydrogenation of alkenes. The ligands used in this study differ somewhat from previous ferrocene-based systems (e.g., **7** and **8**) in that they are exclusively planar chiral and have ligating heteroatoms that are directly attached to the cyclopentadienyl (Cp) ring rather than in pendant groups.

2. Results and discussion

All new enantioenriched and enantiopure 2-phosphino-1-aminoferrocene ligands (**9a**–**c** and **15**) were synthesized by asymmetric lithiation of Lewis acid-base adducts **10** or **13** with isopropyllithium in the presence of **11** and 2-dimethylaminoethanol (DMAE), followed by addition of chlorophosphine electrophiles (Scheme 1) [13]. The ammonium salts **12a**–**c**·HBF₄ and **14**·HBF₄ were then prepared by sequential addition of elemental sulfur and a slight excess of HBF₄·OEt₂. Ammonium fluoroborate salts **12a**·HBF₄ and **14**·HBF₄ were recrystallized to enantiomeric purity

^{*} Corresponding author. Tel.: +1 905 688 5550x3848; fax: +1 905 682 9020. *E-mail address*: metallic@brocku.ca (C. Metallinos).

⁰⁰²²⁻³²⁸X/\$ - see front matter @ 2010 Elsevier B.V. All rights reserved. doi:10.1016/j.jorganchem.2010.08.042

Fig. 1. Crabtree's catalyst (1) and chiral ligands (2-9a) used in iridium catalyzed hydrogenation.

by diffusion of diethyl ether into a dichloromethane solution of each salt. In a similar manner, dicyclohexylphosphine sulfide **12b** was enriched from 70 to 84% ee by recrystallization of **12b**·HBF₄, whereas *o*-tol derivative **12c**·HBF₄ could not be enriched beyond 78% ee by this method. In any case, neutralization of each ammonium salt with sodium bicarbonate and desulfurization (Raney nickel) afforded planar chiral ligands **9a–c** and **15** of sufficient structural diversity to enable assessment of their iridium complexes in asymmetric hydrogenation of alkenes. To the best of our knowledge, ligands **9a** and **15** are the first enantiomerically pure 2-phosphino-1-aminoferrocenes to be reported [16].

With ligands **9a**–**c** and **15** in hand, cationic iridium complexes **16**–**19** were prepared by reaction with $[Ir(COD)Cl]_2$ followed by *in situ* anion exchange using sodium tetrakis[3,5-bis(trifluoromethyl)

phenyl]borate (NaBAr_F, Scheme 2). Previously, we reported the Xray crystal structure of racemic 16 in which the ligand was shown to behave as a bidentate P,N donor to give a five-membered chelate ring [12]. The bidentate coordination of the ligand in racemic 16 was also evident in its ³¹P and ¹H NMR spectra where a downfield shift was observed for the phosphorus signal (${}^{31}P \delta 15.0$) in addition to non-equivalent amino methyl singlets $[^{1}H(NMe_{2}) \delta 3.13, 2.69]$ in comparison to the free ligand $[^{31}P \delta - 20.4; {}^{1}H(NMe_2) \delta 2.69]$ [12]. The same spectroscopic trend was observed in new complexes 17-19. Thus, 18-19 displayed analogous downfield shifts of their ³¹P NMR signals (**18**: δ 18.6; **19**: δ 17.6, 12.9 [17]) and diastereotopic NMe₂ singlets in ¹H NMR (**18**: δ 3.07, 2.83; **19**: δ 3.50, 3.47, 3.07, 3.00) [17] versus the free ligands [9b: ³¹P δ –11.2 and ¹H(NMe₂) δ 2.75; **9c**: ³¹P δ –39.8 and ¹H(NMe₂) δ 2.67]. Complex **19** was a 1:1 mixture of bidentate conformational isomers, as confirmed by low temperature (-10 °C) NMR experiments [17]. Ferrocenylpyrrolidine ligand **15** featured a ³¹P NMR signal at δ – 11.2 and a four-hydrogen ¹H NMR multiplet for the α to nitrogen methylene groups at δ 3.20–3.10, which shifted accordingly in complex **17** [³¹P δ 14.4; ¹H $(N\alpha - (CH_2)_2) \delta 3.31 - 3.15 (m, 3H) and 2.60 - 2.56 (m, 1H)].$

Iridium complexes 16-19 were employed in asymmetric hydrogenation of several prochiral alkenes (20a-g, Scheme 3). For consistency, all experiments were conducted in dichloromethane under 62 bar pressure of hydrogen at room temperature for 72 h with a catalyst loading of 2 mol% [18]. Initial results using enantiopure catalyst 16 were very encouraging: trans-1,2-diphenylpropene (20a) was hydrogenated to 21a in 96% isolated yield and 84% ee favoring the *R* enantiomer. Even better selectivities were obtained with cinnamate esters **20b** and **20c**, which provided the β -chiral esters 21b and 21c in excellent yields and 91-92% ee. Respectable selectivities were also observed with cinnamates 20d and 20e to give α -chiral esters **21d** and **21e** in 82–83% ee. Hydrogenation of amide 20f and allylic alcohol 20g with 16 afforded 21f and 21g with lower levels of asymmetric induction (48 and 18% ee, respectively). Changing the solvent to toluene, chloroform or 1,2-dichloroethane did not improve the yield or selectivity of these reactions.

In an effort to improve selectivity and to identify reactivity trends the remaining catalysts **17–19**, which incorporate structural variations at the amine or phosphine substituents, were evaluated in asymmetric hydrogenation of the same substrates. Although pyrrolidine-containing catalyst **17** gave an identical result as **16** in hydrogenation of **20a**, significantly lower enantioselectivities were observed for β -chiral products **21b** and **21c** (61% ee). In fact,

Scheme 1. Asymmetric synthesis of 2-phosphino-1-aminoferrocenes 9a-c and 15.

Scheme 2. Preparation of planar chiral 2-phosphino-1-aminoferrocene-Ir(I) complexes.

changing the position of the methyl group as in substrates **20d** and **20e** provided α -chiral esters **21d** and **21e** as racemates, a huge decrease in selectivity compared to complex **16**. Similar decreases were seen with amide **20f** and alcohol **20g**, the latter to give **21g** in 12% ee favoring the *S* rather than *R* enantiomer. It is clear from these experiments that the bulkier pyrrolidine moiety of **17** is detrimental to the selectivity of hydrogenation.

Based on the preceding results, complexes 18 and 19 with differing phosphine substituents were investigated. With 18 (84% ee), products **21a-e** were obtained in 48–58% ee, which is lower than the levels of selectivity observed with 16, even accounting for the lower enantiomeric purity of the precatalyst. Slightly higher selectivity was observed for product 21g (23% ee). More interesting results were attained with 19 (78% ee). Thus, hydrogenation of 20a-e gave products 21a-e in 73-78% ee, mirroring the higher levels of induction seen with 16. Complex 19 was less selective however with esters 20d and 20e (21 and 29% ee, respectively). Interestingly, hydrogenation of **20g** with **19** afforded **21g** in significantly better 49% ee in comparison to 16 (18% ee), continuing a steric trend that was hinted at with complex 18. This last result must be tempered by the possibility that a diastereomeric dimeric form of the active catalyst, produced in situ from scalemic 19, is enhancing the enantioselectivity. Nonetheless, it is encouraging that the relative levels of enantioselectivity with 19 rival (20b and 20c) or even surpass (20a and 20g) complex 16 for several substrates.

3. Conclusion

In summary, we have prepared the first highly enantioenriched and enantiopure planar chiral 2-phosphino-1-aminoferrocenes and synthesized their Ir(COD)BAr_F complexes. The ligands in each case appeared to be bidentate towards the metal, as indicated by trends in ³¹P and ¹H NMR observed previously for racemic **16**. All of the new complexes showed good reactivity as catalysts in promoting asymmetric hydrogenation of several prochiral alkenes, with enantioselectivities as high as 92%. These results are encouraging considering that they represent the first use of such exclusively planar chiral P,N ligands, where both heteroatoms are directly attached to a ferrocene Cp ring, in asymmetric catalysis [12,16]. Structural variations to the ligands showed that changes to the phosphine moiety are probably more productive in enhancing the selectivity of hydrogenation than changing the amine functionality (17), which leads to severe decreases in asymmetric induction for many substrates. Although not enantiomerically pure, it was notable that $P(o-tol)_2$ -containing complex 19 produced higher relative or absolute levels of asymmetry than PPh₂-containing complex 16 for substrates 20a and 20g. Based on these results, further investigations of ligands 9a, 9c and their P-aryl congeners in metal-mediated asymmetric catalysis are warranted and currently underway in our group.

4. Experimental

4.1. General

All reagents were purchased from commercial sources and used as received unless otherwise indicated. Tetrahydrofuran (THF) and diethyl ether were freshly dried and distilled over sodium/benzophenone ketyl under an atmosphere of nitrogen. MTBE was distilled over LiAlH₄ under an atmosphere of nitrogen. Boron trifluoride etherate and dichloromethane were distilled from CaH₂ under argon prior to use. Isopropyllithium was prepared according to a published procedure [19] and was titrated against N-benzylbenzamide to a blue endpoint [20]. Reactions were performed under argon in flame- or oven-dried glassware using syringe-septum cap techniques or Schlenk conditions unless otherwise indicated. Column chromatography was performed on silica gel 60 (70-230 mesh) or neutral alumina. NMR spectra were obtained on a Bruker Avance 300 or 600 MHz instrument and are referenced to TMS or to the residual proton signal of the deuterated solvent for ¹H spectra, and to the carbon multiplet of the deuterated solvent for ¹³C spectra according to published values. Pressurized reactions were performed with a Parr 4760 bomb. Enantiomeric ratios were determined on an Agilent 1100 series HPLC at $\lambda = 254$ nm with Chiralcel OD-H, Chiralcel OB-H, or Chiralpak AS-H columns, or on a Hewlett-Packard 6890 GC with a Chirasil DEX-CB column, and were compared against racemic material. FT-IR spectra were obtained on an ATI Mattson Research Series spectrometer as KBr pellets for solids or on KBr discs for liquids. Optical rotations were measured on a Rudolph Research Autopol III automatic polarimeter. Mass spectra were obtained on an MSI/Kratos Concept 1S Mass Spectrometer. Combustion analyses were performed by Atlantic Microlab Inc., Norcross, GA. Melting points were determined on a Kofler hot-stage apparatus and are uncorrected.

