

Check fo updates FULL PAPER

WILEY-VCH

Microwave-Assisted Metal-Free Rapid Synthesis of C4-Arylated Quinolines *via* Povarov Type Multicomponent Reaction

Devesh Chandra,^[a] Ankit Kumar Dhiman,^[a] Rakesh Kumar,^[a] and Upendra Sharma*^[a]

Abstract: Herein rapid microwave assisted, (±) camphor-10-sulfonic acid (CSA) promoted Povarov type multicomponent synthesis of 4arylated quinolines from anilines, alkynes, and paraformaldehyde is described. This reaction proceeds through [4+2] cycloaddition of imine (formed *in situ* from aniline and paraformaldehyde) and alkynes in presence of CSA, without any metal catalyst. Mechanistic study revealed that CSA inhibit the synthesis of Troger's base and assist the cycloaddition of imine with alkyne by activating imine.

Keywords: Quinoline, alkyne, (±) camphor-10-sulfonic acid, Povarov reaction, microwave synthesis.

Introduction

For the synthesis and functionalization of quinolines, rapid transition metal-free/additive-free synthetic protocols are in high demand as quinoline scaffolds have been recognized as vital heterocyclic motifs obeying to their importance in natural products, pharmaceuticals, and material science.^[1] Among them, 4-arylated quinolines possess excellent biological activities^[2], and leading examples include yaequinolone^[3] and peniprequinolone^[4] (Figure 1). Substituted quinolines are also being used in dye stuff^[5] and photonics.^[6]

Figure 1. Representative examples of 4-aryl quinolines.

Obeying to the importance of 4-aryl quinolines, various methods have been developed for their synthesis. These includes Ni-catalyzed cyclization of 2-iodoanilines with alkynyl aryl ketones,^[7] and Cu-catalyzed multicomponent synthesis of 2,4-disubstituted quinolines.^[8] FeCl₃-catalyzed A₃-coupling of aniline, alkyne and aldehyde to provide 2,4-disubstituted quinolines,^[9] and metal clay based catalysts has also been reported.^[10] All these methods are only applicable

 Mr. Devesh Chandra, Mr. Ankit Kumar Dhiman, Mr. Rakesh Kumar, Prof. Dr. Upendra Sharma* Natural Product Chemistry & Process Development Division and AcSIR, CSIR-IHBT, Palampur, Himachal Pradesh 176061, India
 E-mail: *upendra@ihbt.res.in; upendraihbt@gmail.com

Homepage: <u>http://www.ihbt.res.in/en/staff/scientific-</u> staff?chronoform=sctdetail&task=detail&id=41

Supporting information and ORCID(s) from the author(s) for this article for this article is given via a link at the end of the

for 2,4-disubstituted quinolines synthesis. Recently, Jiang and coworkers disclosed a Zn-promoted synthesis of 4substituted quinoline from vinyl azides and anilines through dual synthon approach.^[11]

Scheme 1. Seelected examples of 4-arylated quinoline synthesis.

Subsequently, Fe-catalyzed synthesis of 4-arylquinolines from aryl methyl ketones and aryl amine was reported by Jadhav and Singh (scheme 1b).^[12] Co(III)-catalyst based C-H activation approches have also been utilized for the synthesis of 4-arylated quinolines.^[13] First approch includes annulation of aryl methyl ketones and aryl amines using paraformaldehyde as the CO surrogate at 130 °C (Scheme 1a).^[13a] Later, Yi et al. utlizes alkyne as coupling partner with aniline and DMSO as CO surrogate for the synthesis of 4substuted quinolines at 120°C (Scheme 1c).^[13b] Co(III)catalyzed annulation of anilides with internal alkynes to form 3,4-diarylated quinolines has also been disclosed by Zhang^[14] and Li^[15] group independently. The removal of trace metal

FULL PAPER

particularly impurities from the final product in pharmaceuticals can increase the overall process cost.^[16]. Metal-free approaches are also described for the synthesis of aryl-substituted quinolines.^[17] In this regard, recently Tiwari et. al.,^[17c] developed a $K_2S_2O_8$ promoted metal-free protocol for the synthesis of quinoline via annulation of aniline and alkynes. (Scheme 1d). However use of excess K₂S₂O₈ limits the scope of this approach. In addition, long reaction time and high reaction temperature in all these reactions warrant further intervention.

