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3-(Diphenylphosphino)hexahelicene is synthesised in good yield and purity, via a three-step sequence
involving a palladium-catalysed Mizoroki–Heck coupling reaction and classical oxidative photocyclisa-
tion. Mononuclear ruthenium and palladium complexes of 3-(diphenylphosphino)hexahelicene are pre-
pared and characterised.

� 2009 Published by Elsevier Ltd.
Significant interest has been directed towards the construction
of polycyclic aromatic structures that exhibit distortions from pla-
narity, such as the helicenes.1 These helically shaped molecules
have found applications as potentially useful components in chiral
discotic liquid crystalline materials,2 as building blocks for helical
conjugated polymers3 and as rotors.4 Furthermore, functionalised
helicenes have proved successful as catalysts5 and ligands6 in
asymmetric synthesis due to their rigid framework and high opti-
cal stability.

Typically, most of the strategies adopted for the synthesis of
these compounds suffer from a lack of general applicability and
low yields. However, only a few approaches have been employed
for the synthesis of racemic or optically active phosphorus-con-
taining helicenes. In 1997, Terfort et al. reported the synthesis of
the first helical-chiral phosphane ligands in racemic form:
bis(diphenylphosphino)[5]- and [6]-helicenes.7

In an independent study, Reetz et al. reported the synthesis of
optically active 2,15-bis(diphenylphosphino)hexahelicene and de-
scribed its use in both enantioselective hydrogenations8 and palla-
dium-promoted allylic substitutions.9 More recently, Katz has
synthesised optically active bidentate phosphines containing hexa-
and hepta-helicene skeletons.10 Teplý et al. prepared 3-(diphenyl-
phosphino)hexahelicene 1 using a multistep procedure based on a
key intramolecular [2+2+2] cycloisomerisation of a substituted tri-
yne.11 The authors did not report the resolution of this helical phos-
phine or its use in catalysis. Moreover, in this sequence, the
phosphine was obtained using harsh reaction conditions in a low
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overall yield. A shorter access to phosphine 1 than that mentioned
above and/or by another higher yielding procedure would be desir-
able for examination of this compound as a ligand or for broader
exploitation. To our knowledge, no transition metal complex of 3-
(diphenylphosphino)hexahelicene has been described previously.

In recent years, we have utilised the palladium-catalysed
Mizoroki–Heck coupling reaction and classical oxidative photocyc-
lisation for the synthesis of various functionalised helically chiral
aromatic structures.12,13 In this Letter we report the use of the
same strategy for the synthesis of helically chiral hexacyclic phos-
phine 1 by taking advantage of an appropriate functional group to
introduce a phosphorus to a preformed helical derivative. Our syn-
thetic approach makes use of a benzo[c]phenanthrene as the start-
ing material for the synthesis of the helicene precursor which is
then easily converted into the corresponding helically chiral hexa-
cyclic system by oxidative photocyclisation.

Scheme 1 shows our general synthetic strategy to construct the
helical hexacyclic phosphine 1 which is based on a three-step reac-
tion sequence utilising Mizoroki–Heck couplings, photocyclisation
and lithiation–phosphinylation.

The Mizoroki–Heck coupling14 of the benzo[c]phenanthrene 2
with an excess of 3-bromostyrene in the presence of sodium acetate
and Herrmann’s palladacycle [trans-di(l-acetato)-bis[o-(di-o-toly-
lphosphino)benzyl]dipalladium] as the catalyst, in N,N-dimethyl-
acetamide (DMA), provided the helicene precursor 3 in 78% yield
after heating for 48 h at 140 �C (Scheme 1). The starting material,
2-bromobenzo[c]phenanthrene 2, is available in two steps and good
yield, by photocyclisation of 2-(4-bromostyryl)naphthalene, which
is conveniently prepared via a palladium-promoted Mizoroki–Heck
reaction.12b
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Scheme 1. Synthetic strategy for the synthesis of the helical phosphine 1.
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Alkene 3 underwent photocyclisation in the presence of a stoi-
chiometric amount of iodine and an excess of propylene oxide.15

Photolysis of 3 was performed on a 200 mg scale per run in a
one litre reactor for about 120 min to afford the expected 3-bromo-
hexahelicene 4 in 50% yield, after purification by column chroma-
tography.16 No other isomer was isolated from the reaction
mixture, indicating that ring closure of 3 had occurred from the
opposite side of the tetracyclic system.

For the photoconversion of larger amounts of alkene 3 it was
preferable to carry out irradiation using portions of 0.55 mmol or
less. The total irradiation time required for complete conversion
of a large amount of 3 was not affected significantly by dividing
the reactant into small batches, and the irradiated batches were
combined for work-up. Also, this photochemical method has the
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Scheme 3. Synthesis of the helical
advantage that tedious and difficult purification of the product is
avoided.

The last step of the synthetic sequence is the formation of the
phosphine which can be achieved through lithiation/phosphinyla-
tion of 4. Thus, metallation of 3-bromohexahelicene 4 proceeded
well via metal-halogen exchange using n-butyllithium at �78 �C.
Subsequent treatment of the resulting lithiated species with chlo-
rodiphenylphosphine yielded the desired 3-(diphenylphos-
phino)hexahelicene 1 in 75% yield and in 29% overall yield over
three steps, starting from the readily available benzo[c]phenan-
threne 2 (Scheme 1). Oxidation of helical phosphine 1, using 35%
hydrogen peroxide solution, provided the corresponding phos-
phine oxide 5 in excellent yield. Compound 5 is more stable than
phosphine 4 and could be resolved, by HPLC, using a column
P
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packed with cellulose-tris(3,5-dimethylphenylcarbamate) and n-
heptane/2-propanol (80:20) mixture as the mobile phase.12a,d

Having established a short procedure for the synthesis of the
monophosphine 1, we then further proceeded to explore its coor-
dinating ability towards transition metals. To achieve this,
phosphine 1 was first allowed to react with 0.5 equiv of [(p-cyme-
ne)RuCl2]2 complex 6 in dichloromethane at room temperature to
afford the mononuclear ruthenium complex 7 in 61% yield
(Scheme 2). This compound was isolated as an orange-red, air sta-
ble solid and was characterised by NMR and mass spectrometry.17

Phosphine 1 was also reacted with the [PhCH2N(Me)2Pd(g3–
OCOCF3)]2 complex 8 at room temperature for 15 min to produce
the mononuclear palladium complex 9 in 70% yield as an air stable,
pale yellow compound (Scheme 3).18

In conclusion, we have developed a straightforward method for
the preparation of helically chiral hexacyclic phosphine 1 starting
from readily available and inexpensive materials. We completed
the synthesis of the helical framework of 1 in three steps and in
29% overall yield. This class of compounds is known to possess
interesting catalytic activities, and we feel that this method when
combined with a simple resolution procedure will further facilitate
the exploration of this helical phosphine.
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