4.2. (S)-(-)-2-Diphenylphosphino-1-dimethylaminoferrocene [(S)-9a]

The synthesis of enantiomerically pure ammonium salt $12a \cdot HBF_4$ from 10 has been reported elsewhere [13]. A flask containing a biphasic suspension of (*S*)- $12a \cdot HBF_4$ (140 mg, 0.26 mmol) in sat. aqueous NaHCO₃ (5 mL) and diethyl ether (10 mL) was sonicated for 1 min or until all the solid dissolved. The layers were separated and the aqueous

20a-g
$$2 \mod \%$$
 16-19,
62 bar H₂,
CH₂Cl₂, 72 h, rt

	alkene, 20	product, 21	% yield (% ee) with 16 (99% ee)	% yield (% ee) with 17 (99% ee)	% yield (% ee) with 18 (84% ee)	% yield (% ee) with 19 (78% ee)
a	Ph Ph	Ph Ph	96 (84)	96 (84)	98 (49)	99 (78)
b	Ph CO ₂ Et	Ph CO ₂ Et	94 (91)	98 (61)	87 (55)	97 (75)
с	<i>p</i> -MeOPh CO ₂ Et	<i>p</i> -MeOPh CO ₂ Et	99 (92)	83 (61)	96 (58)	99 (73)
d	Ph CO ₂ Et	Ph CO ₂ Et	88 (82)	74 ^a (0)	94 (48)	96 (21)
е	<i>p</i> -MeOPh	<i>p</i> -MeOPh CO ₂ E	^{Et} 98 (83)	79 ^a (0)	95 (56)	93 (29)
f	Ph	Ph	96 (48)	98 (16)	96 (12)	95 (11)
g	Рh	Ph OH	95 (18)	96 (12 ^b)	99 (23)	96 (49)

^a percent conversion; ^b (S)-**21g** is major enantiomer.

Scheme 3. Asymmetric hydrogenation of alkenes 20a-g with catalysts 16-19.

phase was extracted with diethyl ether. The combined ether layer was washed with water, brine, dried over anhydrous Na₂SO₄, filtered and concentrated *in vacuo* to give enantiopure aminophosphine sulfide (*S*)-**12a** (116 mg, 99%): mp 120–122 °C; $[\alpha]_D^{20}$ +62.4 (*c* 0.85, CHCl₃); CSP HPLC analysis (Chiralcel OD-H; eluent: 99:1 hexane:*i*-PrOH, 1.0 mL/min) determined a 99.7:0.3 er (>99% ee) [t_R (minor) 6.72 min, t_R (major) 7.39 min]. A mixture of the intermediate aminophosphine sulfide and freshly activated Ni-Al catalyst [21] (1.44 g, 16.8 mmol) in acetonitrile (25 mL) under argon was heated at 60 °C for 3 h. The reaction mixture was allowed to cool to room temperature and filtered through a pad of Celite, washing with acetonitrile. Removal of the solvent *in vacuo* afforded aminophosphine (*S*)-**9a** (118 mg, 85%) as an orange wax: $[\alpha]_D^{20} -213$ (*c* 0.81, CHCl₃). Spectroscopic data was in agreement with racemic **9a** reported previously [12].

4.3. (S)-(-)-[2-(Diphenylphosphino)ferrocenyl]-1-pyrrolidine [(S)-15]

The synthesis of enantiomerically pure ammonium salt $14 \cdot HBF_4$ from 13 has been reported elsewhere [13]. A flask containing a biphasic suspension of (*S*)- $14 \cdot HBF_4$ (170 mg, 0.30 mmol) in sat. aqueous NaHCO₃ (5 mL) and diethyl ether (10 mL) was sonicated for 1 min or until all the solid dissolved. The layers were separated and the aqueous phase was extracted with diethyl ether. The combined ether layer was washed with water, brine, dried over anhydrous Na₂SO₄, filtered and concentrated *in vacuo* to give enantiopure aminophosphine sulfide (*S*)-14 (150 mg, 98%): mp 216–218 °C;

 $[\alpha]_{D}^{20}$ +60.9 (c 0.89, CHCl₃); CSP HPLC analysis (Chiralcel OD-H; eluent: 99:1 hexane:i-PrOH, 1.0 mL/min) determined a >99.5:0.5 er $(>99\% \text{ ee})[t_R(\text{major}) = 5.83 \text{ min}, t_R(\text{minor}) = 7.12 \text{ min}]$. A mixture of intermediate aminophosphine sulfide (S)-14 and freshly activated Ni-Al catalyst [21] (1.41 g, 16.4 mmol) in acetonitrile (25 mL) under argon was heated at 60 °C for 3 h. The reaction mixture was allowed to cool to room temperature and filtered through a pad of Celite, washing with acetonitrile. Removal of the solvent in vacuo afforded the free aminophosphine (S)-15 (91 mg, 78%) as an orange solid: mp 118–120 °C; $[\alpha]_D^{20}$ –137.3 (*c* 0.75, CHCl₃); ³¹P NMR (121.5 MHz, CDCl₃) δ –16.3; ¹H NMR (300 MHz, CDCl₃) δ 7.49–7.43 (m, 2H), 7.38-7.35 (m, 3H), 7.26-7.18 (m, 5H), 4.12 (s, 5H), 4.03 (q, 1H, *J* = 1.5 Hz), 3.99 (t, 1H, *J* = 2.4 Hz), 3.26 (m, 1H), 3.20–2.12 (m, 4H), 1.90–1.81 (m, 4H); 13 C NMR (75.5 MHz, CDCl₃) δ 139.7 $(d_J^{1331}_{C-P} = 12.1 \text{ Hz}), 127.9 \text{ (d, } J^{1331}_{C-P} = 11.3 \text{ Hz}), 135.3 \text{ (d, } J^{1331}_{C-P} = 21.9 \text{ Hz}), 132.3 \text{ (d, } J^{1332}_{C-P} = 18.1 \text{ Hz}), 128.9, 128.1 \text{ (d, } J^{1331}_{C-P} = 3.8 \text{ Hz}), 116.7 \text{ (d, } J^{1331}_{C-P} = 16.6 \text{ Hz}), 128.9 \text{ (d, } J^{1331}_{C-P} = 3.8 \text{ Hz}), 116.7 \text{ (d, } J^{1331}_{C-P} = 16.6 \text{ Hz}), 116.7 \text{ (d, } J^{1331}_{C 68.0, 67.9 (d, J^{1331}_{C-P} = 3.8 \text{ Hz}), 64.7, 62.1 (d, J^{1331}_{C-P} = 12.8 \text{ Hz}), 60.2 (d, J^{13}_{C-P} = 12.8 \text{ Hz}), 60.2 (d, J^{13}$ $J_{C-P}^{1331} = 3.8 \text{ Hz}$, 52.4, 52.3, 24.9, 24.8; EIMS [m/z(%)] 439 (100, M⁺); HRMS (EI) calcd for C₂₆H₂₆NP⁵⁶Fe: 439.1152; found 439.1159; Anal. calcd for C₂₆H₂₆NP⁵⁶Fe: C, 71.08; H, 5.97. Found: C, 71.21; H, 5.92.

4.4. (S)-(-)-2-Dicyclohexylphosphinothioyl-1dimethylaminoferrocene [(S)-**12b**]

A solution of (*R*,*R*)-**11** (233 mg, 0.916 mmol) in *t*-BuOMe (4.5 mL) was cooled to -40 °C, treated sequentially with *i*-PrLi (1.40 mL, 1.98 M

in pentane, 2.76 mmol) and 2-dimethylaminoethanol (82 mg, 0.917 mmol) in t-BuOMe (4.5 mL), and stirred for 15 min at that temperature. The solution was transferred by cannula to a mixture of **10** at $-78 \circ C$ [prepared by addition of BF₃·OEt₂ (115 µL, 0.916 mmol) to a solution of dimethylaminoferrocene (200 mg, 0.873 mmol) in t-BuOMe (9 mL) at 0 °C and stirring for 10 min]. The mixture was allowed to warm slowly to -40 °C over approximately 3.5 h and held at that temperature for an additional hour. After cooling back to -78 °C, ClPCy₂ (390 µL, 1.77 mmol) was added and the mixture was allowed to warm slowly to room temperature. The reaction mixture was diluted with Et₂O and worked-up by addition of saturated aqueous NaHCO₃. The aqueous layer was extracted with Et₂O $(3 \times 15 \text{ mL})$ and the combined organic extract was washed with H₂O (15 mL), brine (15 mL), dried over anhydrous Na₂SO₄ and concentrated in vacuo to afford the crude aminophosphine, which was passed through a plug of silica gel, eluting with 90:10 hexane:Et₂O. To the crude material in a dry round bottom flask under argon was added sulfur powder (700 mg, 21.8 mmol) and toluene (15 mL), and the mixture was heated at 40 °C for 2 h. After cooling to room temperature, the reaction mixture was gravity filtered to remove excess sulfur and the filtrate was pre-adsorbed on silica gel in vacuo. Flash column chromatography (silica gel, 95:5 hexane: EtOAc) gave (S)-12b (215 mg, 54%) as an orange wax: $[\alpha]_D^{20}$ –51.2 (*c* 1.7, CHCl₃); CSP HPLC analysis (Chiralcel OD-H; eluent: 99:1 hexane:EtOAc, 1.0 mL/min) determined an 85.1:14.9 er (70% ee) $[t_R(minor) = 7.99 min, t_R(major) = 8.48 min];$ IR (KBr, thin film) *v*_{max} 2929, 2851, 1644, 1635, 1475, 1447, 1413, 1383, 1320, 1156, 1109, 1035, 1003, 850, 821, 755, 638 cm⁻¹; ³¹P NMR $(121.5 \text{ MHz}, \text{CDCl}_3) \delta 60.7$; ¹H NMR $(300 \text{ MHz}, \text{CDCl}_3) \delta 4.48 (q, 1H, 12H)$ I = 2.7 Hz), 4.35 (s, 5H), 4.34 (m, 1H), 4.30 (a, 1H, I = 1.5 Hz), 2.65 (s, 6H), 2.55 (m, 2H), 2.09 (m, 1H), 1.93 (m, 4H), 1.82-1.61 (m, 7H), 1.16 (m, 5H), 1.13 (m, 3H); 13 C NMR (75.5 MHz, CDCl₃) δ 116.1 (d, $J_{C-P}^{1331} = 7.6 \,\text{Hz}$, 70.7, 70.6 (d, $J_{C-P}^{1331} = 7.6 \,\text{Hz}$), 62.7 (d, $J_{C-P}^{1331} = 62.7 \,\text{Hz}$), 66.6 (d, $J_{C-P}^{1331} = 9.8$ Hz), 62.3 (d, $J_{C-P}^{1331} = 8.3$ Hz), 43.4, 39.4 (d, $J_{C-P}^{1331} = 50.6 \text{ Hz}$, 37.3 (d, $J_{C-P}^{1331} = 51.3 \text{ Hz}$), 28.2 (d, $J_{C-P}^{1331} = 2.3 \text{ Hz}$), 27.4 (d, $J_{C-P}^{1331} =$ 3.0 Hz), 27.3, 27.1 (d, $J_{C-P}^{1331} =$ 6.0 Hz), 26.8 (d, $J_{C-P}^{1331} = 6.0$ Hz), 26.6 (d, $J_{C-P}^{1331} = 3.8$ Hz), 26.5, 26.0 (d, $J_{C-P}^{1331} = 2.3 \text{ Hz}$, 26.0 (d, $J_{C-P}^{1331} = 3.2 \text{ Hz}$), 25.9 (d, $J_{C-P}^{1331} = 3.8 \text{ Hz}$); EIMS [m/z(%)] 457 (100, M⁺), 308 (23), 229 (16); HRMS (FAB) calcd for C₂₄H₃₆NPS⁵⁶Fe: 457.1655, found 457.1662.