Traditionally, Povarov reaction^[18] *i.e.* [4+2] cycloaddition of imines and olefins is a most anticipated method for the synthesis of substituted *N*-heterocycle. However, terminal alkynes and paraformaldehyde are rarely used in Povarov type reactions for 4-substituted quinolines synthesis.^[19] On the other hand, mainly inorganic lewis acids^[20] are known to promote this type of reaction, but the organic acid are rarely explored.^[21] Intrestingly, acceleration of chemical reactions by organic molecules constitute a vibrant area in organic chemistry due to their ease of handling, stability, and environmental friendliness.^[22]

Hence, in continuation of our group's research interest in the development of the methodologies for synthesis and functionalization^[23] of quinolines, herein we describe a Povarov type multicomponent reaction for the synthesis of 4-substituted quinoline using (±) camphor-10-sulfonic acid (CSA) as the promotor.

Result and discussion

Initially, phenyl acetylene (0.1 mmol), aniline (0.12 mmol) and paraformaldehyde (0.125 mmol) were selected as model substrates and reacted under microwave irradiation at 90°C. Instead of desired 4-phenyl quinoline (**3aa**), troger's base^[24] (**A**) was formed in good amount.

Table 1. Optimization study.^a

	en en	
N	$ \begin{array}{c} H_2 \\ + \end{array} \xrightarrow{\text{Ph}} \begin{array}{c} CSA (0.5 \text{ eqiv.}) \\ \hline (\text{1-CHO})n (1.25 \text{ equiv}) \\ \hline \text{TEE} \dots W 20 \text{ min} \end{array} + \left(\begin{array}{c} \\ \end{array} \right) $	
1a	2a 3aa	Ă
Entry	Deviation from standard conditions	Yield ^b (%)
1	no deviation	89
2	without CSA	ndc
3	without (HCHO)n	nd
4	MeOH instead of TFE	45
5	CoCp*(CO)I ₂ instead of CSA	24
6	heating (24h) instead of μW	46
7	pivalic acid instead of CSA	40
8	triflic acid instead of CSA	68
9	admantane carboxylic acid instead of CSA	32
10	PTSA instead of CSA	<5

^aReaction conditions: anilines (**1a**; 0.12 mmol), alkynes (**2a**; 0.1 mmol), paraformaldehyde (0.125 mmol), CSA (0.05 mmol), TFE (0.2M), µW irradiation, 90 °C, 20 min.^bGC yields by using *n*-decane as internal standard. ^cTroger's base A was formed

We screened different organic acids, i.e., pivalic acid, adamantane carboxylic acid, p-toluene sulfonic acid, triflic acid, and (\pm) camphor-10-sulfonic acid (CSA) for carrying out this transformation. This screening revealed CSA as the organic molecule of choice for promoting the formation of desired product **3aa**. Further screening of solvents provided TFE as an ideal solvent for the formation of **3aa** (89% yield. Table 1).

Under best optimal reaction conditions various substituted anilines (1a-1p) were allowed to couple with phenyl acetylene (2a, Table 2). Anilines substituted at ortho-position with halogen, electron withdrawing and electron donating groups (1a-1g) provided C8-substituted quinolines in low to excellent yields (3aa-3ga, 23-88%). The *meta*-substituted anilines (1h, 1i) also reacted with 2a providing a regio-isomeric mixture of products (3ha, 3ia).

Table 2. Substrate scope with anilines.ª

^aReaction conditions: anilines (**1a-p**; 0.36 mmol), alkynes (**2a**; 0.3 mmol), paraformaldehyde (0.375 mmol), CSA (0.15 mmol), TFE (0.2 M), μW irradiation, 90 °C, 20 min.; ^b30 min.