4.5. (*S*)-(-)-[2-(Dicyclohexylphosphinothioyl)ferrocenyl]-1dimethylammonium tetrafluoroborate [(*S*)-**12b** · HBF₄]

A solution of (S)-12b (180 mg, 0.394 mmol) in Et₂O (20 mL) at 0 °C open to air was treated with HBF₄·Et₂O (76 µL, 0.56 mmol). An immediate color change was observed with formation of a yellow precipitate. The solution was allowed to stir for 10 min, after which the solid was collected by suction filtration, washed with ice-cold Et₂O, and dried in vacuo to afford ammonium salt 12b HBF₄ (212 mg, 99%) as a yellow powder: mp 84–89 °C; $[\alpha l_D^{20} - 43.2 (c \ 1.0, c \ 1.0)]$ CHCl₃). Two recyrstallizations via liquid-liquid diffusion of Et₂O into a solution of 12b · HBF4 in CH2Cl2 afforded further enantiomerically enriched product with the following properties: mp 104–106 °C; $[\alpha]_D^{20}$ –51.3 (*c* 1.0, CHCl₃); IR (KBr) ν_{max} 3037, 2933, 2856, 2652, 2564, 2423, 1450, 1217, 1176, 1110, 1053, 851, 754, 608 cm $^{-1};\,^{31}\mathrm{P}$ NMR (121.5 MHz, CDCl_3) δ 56.7; $^{1}\mathrm{H}$ NMR (300 MHz, $CDCl_3$) δ 12.01 (s, 1H), 5.45 (t, 1H, J = 1.2 Hz), 4.78 (q, 1H, J = 1.5 Hz), 4.57 (s, 5H), 4.35 (d, 1H, J = 2.4 Hz), 3.58 (d, 3H, J = 5.1 Hz), 3.11 (d, 3H, J = 5.1 Hz), 2.59 (m, 1H), 2.50–2.45 (m, 1H), 2.41–2.31 (m, 1H), 2.05 (m, 3H), 1.85–1.70 (m, 5H), 1.58–1.35 (m, 8H), 1.17 (m, 3H); ¹³C NMR (75.5 MHz, CDCl₃) δ 110.9 (d, $J_{C}^{13-31}P = 7.6$ Hz), 72.5, 70.4 (d, $\begin{array}{l} J^{13}\bar{c}^{31}{}_{\rm P} = 8.3 \, {\rm Hz}, \, 69.2 \, ({\rm d}, J^{13}\bar{c}^{31}{}_{\rm P} = 8.3 \, {\rm Hz}), \, 64.2 \, ({\rm d}, J^{13}\bar{c}^{31}{}_{\rm P} = 6.8 \, {\rm Hz}), \\ 62.85 \, ({\rm d}, J^{13}\bar{c}^{31}{}_{\rm P} = 75.6 \, {\rm Hz}), \, 49.2, \, 48.7, \, 44.5 \, ({\rm d}, J^{13}\bar{c}^{31}{}_{\rm P} = 48.3 \, {\rm Hz}), \\ 39.6 \, ({\rm d}, J^{13}\bar{c}^{31}{}_{\rm P} = 47.6 \, {\rm Hz}), \, 27.6 \, ({\rm d}, J^{13}\bar{c}^{31}{}_{\rm P} = 3.2 \, {\rm Hz}), \, 27.4, \, 27.2 \, ({\rm d}, J^{13}\bar{c}^{31}{}_{\rm P} = 6.8 \, {\rm Hz}), \, 27.1 \, ({\rm d}, J^{13}\bar{c}^{31}{}_{\rm P} = 3.8 \, {\rm Hz}), \, 26.3 \, ({\rm d}, J^{13}\bar{c}^{31}{}_{\rm P} = 8.3 \, {\rm Hz}), \end{array}$ 26.2 (d, $J^{13}\bar{c}^{31}{}_{P} = 5.3$ Hz), 25.9 (d, $J^{13}\bar{c}^{31}{}_{P} = 6.8$ Hz), 25.8 (d, $J^{13}\bar{c}^{31}{}_{P} = 6.0$ Hz) 25.7 (d, $J^{13}\bar{c}^{31}{}_{P} = 3.8$ Hz), 25.3; FABMS [m/z(%)] 458 (95, M⁺), 229 (100); HRMS (FAB) calcd for C₂₄H₃₇NPS⁵⁶Fe: 458.1733, found 458.1732; Anal. calcd for C₂₄H₃₇NPSFeBF₄: C, 52.87; H, 6.84. Found: C, 52.17; H, 6.72.

4.6. (S)-(-)-2-Dicyclohexylphosphino-1-dimethylaminoferrocene [(S)-**9b**]

A flask containing a biphasic suspension of **12b** HBF₄ (190 mg, 0.34 mmol) in Et₂O (10 mL) and 1M NaHCO₃ (5 mL) was sonicated for 1 min or until the solid dissolved. The layers were separated and the aqueous phase was extracted with diethyl ether (2 \times 10 mL). The combined ether layer was washed with water, brine, dried over anhydrous MgSO₄, filtered and concentrated in vacuo before passing through a plug of silica gel, eluting with 1:1 hexane:EtOAc, to give the enriched aminophosphine sulfide (S)-12b (89 mg, 82%) as an orange wax: $[\alpha]_{D}^{20}$ – 64.8 (c 0.51, CHCl₃); CSP HPLC analysis (Chiralcel OD-H; eluent: 99:1 hexane:EtOAc, 1.0 mL/min) determined an 92.1:7.9 er (84% ee) $[t_R(minor) = 8.00 \text{ min}, t_R(major) = 8.44 \text{ min}]$. A mixture of the aminophosphine sulfide and freshly activated Ni-Al catalyst [21] (646 mg, 7.54 mmol) in acetonitrile (15 mL) under argon was heated to 60 °C for 2 h. The reaction mixture was allowed to cool to room temperature and filtered through a pad of Celite, washing with acetonitrile. Flash column chromatography (silica gel, 90:10 hexane:Et₂O) afforded (S)-**9b** as a moderately air-sensitive an orange oil (62 mg, 99%): $[\alpha]_D^{20}$ –14.3 (*c* 0.55, CHCl₃); IR (KBr) ν_{max} 3095, 2922, 2849, 2781, 1488, 1448, 1419, 1332, 1182, 1141, 1106, 1053, 999, 813, 614 cm⁻¹; ³¹P NMR (121.5 MHz, CDCl₃) δ –11.2; ¹H NMR $(300 \text{ MHz}, \text{CDCl}_3) \delta 4.23 \text{ (s, 5H)}, 4.10 \text{ (s, 1H)}, 4.04 \text{ (q, 1H, } I = 2.4 \text{ Hz}),$ 3.91 (m, 1H), 2.75 (s, 6H) 2.42 (m, 1H), 1.86 (m, 4H), 1.73-1.53 (m, 6H), 1.47-1.19 (m, 10H), 0.89-0.81 (m, 1H); ¹³C NMR (75.5 MHz, $CDCl_3$) δ 118.1 (d, $J_{C-P}^{1331} = 13.6 \text{ Hz}$), 67.9, 67.2 (d, $J_{C-P}^{1331} = 3.8 \text{ Hz}$), 63.9 $(d, J_{1331}^{1331} = 23.4 \text{ Hz}), 63.4, 61.3 (d, J_{C-P}^{1331} = 2.3 \text{ Hz}), 44.9, 44.8, 35.2 (d, J_{C-P}^{1331} = 14.3 \text{ Hz}), 33.8 (d, J_{C-P}^{1331} = 11.3 \text{ Hz}), 32.5, 32.2, 30.3$ (d, $J_{C-P}^{1321} = 14.3$ Hz), 29.7 (d, $J_{C-P}^{1321} = 10.6$ Hz), 29.3 (d, $J_{C-P}^{1331} = 6.8$ Hz), 27.7 (d, $J_{C-P}^{1331} = 12.1$ Hz), 27.5 (d, $J_{C-P}^{1331} = 6.8$ Hz), 27.5 (d, $\int_{C-P}^{1331} = 13.6$ Hz), 27.3 (d, $\int_{C-P}^{1331} = 7.6$ Hz), 26.5 (d, $J_{C-P}^{1331} = 8.3 \text{ Hz}$; EIMS [m/z(%)] 425 (100, M⁺), 342 (13), 260 (27), 138 (16); HRMS (EI) calcd for C₂₄H₃₆NP⁵⁶Fe: 425.1934; found 425.1935. NMR data for racemic **9b** was previously reported in acetone- d_6 [12].

4.7. (S)-(+)-2-Di-ortho-tolyl-phosphinothioyl-1dimethylaminoferrocene [(S)-**12c**]

A solution of (R,R)-11 (235 mg, 0.922 mmol) in t-BuOMe (4.5 mL) was cooled to -40 °C, treated sequentially with *i*-PrLi (1.25 mL, 2.25 M in pentane, 2.81 mmol) and 2-dimethylaminoethanol (86 mg, 0.970 mmol) in *t*-BuOMe (4.5 mL), and stirred for 20 min at that temperature. The solution was transferred by cannula to a mixture of **10** at $-78 \degree C$ [prepared by addition of BF₃·OEt₂(115 µL, 0.917 mmol) to a solution of dimethylaminoferrocene (200 mg, 0.873 mmol) in t-BuOMe (13 mL) at 0 °C and stirring for 10 min]. The mixture was allowed to warm slowly to $-40 \degree C$ over approximately 2.5 h and then held at that temperature for an additional hour. After cooling back to $-78 \circ$ C, a solution of ClP(*o*-tol)₂ (548 mg, 2.20 mmol) in *t*-BuOMe (4 mL) was added and the mixture was allowed to warm slowly to room temperature. The reaction mixture was diluted with Et₂O and worked-up by addition of saturated aqueous NaHCO₃. The aqueous layer was extracted with $Et_2O(3 \times 10 \text{ mL})$ and the combined organic extract was washed with water (10 mL), brine (10 mL), dried over anhydrous Na₂SO₄ and concentrated in vacuo to afford the crude aminophosphine. Flash column chromatography (silica gel, 90:10 hexane:EtOAc) was performed to remove (R,R)-11, which gave intermediate (S)-9c (232 mg, 60%) as an orange wax: ³¹P NMR

 $(75.5 \text{ MHz}, \text{CDCl}_3) \delta - 39.8$; ¹H NMR (300 MHz, CDCl₃) $\delta 7.16 - 6.94 \text{ (m,})$ 8H), 4.23 (s, 1H), 4.11 (s, 6H), 3.62 (s, 1H), 2.90 (s, 3H), 2.67 (s, 6H), 2.11 (s, 3H). To (S)-9c (254 mg, 0.576 mmol) in a dry round bottom flask under argon was added sulfur powder (185 g, 57.6 mmol) and toluene (6 mL), and the mixture was heated at 40 °C for 2 h. After cooling to room temperature, the reaction mixture was gravity filtered to remove excess sulfur and the filtrate was pre-adsorbed on silica gel in *vacuo*. Flash column chromatography (silica gel. 90:10 hexane:Et₂O) gave (S)-12c (321 mg, 99%) as an orange foam: mp 60–64 °C; $[\alpha]_{D}^{20}$ +31.7 (c 1.0, CHCl₃); CSP HPLC analysis (Chiralcel OD-H; eluent: 99:1 hexane:i-PrOH, 1.0 mL/min) determined an 88:12 er (76% ee) $[t_{\rm R}({\rm minor}) = 5.36 {\rm min}, t_{\rm R}({\rm major}) = 5.83 {\rm min}]; {\rm IR} ({\rm KBr}) \nu_{\rm max} 3097,$ 3055, 2951, 2925, 2854, 2783, 1732, 1591, 1566, 1493, 1454, 1421, 1383, 1327, 1276, 1146, 1107, 1055, 1006, 819, 756, 713, 687, 647, 609, 581, 532, 474 cm⁻¹; ³¹P NMR (121.5 MHz, CDCl₃) δ 43.8; ¹H NMR (300 MHz, CDCl₃) § 8.69-8.63 (m, 1H), 7.88-7.81 (m, 1H), 7.45-7.42 (m, 2H), 7.21-7.10 (m, 4H), 4.40 (s, 6H), 4.08 (s, 1H), 3.73 (s, 1H), 2.79 (s, 6H), 2.12 (s, 3H), 1.85 (s, 3H); ¹³C NMR (75.5 MHz, CHCl₃) δ 141.3 (d, $J^{1331}_{C-P} = 10.6$ Hz), 140.4 (d, $J^{1331}_{C-P} = 8.3$ Hz), 134.7 (d, $J^{1331}_{C-P} = 13.6$ Hz), 134.2, 133.1, 132.7 (d, $J^{1331}_{C-P} = 12.1$ Hz), 131.8 (d, $J^{1331}_{C-P} = 10.6$ Hz), 131.4 (d, $J^{1331}_{C-P} = 10.6$ Hz), 131.5 (d, $J^{1331}_{C-P} = 15.1$ Hz), 131.4 (d, $J^{1321}_{C-P} = 9.8$ Hz), 130.9 (d, $J^{1331}_{C-P} = 3.0$ Hz), 120.6 Hz), 131.9 (d, $J^{1331}_{C-P} = 10.6$ Hz), 131.4 (d, $J^{1321}_{C-P} = 9.8$ Hz), 130.9 (d, $J^{1321}_{C-P} = 9.0$ Hz), 120.6 Hz), 131.9 (d, $J^{1331}_{C-P} = 10.6$ Hz), 131.4 (d, $J^{1321}_{C-P} = 9.8$ Hz), 130.9 (d, $J^{1321}_{C-P} = 9.0$ Hz), 120.6 Hz), 130.9 (d, $J^{1321}_{C-P} = 1.0$ Hz), 130.9 (d, $J^{1321}_{C-P} =$ (d, $J^{1331}_{C-P} = 13.6 \text{ Hz}), 131.4 (d, <math>J^{12}_{C-P} = 3.8122, 130.9 (d, J^{12}_{C-P} = 3.0112), 126.0 (d, <math>J^{1331}_{C-P} = 13.6 \text{ Hz}), 125.5 (d, <math>J^{13}_{C-P} = 12.8 \text{ Hz}), 117.9 (d, J^{1331}_{C-P} = 8.3 \text{ Hz}), 72.0 (d, J^{1331}_{C-P} = 13.6 \text{ Hz}), 69.8, 66.0 (d, J^{1331}_{C-P} = 28.7 \text{ Hz}), 64.9 (d, J^{1331}_{C-P} = 11.3 \text{ Hz}), 64.1 (d, J^{1331}_{C-P} = 8.3 \text{ Hz}), 125.1 \text{ Hz}), 64.1 (d, J^{1331}_{C-P} = 8.3 \text{ Hz}), 125.1 \text{ Hz}), 64.1 (d, J^{1331}_{C-P} = 8.3 \text{ Hz}), 125.1 \text{ Hz}), 64.1 (d, J^{1331}_{C-P} = 8.3 \text{ Hz}), 125.1 \text$ 46.7, 22.5 (d, $J_{C-P}^{1331} = 3.8$ Hz), 21.5 (d, $J_{C-P}^{1331} = 5.3$ Hz); EIMS [m/z(%)] 473 (M⁺, 100), 441 (21); HRMS (EI) calcd for C₂₆H₂₈NPS⁵⁶Fe: 473.1029; found 473.1032; Anal. calcd for C₂₆H₂₈NPSFe: C, 65.97; H, 5.96. Found: C. 65.74: H. 5.97.

4.8. (S)-(-)-2-(Di-ortho-tolyl-phosphinothioyl)ferrocenyl-1dimethylammonium tetrafluoroborate [(S)-**12c** · HBF₄]

A solution of (S)-12c (190 mg, 0.401 mmol) in Et₂O (20 mL) at 0 °C open to air was treated with HBF₄·Et₂O (66 µL, 0.485 mmol). An immediate color change was observed with formation of a yellow precipitate. The solution was allowed to stir for 10 min, after which the solid was collected by suction filtration, washed with cold Et₂O, and dried in vacuo to afford ammonium salt (S)-12c · HBF₄ (210 mg, 93%) as a yellow powder: mp 137-139 °C; Attempts to enantiomerically enrich this salt by recrystallization using vapor diffusion of Et₂O into a dichloromethane solution were unsuccessful: $[\alpha]_{D}^{20}$ – 46.9 (*c* 0.5, acetone); ³¹P NMR (121.5 MHz, CDCl₃) δ 38.8; ¹H NMR (300 MHz, CDCl₃) δ 11.60 (bs, 1H), 8.84–8.79 (m, 1H), 7.62 (m, 3H), 7.46-7.42 (m, 1H), 7.26 (m, 2H), 7.05-6.97 (m, 1H), 5.59 (s, 1H), 4.78 (s, 1H), 4.28 (s, 6H), 3.66 (d, 3H, J = 4.8 Hz), 3.12 (d, 3H, J = 4.5 H), 2.21 (s, 3H), 1.94 (s, 3H); 13 C NMR (75.5 MHz, acetone-d₆) δ 142.1 (d, $J_{C-P}^{1331} = 10.6 \text{ Hz}$, 140.9 (d, $J_{C-P}^{1331} = 9.1 \text{ Hz}$), 135.8 (d, $J_{C-P}^{1331} = 15.1 \text{ Hz}$), $J_{C-P}^{134.2} = 10.5 \text{ Hz}, 130.5 \text{ (d, } J_{C-P}^{134.1} = 0.5 \text{ Hz}), 134.1 \text{ (d, } J_{C-P}^{134.1} = 55.1 \text{ Hz}), 133.5 \text{ (d, } J_{C-P}^{134.1} = 1.3 \text{ Hz}), 133.5 \text{ (d, } J_{C-P}^{134.1} = 1.3 \text{ Hz}), 133.4 \text{ (2 \times d)}, 131.6 \text{ (d, } J_{C-P}^{134.1} = 1.3 \text{ Hz}), 128.2 \text{ (d, } J_{C-P}^{134.1} = 53.6 \text{ Hz}), 127.6, 127.4, 109.6 \text{ (d, } J_{C-P}^{134.1} = 9.8 \text{ Hz}), 73.6, 72.4 \text{ Hz}), 128.2 \text{ (d, } J_{C-P}^{134.1} = 53.6 \text{ Hz}), 127.6, 127.4, 109.6 \text{ (d, } J_{C-P}^{134.1} = 9.8 \text{ Hz}), 73.6, 72.4 \text{ Hz})$ $(d, J^{1331}_{C-P} = 9.1 \text{ Hz}), 71.3 (d, J^{1331}_{C-P} = 9.8 \text{ Hz}), 67.3 (d, J^{1331}_{C-P} = 67.3 \text{ Hz}),$ $66.5 (d, J^{1331}_{C-P} = 6.8 \text{ Hz}), 50.2, 47.6, 22.8 (d, J^{1331}_{C-P} = 3.0 \text{ Hz}), 20.9 (d, J^{1331}_{C-P} = 3.0 \text{ Hz}), 20.9$ $J_{C-P}^{1331} = 6.0 \text{ Hz}$; FABMS [m/z(%)] 474 (M-BF₄, 100), 229 (94), HRMS (FAB) calcd for C₂₆H₂₉NPS⁵⁶Fe: 474.1107; found 474.1072.

4.9. (S)-(-)-2-Di-ortho-tolyl-phosphino-1dimethylaminoferrocene [(S)-**9c**]

A flask containing a biphasic suspension of (*S*)-**12c**·HBF₄ (190 mg, 0.34 mmol) in Et₂O (10 mL) and 1M NaHCO₃ (7 mL) was sonicated for 1 min or until the solid dissolved. The layers were separated and the aqueous phase was extracted with diethyl ether (2 \times 10 mL). The combined ether layer was washed with water, brine, dried over anhydrous Na₂SO₄, filtered and concentrated *in vacuo*. Elution of the crude material through a plug of silica gel with

70:30 hexane:EtOAc solvent gave the aminophosphine sulfide (113 mg, 71%) with spectroscopic data matching (S)-12c above: $[\alpha]_D^{20}$ +31.3 (c 0.5, CHCl₃); CSP HPLC analysis (Chiralcel OD-H; eluent: 99:1 hexane:i-PrOH, 1.0 mL/min) determined an 89:11 er (78% ee) $[t_R(\text{minor}) = 5.60 \text{ min}, t_R(\text{major}) = 6.09 \text{ min}]$. A mixture of intermediate aminophosphine sulfide (S)-12c (90 mg, 0.19 mmol) and freshly activated Ni-Al catalyst [21] (814 mg, 9.51 mmol) in acetonitrile (20 mL) under argon was heated at 60 °C for 2 h. The reaction mixture was allowed to cool to room temperature and filtered through a pad of Celite, washing with acetonitrile. Flash column chromatography (silica gel, 90:10 hexane: Et_2O) afforded (S)-9c as an orange solid (85 mg, 99%): mp 115–118 °C; $[\alpha]_D^{20}$ –133 (*c* 0.5, CHCl₃); IR (KBr) v_{max} 3052, 2950, 1923, 2843, 2778, 1488, 1451, 1417, 1330, 1105, 1051, 1000, 813, 750, 463 cm⁻¹; ³¹P NMR (75.5 MHz, CDCl₃) δ -39.8; ¹H NMR (300 MHz, CDCl₃) δ 7.26-6.94 (m, 8H), 4.23 (s, 1H), 4.11 (s, 6H), 3.62 (s, 1H), 2.90 (s, 3H), 2.67 (s, 6H), 2.11 (s, 3H); ¹³C NMR (75.5 MHz, CDCl₃) δ 143.4 (d, $J^{1331}_{C-P} = 29.4$ Hz), 140.3 (d, $J^{1331}_{C-P} = 24.2$ Hz), 139.3 (d, $J^{1331}_{C-P} = 14.3$ Hz), 136.0, 135.3 (d, $J^{1331}_{C-P} = 10.6$ Hz), 131.8, 129.8 (d, $J^{1331}_{C-P} = 11.3$ Hz), 129.7, 129.7, 129.0, 127.5, 125.4 (d, $J_{C-P}^{1331} = 15.1$ Hz), 119.0 (d, $J_{C-P}^{1331} = 18.1$ Hz), 69.0 (d, $J_{1231}^{1331} = 3.0$ Hz), 68.4, 65.2 (d, $J_{12C-P}^{1331} = 12.1$ Hz), 65.1, 61.1 (d, $J_{12C-P}^{1331} = 2.3$ Hz), 45.4, 45.3, 22.1 (d, $J_{12C-P}^{1331} = 24.9$ Hz), 20.8 (d, $J_{C-P}^{1331} = 19.6 \text{ Hz}$; EIMS [m/z(%)] 441 (100, M⁺); HRMS (EI) calcd for C₂₆H₂₈NPS⁵⁶Fe: 441.1308; found 441.1311.