Similarly, the *para*-substituted anilines (**1j-1n**) were also compatible affording the desired products in low to good yield (**3ja-3na**, 32-90%). Disubstituted anilines such as 4-iodo-2-nitroaniline (**1o**) and 2-amino-5,6,7,8-tetrahydronaphthalene also reacted successfully albeit providing the corresponding desired product in low yields (**3oa** and **3pa**).

Next, various alkynes were reacted with *ortho*-toluidine (**1b**) (Table 3). Different *para*-substituted phenyl acetylenes (**2a-2g**) were well tolerated under optimal reaction conditions and provided the desired products in 31-76% yields (**3ba-bg**). The

FULL PAPER

polyaromatic alkyne (2h) also gave the desired product (3bh) in good yield. Although 3-ethynylthiophene provided the desired product 3bi in 48% of yield, 2-ethynylpyridine failed to react. Internal alkyne did not react under current reaction conditions. Further, we examined different aldehydes (4a-4c) as a substitute of paraformaldehyde. Benzaldehyde and furfural were found suitable substrates but acetaldehyde failed to react.

^aReaction conditions: anilines (**1a-b**; 0.36 mmol), alkynes (**2a-k**; 0.3 mmol), paraformaldehyde (0.375 mmol), CSA (0.15 mmol), TFE (0.2 M), μW irradiation, 90 °C, 20 min. ^b30 min.

For the preliminary understanding of the reaction pathway, few experiments were carried out. The standard reaction as well as the reaction between aniline and paraformaldehyde without CSA afforded troger's base as the only product (Scheme 2a and 2b). These reactions confirm the role of CSA in promoting the reaction via inhibiting the formation of the troger's base. The reaction of N-(4-methoxyphenyl)-1phenylmethanimine (II) with 2a, in the presence of CSA, afford the product B in 32% yield whereas no product was observed without CSA (Scheme 2c and 2d). These two experiments confirm imine (II) as possible intermediate and the role of CSA in promoting cycloaddition between imine and alkynes via activating imine. Furthermore, a competition experiment between 1j (p-Me) and 1q (p-CN) with 2a provides the corresponding products in 7:1 ratio (Scheme 2e); on the other hand, competition experiment between 2b (p-Me) and 2l (pCN) with **1a** provides corresponding products in 1:3 ratio (Scheme 2f).^[24] These experiments disclosed that imine with electron donating group and alkyne with electron withdrawing group favors the annulations for the synthesis of 4-arylated quinolines.

Scheme 2. Control Experiments.

On the basis of thses experiments and literature,^[17a, 20c] a plausible reaction mechanism for the synthesis of 4-arylated quinoline is proposed (Scheme 3).

Scheme 3. Plausible mechanism for quinolines synthesis.

The reaction may proceed through the formation of *in situ* generated intermediate I from the condensation of aniline and paraformaldehyde. Cycloaddition of **2a** with CSA activated

This article is protected by copyright. All rights reserved.

FULL PAPER

imine (II) *via* a Povarov type multicomponent reaction afforded intermediate IV, which on spontaneous oxidation yield the final product **3aa**.

Conclusions

In summary, we have developed a rapid microwave-assisted metal-free method for the synthesis of 4-substituted quinolines by using an organic molecule as an acid promotor.

Experimental Section

General Methods

Reagent Information: All experiments were performed in CEM Discover using SynergyTM software. High-resolution mass spectra were recorded by Q-TOF using the electrospray ionization (ESI-TOF) method. All chemicals were purchased from the Sigma-Aldrich and TCI. TLC plates (Aluminium sheet silica gel 60 F254) were purchased from Merck. Flash chromatography was performed over silica gel (230–400 mesh) using n-hexane and ethyl acetate as eluents.