4.10. (S)-(+)-2-Diphenylphosphino-1-dimethylaminoferrocene iridium(cyclooctadiene) tetrakis[3,5-bis(trifluoromethyl)phenyl] borate [(S)-(**16**)]

A solution of [Ir(COD)Cl]₂ (81 mg, 0.12 mmol) and (S)-9a (100 mg, 0.24 mmol) in dry CH₂Cl₂ (4 mL) was heated at reflux for 1 h. After cooling to room temperature, NaBAr_F (322 mg, 0.36 mmol) and deionized H₂O (4 mL) were added, resulting in a color change from orange to red. The mixture was stirred for 15 min, after which the layers were separated. The aqueous layer was washed with CH_2Cl_2 (3 \times 5 mL) and the combined organic extract was washed with water (5 mL). The solution was concentrated almost to dryness on a rotary evaporator and then passed through a plug of silica gel, eluting with additional CH₂Cl₂. Removal of the solvent *in vacuo* afforded (S)-16 (316 mg, 83%) as an orange solid: mp 168–172 °C; $[\alpha]_D^{20}$ +8.7 (*c* 1.04, acetone). ³¹P NMR (121.5 MHz, CDCl₃) δ 15.0; ¹H NMR (300 MHz, CDCl₃): δ 7.71 (m, 10H), 7.57–7.42 (m, 12H), 5.03 (m, 1H), 4.90 (t, 1H, J = 2.7 Hz), 4.57 (m, 1H), 4.47 (s, 1H), 4.41 (s, 1H), 4.31 (s, 5H), 4.05 (m, 1H), 3.51 (m, 1H), 3.12 (s, 3H), 2.69 (s, 3H), 2.39-2.33 (m, 4H), 2.04 (m, 1H), 1.92-1.90 (m, 2H), 1.78-1.74 (m, 1H); All other spectroscopic data was in agreement with racemic 16 reported previously [12].

4.11. (S)-(-)-[2-(Diphenylphosphino)ferrocenyl]-1-pyrrolidine iridium(cyclooctadiene) tetrakis[3,5-bis(trifluoromethyl)phenyl] borate [(S)-**17**]

A solution of $[Ir(COD)CI]_2$ (61 mg, 0.091 mmol) and aminophosphine (*S*)–**15** (80 mg, 0.182 mmol) in dry CH₂Cl₂ (5 mL) was heated at reflux for 1.5 h. After cooling to room temperature, the solution was concentrated to provide crude (*S*)-(+)-[2-(diphenyl-phosphino)ferrocenyl]-1-pyrrolidine iridium(cyclooctadiene) chloride (138 mg, 98%) as an orange solid which was used for the anion exchange without further purification: mp >230 °C; $[\alpha]_D^{20}$ +71.5 (*c* 1.0 CHCl₃); FABMS [*m*/*z*(%)] 740 (56, M-Cl), 738 (100), 737 (45), 736 (76), 734 (39), 630 (25), 391 (27), 149 (55); HRMS (FAB) calcd for C₃₄H₃₈NP⁵⁶Fe¹⁹³Ir 740.1720, found 740.1760. To a flask containing the chloride salt (90 mg, 0.116 mmol) was added NaBAr_F (129 mg, 0.145 mmol), CH₂Cl₂ (6 mL), and deionized water (6 mL) under argon. The mixture was stirred for 15 min at room temperature over

which time the color changed from orange to red. The layers were separated, the aqueous layer extracted with CH_2Cl_2 (3 \times 3 mL), and the combined organic was washed with deionized water $(1 \times 2 \text{ mL})$. The solvent was removed in vacuo, the residue taken up in CH₂Cl₂ and filtered through a plug of silica gel, eluting with CH₂Cl₂ to give (S)-17 (158 mg, 85%) as an orange solid: mp 128–129 °C; $[\alpha]_{D}^{20}$ –140 (c 0.61, CHCl₃); ³¹P NMR (121.5 MHz, CDCl₃) δ 14.4; ¹⁹F NMR $(282.4 \text{ MHz}, \text{CDCl}_3) \delta - 62.34$; ¹H NMR $(300 \text{ MHz}, \text{CDCl}_3) \delta 7.71$ (s, 8H), 7.67-7.56 (m, 5H), 7.53 (s, 4H), 7.48-7.42 (m, 5H), 4.87 (bm, 1H), 4.84 (t, 1H, J = 2.7 Hz), 4.50 (s, 5H), 4.45 (m, 1H), 4.44 (m, 1H), 4.31 (m, 1H), 4.04 (bm, 1H), 3.77 (bm, 1H), 3.31-3.15 (m, 3H), 2.60-2.56 (m, 1H), 2.38–2.18 (m, 4H), 2.08–1.83 (m, 7H), 1.73–1.65 (m, 2H); ¹³C NMR (150.9 MHz, CDCl₃) δ 161.70 (q, $J^{13}{}^{11}_{C-P} = 49.8$ Hz), 133.3 (d, $J^{13}{}^{13}_{C-P} = 12.1$ Hz), 133.0 (d, $J^{13}{}^{13}_{C-P} = 40.7$ Hz), 132.0, 131.8 (d, $J^{13}{}^{13}_{C-P} = 10.6$ Hz), 129.7 (d, $J^{13}{}^{13}_{C-P} = 9.1$ Hz), 129.2 (d, $J^{13}{}^{13}_{C-P} = 10.6$ Hz), $\int_{132}^{132} \int_{132}^{132} \int_{122}^{132} \int_{132}^{132} \int_{132}^{132}$ $J_{C-P}^{1331} = 9.1 \text{ Hz}$, 60.7, 58.64, 57.98, 32.6, 32.4 (d, $J_{C-P}^{1331} = 4.5 \text{ Hz}$), 29.8, 28.8, 24.5, 22.2; FABMS [*m*/*z* (%)] 740 (M-BAr_F, 39), 738 (100); HRMS (FAB) calcd for C₃₄H₃₈NP⁵⁶Fe¹⁹³Ir: 740.1720; found 740.1730.

4.12. (S)-(-)-2-Dicyclohexylphosphino-1-dimethylaminoferrocene iridium(cyclooctadiene) tetrakis[3,5-bis(trifluoromethyl)phenyl] borate [(S)-**18**]

A solution of [Ir(COD)Cl]₂ (22.5 mg, 0.034 mmol) and (S)-9b (28.5 mg, 0.067 mmol) in dry CH₂Cl₂ (1.5 mL) under argon were heated at reflux for 1.5 h. After cooling to room temperature, the solution was concentrated to provide crude (S)-(-)-2-dicyclohexylphosphino-1-dimethylaminoferrocene iridium(cyclooctadiene) chloride (51 mg, 99%) as an orange solid which was used for the anion exchange without further purification: mp >230 °C; $[\alpha]_D^{20}$ –25.1 (c 0.64, CHCl₃); FABMS [m/z (%)] 726 (77, M-Cl), 724 (100), 722 (67), 450 (31), 394 (31), 229 (14); HRMS (FAB) calcd for C₃₂H₄₈NP⁵⁶Fe¹⁹³Ir: 726.2503, found 726.2464. To a flask containing chloride salt (25 mg, 0.033 mmol) was added NaBAr_F (36 mg, 0.041 mmol), CH₂Cl₂ (1 mL), and deionized water (1 mL) under argon. The mixture was stirred for 15 min at room temperature resulting in a color change from orange to red. The layers were separated, the aqueous layer extracted with CH_2Cl_2 (3 × 1.5 mL), and the combined organic extract was washed with deionized water (2 mL). The solvent was removed in vacuo, the residue taken up in CH₂Cl₂ and filtered through a plug of silica gel, eluting with CH₂Cl₂, to give (*S*)-**18** (46 mg, 88%) as a bright orange solid: mp 159–160 °C; $[\alpha]_D^{20}$ – 4.2 (*c* 0.53, CHCl₃); IR (KBr) ν_{max} 3036, 2929, 2857, 1641, 1634, 1612, 1464, 1454, 1355, 1278, 1162, 1127, 888, 839, 760, 713, 682, 670 cm^{-1} ; ³¹P NMR (121.5 MHz, CDCl₃) δ 18.6; ¹⁹F NMR (282.4 MHz, $CDCl_3$) $\delta - 62.32$; ¹H NMR (600 MHz, $CDCl_3$) $\delta 7.71$ (s, 8H), 7.53 (s, 4H), 4.90 (bm, 1H), 4.84 (t, 1H, J = 3.0 Hz), 4.39 (s, 6H), 4.29 (bm, 1H), 4.23 (bm, 1H), 4.13 (d, 1H, J = 2.4 Hz), 3.75 (bm, 1H), 3.07 (s, 3H), 2.83 (s, 3H), 2.54 (bm, 1H), 2.41-2.11 (m, 5H), 2.05-2.01 (m, 4H), 1.95 (m, 1H), 1.87-1.68 (m, 12H), 1.62-1.56 (m, 1H), 1.45-1.34 (m, 3H), 1.25–1.18 (m, 4H); ¹³C NMR (150.9 MHz, CDCl₃) δ 161.7 (q, $J^{13}_{C-B}^{11} = 49.8 \text{ Hz}$, 134.8, 128.9 (q, $J^{13}_{C-F}^{19} = 27.1 \text{ Hz}$), 125.7 (d, $J^{13}_{C-P}^{19} = 22.6 \text{ Hz}$), 124.5 (q, $J^{13}_{C-F}^{19} = 27.3 \text{ Hz}$), 117.5, 91.8 (d, $J^{13}_{C-P}^{19} = 10.6 \text{ Hz}$), 88.8 (d, $J^{13}_{C-P}^{19} = 12.1 \text{ Hz}$), 74.8 (d, $J^{13}_{C-P}^{11} = 4.5 \text{ Hz}$), 71.3, 70.1 (d, $J^{13}_{C-P}^{19} = 45.3 \text{ Hz}$), 67.6, 59.3, 58.1 (d, $J^{13}_{C-P}^{11} = 9.1 \text{ Hz}$), 74.8 (d, $J^{13}_{C-P}^{11} = 9.1 \text{ Hz}$), 75.7 (d, $J^{13}_{C-P}^{11} = 4.5 \text{ Hz}$), 71.3, 70.1 (d, $J^{13}_{C-P}^{11} = 45.3 \text{ Hz}$), 67.6, 59.3, 58.1 (d, $J^{13}_{C-P}^{11} = 9.1 \text{ Hz}$), 75.7 (d, $J^{13}_{C-P}^{11} = 4.5 \text{ Hz}$), 71.3, 70.1 (d, $J^{13}_{C-P}^{11} = 4.5 \text{ Hz}$), 71.3 (d, $J^{13}_{C-P}^{11} = 4.5 \text{ Hz}$), 75.7 (d, 57.9, 57.1, 52.3, 39.3 (d, $J_{C-P}^{1331} = 25.7 \text{ Hz}$), 38.6, (d, $J_{C-P}^{1331} = 30.2 \text{ Hz}$), 33.6 (d, $J^{1331}_{C-P} = 3.0$ Hz), 32.0 (d, $J^{1331}_{C-P} = 3.0$ Hz), 31.0, 30.6, 29.8 (d, $J^{1321}_{C-P} = 6.0$ Hz), 29.6, 28.8, 27.9, 27.3 (d, $J^{1321}_{C-P} = 9.1$ Hz), 27.1 (d, $J^{1321}_{122} = 10.6$ Hz), 27.1, 27.0 (d, $J^{1321}_{122} = 10.6$ Hz), 27.1, 27.0 (d, $J_{C-P}^{1331} = 10.6$ Hz), 25.7, 25.4; FABMS [m/z (%)] 726 (58, M-BAr_F), 725 (41) 724 (100), 723 (41), 722 (89), 721 (29), 720 (48), 612 (25), 610 (25), 530 (34), 528 (35), 451 (35), 450 (59), 449 (47), 448 (45), 447 (27), 406 (28), 392 (47), 345 (35), 343 (36), 330 (28), 229 (29); HRMS (FAB) calcd for $C_{32}H_{48}NP^{56}Fe^{193}Ir$: 726.2503; found 726.2526.

4.13. (S)-(-)-2-Di-ortho-tolyl-phosphino-1-

dimethylaminoferrocene iridium(cyclooctadiene) tetrakis[3,5-bis (trifluoromethyl)phenyl]borate [(S)-**19**]

A solution of [Ir(COD)Cl]₂ (29.6 mg, 0.044 mmol) and (S)-9c (39 mg, 0.088 mmol) in dry CH₂Cl₂ (2 mL) under argon was heated at reflux for 1.5 h. After cooling to room temperature, the solution was concentrated to provide crude (S)-(-)-2-di-ortho-tolyl-phosphino-1-dimethylaminoferrocene iridium(cyclooctadiene) chloride (67 mg, 99%) as an orange-red solid: mp >230 °C; [$\alpha]_D^{20}$ –49.1 (c 1.02, CHCl₃); FABMS [m/z(%)] 742 (M-Cl, 88), 740 (77), 630 (59), 629 (50), 628 (100); HRMS (FAB) calcd for C₃₄H₄₀NP⁵⁶Fe¹⁹³Ir: 742.1877; found 742.1831. To a flask containing the chloride salt (35 mg, 0.045 mmol) was added NaBAr_F (50 mg, 0.056 mmol), CH₂Cl₂ (1.5 mL) and deionized water (1.5 mL) under argon. The mixture was stirred for 15 min at room temperature over which time the color changed from orange to red. The layers were separated, the aqueous layer was extracted with CH_2Cl_2 (3 \times 1.5 mL), and the combined organic extract was washed with deionized water (2 mL). The solvent was removed in vacuo and the residue taken up in CH₂Cl₂ and filtered through a plug of silica, eluting with CH₂Cl₂, to give (S)-19 (58 mg, 81%) as an orange solid: mp 161–163 °C; $[\alpha]_D^{20}$ –27.4 (*c* 0.50, CHCl₃); IR (KBr) ν_{max} 3063, 2927, 2856, 1611, 1467, 1355, 1279, 1162, 1127, 908, 888, 834, 758, 713, 682, 671 cm⁻¹; ³¹P NMR (243 MHz, acetone-*d*₆, -10 °C, 1:1 mixture of bidentate conformers): δ 17.6, 12.9; ¹H NMR (600 MHz, acetone d_{6} , -10 °C, 1:1 mixture of bidentate conformers) δ 9.31 (dd, 1H, $J_{H-P}^{131} = 13.2, J_{H-H}^{11} = 7.8$ Hz), 9.25 (bs, 1H), 8.57 (bs, 1H), 7.82 (s, 2×8 H), 7.71 (bs, 1H), 7.71 (s, 2×4 H), 7.60 (q, 2H, $J_{H-H}^{11} = 7.8$ Hz), 7.47 (t, 2 × 1H, J_{H-H}^{11} = 7.2 Hz), 7.45–7.37 (m, 2 × 2H), 7.33 (t, 1H, $J_{H-H}^{11} = 7.2$ Hz), 7.26 (bs, 1H), 7.24 (t, 1H, $J_{H-H}^{11} = 7.2$ Hz), 7.14 (bs, 1H), 5.66 (bs, 1H), 5.28 (bs, 1H), 5.17 (bs, 1H), 5.13 (s, 1H), 5.12 (s, 1H), 5.08 (s, 1H), 5.04 (s, 1H), 4.81 (bs, 1H), 4.80 (s, 1H), 4.63 (s, 1H), 4.57 (s, 5H), 4.30 (s, 5H), 4.14 (s, 1H), 3.87 (s, 1H), 3.72 (s, 1H), 3.50 (s, 3H), 3.47 (s, 3H), 3.46 (bs, 1H), 3.07 (s, 3H), 3.00 (s, 3H), 2.63 (bm, 2H), 2.52 (bs, 3H), 2.44–2.38 (bm, 1H), 2.36–2.29 (bm, 2H + 1H), 2.26-2.19 (bm, 2H), 2.18-2.12 (bm, 1H), 2.04 (s, 3H), 2.02 (bm, 1H), 1.99 (bs, 3H), 1.97 (bm, 1H), 1.92 (s, 3H), 1.84 (bm, 2×1 H), 1.77–1.74 (bm, 2H), 1.54–1.52 (bm, 1H); ¹³C NMR (150.9 MHz, acetone-d₆, -10 °C, 1:1 mixture of bidentate conformers) δ 162.4 (q, $J_{C-B}^{1311} = 49.8 \text{ Hz}$, 142.4 (d, $J_{C-P}^{1331} = 9.1 \text{ Hz}$), 142.2 (d, $J_{C-P}^{1331} = 4.5 \text{ Hz}$), 140.5 (bd, $J_{C-P}^{1331} = 12.1$ Hz), 139.4 (bd, $J_{C-P}^{1331} = 22.6$ Hz), 137.2 (bd, $J_{LCP}^{1331} = 21.1$ Hz), 136.0 (bd, $J_{CP}^{1331} = 13.6$ Hz), 135.4, 133.6 (d, $J^{13}_{C-P}^{2-p} = 21.1$ H2), 136.0 (bd, $J^{13}_{C-P}^{2-p} = 13.6$ H2), 135.4, 133.6 (d, $J^{13}_{C-P}^{1-p} = 9.1$ Hz), 133.3 (d, $J^{13}_{C-P}^{1-p} = 7.5$ Hz), 133.1 (d, $J^{13}_{C-P}^{1-p} = 7.5$ Hz), 133.0 (d, $J^{13}_{C-P}^{1-p} = 1.5$ Hz), 132.7 (d, $J^{13}_{C-P}^{1-p} = 6.0$ Hz), 132.6 (d, $J^{13}_{C-P}^{1-p} = 1.5$ Hz), 132.5 (d, $J^{13}_{C-P}^{1-p} = 6.0$ Hz), 131.6, 130.7 (d, $J^{13}_{C-P}^{1-p} = 48.3$ Hz), 129.8 (qq, $J^{13}_{C-P}^{1-p} = 31.7$, 3.0 Hz), 128.3 (d, $J^{13}_{C-P}^{1-p} = 58.9$ Hz), 127.4 (d, $J^{13}_{C-P}^{1-p} = 15.1$ Hz), 127.2 (d, $J^{13}_{C-P}^{1-p} = 13.6$ Hz), 127.1 (d, $J^{13}_{C-P}^{1-p} = 24.1$ Hz), 126.5 (d, $J^{13}_{C-P}^{1-p} = 27.2$ Hz), 125.7 (d, $J^{13}_{C-P}^{1-p} = 24.1$ Hz), 125.2 (q, $J^{13}_{C-P}^{1-p} = 271.6$ Hz), 118.3 (sept, $J^{13}_{C-P}^{1-p} = 4.5$ Hz), 93.8 (bs), 92.1 (d, $J^{13}_{C-P}^{1-p} = 12.1$ Hz), 91.6 (bs), 89.1 (bs), 75.8 (bs), 74.5 $I_{C-P}^{1331} = 12.1$ Hz), 91.6 (bs), 89.1 (bs), 75.8 (bs), 74.5 (d, $J_{C-P}^{1331} = 6.0$ Hz), 73.2, 72.7, 72.5 (d, $J_{C-P}^{1331} = 19.6$ Hz), 71.9 (d, $J_{C-P}^{1331} = 22.6$ Hz), 68.2, 65.8, 63.8 (bs), 61.8 (bs), 60.7 (d, $J_{C-P}^{1351} = 10.6$ Hz), 60.2 (d, $J_{C-P}^{1351} = 9.1$ Hz), 60.1 (bs), 59.1 (bs), 57.9, 57.8, 53.0, 51.1, 34.2, 33.9 (bs), 32.0 (bs), 31.5, 31.3, 31.1 (bs), 29.1 (bs), 28.4, 23.3 (2 × d, $J_{C-P}^{1331} = 4.5$ Hz), 22.3 (bd, $J_{C-P}^{1331} = 3.0$ Hz), 21.9 (d, $J_{C-P}^{1331} = 3.0 \text{ Hz}$); FABMS [m/z (%)] 742 (62, M-BAr_F), 740 (61), 630 (54), 629 (49), 628 (100); HRMS (FAB) calcd for C₃₄H₄₀NP⁵⁶Fe¹⁹³Ir 742.1876, found 742.1915; Anal. calcd for C₆₆H₅₂NP⁵⁶Fe¹⁹³IrBF₂₄: C, 49.39; H, 3.27. Found: C, 48.74; H, 3.25.