Analytical Information: The melting points were recorded on a Bronsted Electro thermal 9100. All isolated compounds are characterized by ¹H NMR, ¹³C NMR, LC–MS, and IR. In addition, all of the compounds are further characterized by HRMS. Mass spectra were recorded on Water Q-ToF Micro mass spectrometer. IR was analyzed by Shimadzu IR Prestige-21 with ZnSe Single reflection ATR accessory. Nuclear magnetic resonance spectra were recorded on a Bruker-Avance 600 or 300 MHz instrument. All ¹H NMR experiments are reported in units, parts per million (ppm), and were measured relative to the signals for residual chloroform (7.26). All ¹³C NMR spectra were reported in ppm relative to deuterated chloroform (77.23) and all were obtained with ¹H decoupling. Optimization studies were done by GC by using *n*-decane as an internal standard.

General Procedure for Synthesis of 4-substituted quinolines: To a solution of phenylacetylene (0.3 mmol) in TFE (0.2M), paraformaldehyde (0.375 mmol) aniline (0.36 mmol) and (\pm) camphor-10-sulfonic acid (0.15 mmol) were added in a glass reaction tube with sealed cap and irradiate with microwave in CEM Discover using SynergyTM software for 20 min. or until the full conversion monitored by standard monitoring tools *i.e* TLC at 100 °C. The crude reaction mixture was concentrated at reduced pressure. Isolation and purification were done by flash chromatography using *n*-hexane and ethyl acetate mixture as an eluent.

Characterization data

4-phenylquinoline (Table 1, entry **3aa**). Yellow liquid (78 mg, 78%); ¹H NMR (300 MHz, CDCl₃): δ = 8.95 (d, *J* = 4.2 Hz, 1H), 8.18 (d, *J* = 8.4 Hz, 1H), 7.93 (d, *J* = 8.4 Hz, 1H), 7.71-7.76 (m, 1H), 7.48-7.53 (m, 6H), 7.34 (d, *J* = 4.2 Hz, 1H) ppm; ¹³C NMR (75 MHz, CDCl₃): δ = 150.1, 148.8, 148.7, 138.1, 129.9, 129.7(2C), 129.5, 128.7(2C), 128.6, 126.9, 126.8, 126.0, 121.5 ppm. IR (ZnSe): v_{max} = 3055, 2925, 1573, 1490, 1390, 1276, 1029, 850, 767, 655 cm⁻¹. HRMS (ESI-TOF): m/z [M+H]⁺ calcd. for C₁₅H₁₂N 206.0964, found 206.0951.

8-methyl-4-phenylquinoline (Table 1, entry **3ba**). Pale yellow liquid (50 mg, 76%); ¹H NMR (300 MHz, CDCl₃) δ = 8.98 (d, *J* = 4.2 Hz, 1H), 7.76 (d, *J* = 8.4 Hz, 1H), 7.59 (d, *J* = 6.3 Hz, 1H), 7.48-7.53 (m, 5H),

7.40 (d, J = 7.5 Hz, 1H), 7.33–7.36 (m, 1H), 2.88 (s, 3H) ppm; ¹³C NMR (75 MHz, CDCl₃) $\delta = 148.86$, 148.84, 147.9, 138.7, 137.5, 129.73, 129.67, 128.6, 128.4, 126.9, 126.4, 124.1, 121.3, 18.8 ppm; IR (ZnSe): $v_{max} = 3033, 2920, 1587, 1489, 1402, 1350, 1091, 852, 767, 702 cm^{-1}$; HRMS (ESI-TOF): m/z [M+H]⁺ calcd for C₁₆H₁₄N 220.1121, found 220.1111.

8-fluoro-4-phenylquinoline (Table 1, entry **3ca**). White crystal (59 mg, 88%). m.p. 81.8-82°C. ¹H NMR (600 MHz, CDCl₃): δ = 9.00 (d, *J* = 3.6 Hz, 1H), 7.76-7.66 (m, 1H), 7.57-7.51 (m, 3H), 7.52-7.49 (m, 2H), 7.46-7.40 (m, 3H) ppm; ¹³C NMR (150 MHz, CDCl₃) δ = 150.1, 148.5, 137.8, 129.6, 128.8, 128.8, 122.5, 121.8, 113.5, 113.4 ppm; ¹⁹F NMR (565 MHz, CDCl₃): δ = 124.8. IR (ZnSe): v_{max} = 3033, 2916, 1562, 1489, 1402, 1392, 1068, 877, 694 cm⁻¹. HRMS (ESI-TOF): m/z [M+H]⁺ calcd for C₁₅H₁₁N 224.0870, found 224.0860.