4.14. (*R*)-(-)-1,2-Diphenylpropane (**21a**)

A solution of *trans*-methyl stilbene **20a** (30 mg, 0.15 mmol) and iridium catalyst (S)-16 (4.9 mg, 0.0031 mmol, 2.0 mol %) in CH₂Cl₂ (3 mL) in a vial under argon was sealed in an autoclave. The autoclave was evacuated and back-filled with hydrogen three times. pressurized to 62 bar, and the mixture was stirred for 72 h at room temperature. The solvent was removed in vacuo and the crude reaction mixture was passed through silica gel, eluting with 90:10 hexane:EtOAc, to give 21a (29 mg, 96%) as a colorless oil: $[\alpha]_{D}^{20} - 48.3 (c \ 0.86 \ CHCl_{3}) [lit [22], [\alpha]_{D}^{20} - 73.7 (c \ 1.0, CHCl_{3})]; Chiral$ GC analysis (Chirasil DEX-CB; 100 °C for 5 min, 0.5 °C/min increase to 140 °C, hold at 140 °C for 5 min, 2 °C/min increase to 180 °C, hold at 180 °C for 10 min) determined an enantiomeric ratio (er) of 91.8:8.2 (84% ee) $[t_R(major) = 64.32 \text{ min}, t_R(minor) 64.61 = min];$ ¹H NMR (300 MHz, CDCl₃) δ 7.37–7.30 (m, 3H), 7.24–7.20 (m, 2H), 7.14 (d, 2H, J = 7.2 Hz), 3.13–2.98 (m, 2H), 2.82 (q, 1H, J = 7.8 Hz), 1.31 (d, 3H, J = 6.6 Hz); ¹³C NMR (75.5 MHz, CDCl₃) δ 147.0, 140.8, 129.1, 128.3, 128.1, 127.0, 126.0, 125.8, 45.0, 41.8, 21.1.

4.15. (*R*)-(–)-*Ethyl* 3-*phenylbutanoate* (**21b**)

A solution of trans-ethyl 3-phenylbut-2-enoate 20b (57 mg, 0.29 mmol) and iridium catalyst (S)-16 (9.4 mg, 0.0060 mmol, 2.0 mol %) in CH₂Cl₂ (3 mL) in a vial under argon was sealed in an autoclave. The autoclave was evacuated and back-filled with hydrogen three times, pressurized to 62 bar, and the mixture was stirred for 72 h at room temperature. The solvent was removed in *vacuo* and the crude reaction mixture was passed through silica gel. eluting with 90:10 hexane:EtOAc, to give 21b (54 mg, 94%) as a colorless oil: $[\alpha]_D^{20}$ –23.5 (*c* 0.94, CHCl₃) [lit [23]. $[\alpha]_D^{20}$ –24.7 (*c* 1.12, CHCl₃)]; CSP HPLC analysis (Chiralcel OB-H; eluent: 99.5:0.5 hexane/i-PrOH, 0.5 mL/min) determined an enantiomeric ratio (er) of 95.3:4.7 (91% ee) $[t_R(major) = 11.99 \text{ min}, t_R(minor) = 14.09 \text{ min}];$ ¹H NMR (300 MHz, CDCl₃) δ 7.33–7.17 (m, 5H), 4.08 (q, 2H, J = 6.9 Hz), 3.35 - 3.23 (sx, 1H, J = 7.2 Hz), 2.66 - 2.50 (m, 2H), 1.31 (d, 3H, J = 6.9 Hz), 1.19 (t, 3H, J = 6.9 Hz); ¹³C NMR (75.5 MHz, CDCl₃) δ 172.4, 145.7, 128.4, 126.7, 126.3, 60.2, 43.0, 36.5, 21.8, 14.1.

4.16. (*R*)-(–)-*Ethyl* 3-(4-*methoxyphenyl*)*butanoate* (**21***c*)

A solution of trans-ethyl 3-(4-methoxyphenyl)but-2-enoate 20c (58 mg, 0.26 mmol) and iridium catalyst (S)-16 (8.4 mg, 0.0053 mmol, 2.0 mol %) in dry CH₂Cl₂ (3 mL) in a vial under argon was sealed in an autoclave. The autoclave was evacuated and back-filled with hydrogen three times, pressurized to 62 bar, and the mixture was stirred for 72 h at room temperature. The solvent was removed in vacuo and the crude reaction mixture was passed through silica gel, eluting with 90:10 hexane:EtOAc, to give 21c (58 mg, 99%) as a colorless oil: $[\alpha]_D^{20}$ –26.7 (*c* 1.0, CHCl₃); CSP HPLC analysis[24] (Chiralcel OB-H; eluent: 99.5:0.5 hexanes/i-PrOH, 0.5 mL/min) determined an enantiomeric ratio (er) of 96:4 (92% ee) $[t_R(major) = 21.73 \text{ min}, t_R(minor) = 28.91 \text{ min}];$ ¹H NMR (300 MHz, $CDCl_3$) δ 7.14 (d, 2H, J = 8.4 Hz), 6.84 (d, 2H, J = 8.7 Hz), 4.07 (q, 2H, J = 6.9 Hz, 3.78 (s, 3H), 3.24 (sx, 1H, J = 7.2 Hz), 2.61–2.46 (m, 2H), 1.27 $(d, 3H, J = 6.9 \text{ Hz}), 1.18 (t, 3H, J = 7.2 \text{ Hz}); {}^{13}\text{C} \text{ NMR} (75.5 \text{ MHz}, \text{CDCl}_3)$ δ 172.4, 158.0, 137.8, 131.4, 127.6, 113.8, 60.1, 55.1, 43.2, 35.7, 21.9, 14.1.

4.17. (S)-(+)-Ethyl 2-methyl-3-phenylpropanoate (21d)

A solution of *trans*-ethyl 2-methyl-3-phenylacrylate **20d** (34 mg, 0.18 mmol) and iridium catalyst (*S*)-**16** (5.7 mg, 0.0036 mmol, 2.0 mol %) in CH_2Cl_2 (1.8 mL) in a vial under argon was sealed in an autoclave. The autoclave was evacuated and back-filled with hydrogen three times, pressurized to 62 bar, and the mixture was

stirred for 72 h at room temperature. The solvent was removed *in vacuo* and the crude reaction mixture was passed through silica gel, eluting with 90:10 hexane:EtOAc, to give **21d** (30 mg, 88%) as a colorless oil: $[\alpha]_D^{20}$ +28.4 (*c* 1.0, CHCl₃); CSP HPLC analysis [6d] (Chiralcel OB–H; eluent: 99.5:0.5 hexane/*i*-PrOH, 0.5 mL/min) determined an enantiomeric ratio (er) of 91:9 (82% ee) [t_R(minor) = 8.52 min, t_R(major) = 10.10 min]; ¹H NMR (300 MHz, CDCl₃) δ 7.31–7.16 (m, 5H), 4.09 (q, 2H, *J* = 6.9 Hz), 3.08–2.98 (m, 1H), 2.79–2.64 (m, 2H), 1.21 (d, 3H, *J* = 7.2 Hz), 1.16 (d, 3H, *J* = 6.3 Hz); ¹³C NMR (75.5 MHz, CDCl₃) δ 176.1, 139.4, 128.9, 128.3, 126.2, 60.2, 41.4, 39.7, 16.7, 14.1.

4.18. (S)-(+)-Ethyl 3-(4-methoxyphenyl)-2-methylpropanoate (**21e**)

A solution of *trans*-ethyl 3-(4-methoxyphenyl)-2-methylacrylate 20e (30 mg, 0.14 mmol) and iridium catalyst (S)-16 (4.5 mg, 0.0029 mmol, 2.0 mol %) in CH₂Cl₂ (1.4 mL) in a vial under argon was sealed in an autoclave. The autoclave was evacuated and back-filled with hydrogen three times, pressurized to 62 bar, and the mixture was stirred for 72 h at room temperature. The solvent was removed in vacuo and the crude reaction mixture was passed through silica gel, eluting with 90:10 hexane:EtOAc, to give 21e (30 mg, 98%) as a colorless oil: $[\alpha]_D^{20}$ +24.5 (*c* 1.25, CHCl₃); CSP HPLC analysis [6d] (Chiralcel OB-H; eluent: 99.5:0.5 hexane/i-PrOH, 0.5 mL/min) determined an enantiomeric ratio (er) of 91.5:8.5 (83% ee) $[t_R(minor) = 9.01 min, t_R(major) = 9.76 min];$ ¹H NMR (300 MHz, $CDCl_3$) δ 7.08 (d, 2H, I = 8.7 Hz), 6.81 (d, 2H, I = 8.7 Hz), 4.09 (q, 2H, I = 7.2 Hz), 3.78 (s, 3H), 3.01–2.90 (m, 1H), 2.73–2.57 (m, 2H), 1.19 (t, 3H, I = 7.2 Hz), 1.13 (d, 3H, I = 6.6 Hz); ¹³C NMR (75.5 MHz, CDCl₃) δ 176.2, 158.1, 131.4, 129.9, 113.7, 60.2, 55.2, 41.7, 38.8, 16.7, 14.2.

4.19. (S)-(+)-N-Benzyl-2-methyl-3-phenylpropanamide (21f)

A solution of *trans-N*-benzyl-2-methyl-3-phenylacrylamide **20f** (30 mg, 0.12 mmol) and iridium catalyst (S)-16 (3.8 mg, 0.0024 mmol, 2.0 mol %) in dry CH₂Cl₂ (1.2 mL) in a vial under argon was sealed in an autoclave. The autoclave was evacuated and backfilled with hydrogen three times, pressurized to 62 bar, and the mixture was stirred stir for 72 h at room temperature. The solvent was removed in vacuo and the crude reaction mixture was passed through silica gel, eluting with 90:10 hexane:EtOAc, to give 21f (29 mg, 96%) as a pale yellow oil: $[\alpha]_D^{20} + 23.2 (c \ 0.93, \text{CHCl}_3)$ [lit [25]. $[\alpha]_{D}^{20}$ +52.3 (c, 1.2 CHCl₃)]; CSP HPLC analysis (Chiralcel OD-H; eluent: 95:5 hexane:*i*-PrOH, 1.0 mL/min λ = 210 nm) determined an enantiomeric ratio (er) of 73.8:26.2 (48% ee) $[t_R(major) = 26.53 \text{ min}, t_R(minor) = 29.99 \text{ min}];$ ¹H NMR (300 MHz, CDCl₃) δ 7.24–7.16 (m, 9H), 7.04–7.01 (m, 2H), 5.66 (bs, 1H), 4.32 (m, 2H), 2.98 (dd, 1H, J = 13.2, 8.7Hz), 2.70 (dd, 1H, J = 13.5, 6.3 Hz), 2.47 $(sx, 1H, J = 6.6 \text{ Hz}), 1.23 (d, 3H, J = 6.9 \text{ Hz}); {}^{13}\text{C} \text{ NMR} (75.5 \text{ MHz})$ CDCl₃) § 175.3, 139.8, 138.1, 128.5, 128.4, 127.5, 127.2, 126.2, 43.9, 43.3, 40.5, 17.8.

4.20. (R)-(+)-2-Methyl-3-phenylpropan-1-ol (**21g**)

A solution of *trans*-2-methyl-3-phenylpropenol **20g** (34.2 mg, 0.23 mmol) and iridium catalyst (*S*)-**16** (7.3 mg, 0.0046 mmol, 2.0 mol %) in dry CH₂Cl₂ (2.4 mL) in a vial under argon was sealed in an autoclave. The autoclave was evacuated and back-filled with hydrogen three times, pressurized to 62 bar, and the mixture was stirred for 72 h at room temperature. The solvent was removed *in vacuo* and the crude reaction mixture was passed through silica gel, eluting with 90:10 hexane:EtOAc, to give **21g** (33 mg, 95%) as a clear oil: $[\alpha]_{D}^{20}$ +1.36 (*c* 1.06, CHCl₃) [lit [26]. $[\alpha]_{D}^{20}$ -11.1 (*c* 0.86, CHCl₃) for (*S*)-enantiomer]; CSP HPLC analysis (Chiralcel OD-H; eluent: 95:5

hexane:i-PrOH, 1.0 mL/min) determined an enantiomeric ratio (er) of 59.2:40.8 (18% ee) $[t_R(minor) = 8.73 \text{ min}, t_R(major) = 10.52 \text{ min}];$ ¹H NMR (300 MHz, CDCl₃) δ 7.31–7.17 (m, 5H), 3.51 (m, 2H), 2.76 (dd, 1H, *J* = 13.5, 6.3 Hz), 2.43 (dd, 1H, *J* = 13.5, 8.1 Hz), 1.95 (oct, 1H, I = 6.3 Hz), 1.47 (bs, 1H), 0.93 (d, 3H, I = 6.6 Hz); ¹³C NMR (75.5 MHz, CDCl₃) § 140.6, 129.1, 128.2, 125.8, 67.6, 39.6, 37.7, 16.4.

Acknowledgements

We thank NSERC Canada for support of our research program and Razvan Simionescu (Brock University) for expeditious assistance with NMR data collection. Tim Jones (Brock University) is also thanked for collecting mass spectral data. L.V.B. thanks the Province of Ontario for an OGSST grant (2009).

Appendix A. Supplementary information

Spectroscopic data (¹H, ³¹P and ¹³C NMR) for sulfides **12b** and **12c**, salts 12b·HBF₄ and 12c·HBF₄, ligands 9a-9c and 15, complexes 16–19, plus HSQC data for fluxional complex 19 at -10 °C. Supplementary data associated with this article can be found in the online version at doi:10.1016/j.jorganchem.2010.08.042.

References

- [1] Reviews of P.N. ligands in catalysis: (a) I.D. Kostas, Curr. Org. Synth. 5 (2008) 227.
 - (b) P.J. Guiry, C.P. Saunders, Adv. Synth. Catal. 346 (2004) 497.
- (a) M. Wills, Science 311 (2006) 619; [2] (b) C. Valla, A. Pfaltz, Chim, Oggi, (2004) 4.
- R.H. Crabtree, H. Felkin, G.E. Morris, J. Organomet. Chem. 141 (1977) 205.
- Reviews: (a) S.J. Roseblade, A. Pfaltz, Acc. Chem. Res. 40 (2007) 1402; [4] (b) A. Pfaltz, J. Blankenstein, R. Hilgraf, E. Hörmann, S. McIntyre, F. Menges, M. Schonleber, S.P. Smidt, B. Wüstenberg, N. Zimmermann, Adv. Synth. Catal. 345 (2003) 33.
 - (c) T.L. Church, P.G. Andersson, Coord. Chem. Rev. 252 (2008) 513;
 - (d) K. Källström, I. Munslow, P.G. Andersson, Chem. Eur. J. 12 (2006) 3194; (e) X. Cui, K. Burgess, Chem. Rev. 105 (2005) 3272.
- [5] (a) D.G. Blackmond, A. Lightfoot, A. Pflatz, T. Rosner, P. Schinder, N. Zimmermann, Chirality 12 (2000) 442;
- (b) S.P. Smidt, N. Zimmermann, M. Studer, A. Pfaltz, Chem. Eur. J. 10 (2004) 4685. [6] (a) P. Cheruku, T.L. Church, A. Trifonova, T. Wartmann, P.G. Andersson, Tetrahedron Lett. 49 (2008) 7290: (b) P. Tolstoy, M. Engman, A. Paptchikhine, J. Bergquist, T.L. Church, A.W.-M. Leung, P.G. Andersson, J. Am. Chem. Soc. 131 (2009) 8855; See also: (c) K. Källström, C. Hedberg, P. Brandt, A. Bayer, P.G. Andersson, J. Am. Chem. Soc. 126 (2004) 14308; (d) C. Hedberg, K. Källström, P. Brandt, L.K. Hansen, P.G. Andersson, J. Am. Chem. Soc. 128 (2006) 2995.
- S.-M. Lu, C. Bolm, Chem. Eur. J. 14 (2008) 7513.
- S. Li, S.-F. Zhu, J.-H. Xie, S. Song, C.-M. Zhang, Q.-L. Zhou, J. Am. Chem. Soc. 132 [8] (2010) 1172.

- [9] (a) L.-X. Dai, X.-L. Hou (Eds.), Chiral Ferrocenes in Asymmetric Catalysis: Synthesis and Applications, Wiley-VCH Verlag GmbH & Co, KgaA, Weinheim, Germany, 2010; (b) P. Štěpnička (Ed.), Ferrocenes: Ligands, Material and Biomolecules, John Wiley & Sons, Sussex, England, 2008; (c) A. Togni, T. Hayashi (Eds.), Ferrocenes: Homogeneous Catalysis, Organic
- Synthesis, Materials Science, Wiley-VCH, Weinheim, Germany, 1995.
- [10] (a) S.-M. Lu, X.-W. Han, Y.-G. Zhou, Adv. Synth. Catal. 346 (2004) 909; See also: (b) T.T. Co, T.-J. Kim, Chem. Commun. (2006) 3537.
- [11] M.N. Cheemala, P. Knochel, Org. Lett. 9 (2007) 3089.
- C. Metallinos, J. Zaifman, L. Van Belle, L. Dodge, M. Pilkington, Organometallics [12]
- 28 (2009) 4534.
- [13] C. Metallinos, I. Zaifman, T. Dudding, L. Van Belle, K. Taban, Adv. Synth. Catal. 352 (2010) 1967
- [14] For other optically active planar chiral aminoferrocenes in catalysis, see: (a) J. Priego, O.G. Mancheno, S. Cabrera, J.C. Carretero, J. Org. Chem. 67 (2002) 1346 (b) R. Salter, T.E. Pickett, C.I. Richards, Tetrahedron: Asymmetry 9 (1998)

4239.

- (c) A. Bertogg, F. Camponovo, A. Togni, Eur. J. Inorg. Chem. (2005) 347;
- (d) A. Bertogg, A. Togni, Organometallics 25 (2006) 622; (e) T. Llamas, R.G. Arrayás, J.C. Carretero, Angew. Chem. Int. Ed. 46 (2007)
- 3329:

(f) J.C. Anderson, A.J. Blake, J.C. Arnall-Culliford, Org. Biomol. Chem. 1 (2003) 3586

- (g) R.G. Arrayás, J. Adrio, J.C. Carretero, Angew. Chem. Int. Ed. 45 (2006) 7674. [15] For optically active planar chiral hydroxyferrocenes in catalysis, see: (a)
- J. Niemeyer, J. Cloppenburg, R. Fröhlich, G. Kehr, G. Erker, J. Organomet. Chem. 695 (2010) 1801: (b) J. Niemeyer, G. Kehr, R. Fröhlich, G. Erker, Chem. Eur. J. 14 (2008) 9499;

 - (c) J. Niemeyer, G. Kehr, R. Fröhlich, G. Erker, Eur. J. Inorg. Chem. (2010) 680;
 - (d) J. Niemeyer, G. Kehr, R. Fröhlich, G. Erker, Dalton Trans. (2009) 3716; (e) R.C.J. Atkinson, K. Gerry, V.C. Gibson, N.J. Long, E.L. Marshall, L.J. West,

Organometallics 26 (2007) 316; (f) R.C.J. Atkinson, V.C. Gibson, N.J. Long, A.J.P. White, D.J. Williams, Dalton Trans. (2004) 1823:

- (g) T.E. Pickett, C.J. Richards, Tetrahedron: Asymmetry 10 (1999) 4095.
- [16] For non-stereoselective syntheses of 2-phosphino-1-aminoferrocenes, see: (a) C. Metallinos, J. Zaifman, L. Dodge, Org. Lett. 10 (2008) 3527; (b) D. Wechsler, M.A. Rankin, R. McDonald, M.J. Ferguson, G. Schatte,
- M. Stradiotto, Organometallics 26 (2007) 6418.
 [17] See Supplementary Information file for ¹H, ³¹P, ¹³C NMR and HSQC spectra of
- 19 [6d]. [18] Hydrogenation of 20a with 0.5 mol% of complex 16 did not result in
- a decrease in yield or enantioselectivity. [19]
- R.C. Morrison, R.W. Hall, J.A. Schwindeman, C.W. Kamienski, J.F. Engel, European Patent 0525881, 1993.
- A.F. Burchat, J.M. Chong, N. Nielsen, J. Organomet. Chem. 542 (1997) 281. [20]
- [21] Ni-Al catalyst (1.44 g, 16.8 mmol) was activated by portion-wise addition to 25 mL 6 M NaOH solution and heating at 50 °C for 1 h, followed by repeated washing of the solid with H_2O (7 \times 10 mL), MeOH (3 \times 10 mL), Et_2O $(2 \times 10 \text{ mL})$ and MeCN $(2 \times 10 \text{ mL})$.
- J.L.G. Ruano, M.T. Aranda, M. Puente, Tetrahedron 61 (2005) 10099.
- Y. Kanazawa, Y. Tsuchiya, K. Kobayashi, T. Shiomi, J. Itoh, M. Kikuchi, [23] Y. Yamamoto, H. Nishiyama, Chem. Eur. J. 12 (2005) 63.
- [24] M. Schrems, A. Pfaltz, Chem. Commun. (2009) 6210.
- [25] S.G. Davies, D.J. Dixon, J. Chem. Soc. Perkin Trans. 1 (2002) 1869.
- [26] K.Y. Ahn, A. Lim, S. Lee, Tetrahedron: Asymmetry 4 (1993) 2435.