8-chloro-4-phenylquinoline (Table 1, entry **3da**). Yellow liquid (49 mg, 69%). ¹H NMR (600 MHz, CDCl₃) δ = 9.07 (d, J = 4.2 Hz, 1H), 7.84-7.87 (m, 2H), 7.51-7.55 (m, 3H), 7.47-7.49 (m, 2H), 7.40-7.43 (m, 2H); ¹³C NMR (150 MHz, CDCl₃) δ = 150.6, 149.3, 145.1, 137.8, 134.0, 129.67, 129.66 (2C), 128.82, 128.80(2C) 128.4, 126.5, 125.3, 122.4; IR (ZnSe): v_{max} (cm-1) 3036, 2922, 1585, 1489, 1444, 1386, 1033, 856, 761; HRMS (ESI-TOF): m/z [M+H]⁺ calcd for C₁₅H₁₁CIN, 240.0475 found 240.0560.

8-bromo-4-phenylquinoline (Table 1, entry **3ea**). Yellow liquid (52 mg, 62%). ¹H NMR (600 MHz, CDCl₃) δ = 9.07 (d, *J* = 4.8 Hz, 1H), 8.07 (dd, *J* = 7.2 Hz, *J* = 1.2 Hz 1H), 7.88 (dd, *J* = 8.4 Hz, *J* = 1.2 Hz 1H), 7.50-7.54 (m, 3H), 7.46-7.48 (m, 2H), 7.40 (d, *J* = 4.2 Hz, 1H), 7.34 (t, *J* = 7.8 Hz 1H) ppm; ¹³C NMR (150 MHz, CDCl₃) δ = 150.8, 149.4, 145.8, 137.7, 133.3, 129.7, 128.79, 128.77, 128.4, 127.0, 126.1, 125.4, 122.3 ppm; IR (ZnSe): v_{max} () 3036, 2922, 1585, 1489, 1444, 1386, 1033, 856, 761 cm⁻¹. HRMS (ESI-TOF): m/z [M+H]⁺ calcd. for C₁₅H₁₁BrN 284.0069, found 284.0052.

4-phenylquinoline-8-carbonitrile (Table 1, entry **3fa**). White crysts (46 mg, 67%); m.p. 138-139.8 °C. ¹H (600 MHz, CDCl₃) δ = 9.16 (d, J = 4.2 Hz, 1H), 8.21-8.17 (m, 2H), 7.65-7.55 (m, 4H), 7.55-7.48 (m, 3H) ppm; ¹³C NMR (150 MHz, CDCl₃) δ = 152.1, 149.3, 148.2, 135.6, 131.3, 129.6, 129.1, 129.0, 127.0, 125.9, 123.0, 117.6ppm. IR (ZnSe): v_{max} () 2922, 2225, 1745, 1556, 1282, 1033, 798, 653 cm⁻¹. HRMS (ESI-TOF): m/z [M+H]⁺ calcd. for C₁₆H₁₁N₂ 231.0917, found 231.0923.

4,8-diphenylquinoline (Table 1, entry **3ga**). White solid (19 mg, 23%); m.p. 252-253 °C. ¹H NMR (600 MHz, CDCl₃) δ = 8.97 (d, *J* = 4.8 Hz, 1H), 7.92 (d, *J* = 8.4 Hz, 1H), 7.71-7.74 (m, 3H), 7.50-7.56 (m,8H), 7.43 (t, *J* = 7.2 Hz, 1H), 7.35 (d, *J* = 4.2 Hz, 1H) ppm; ¹³C NMR (150 MHz, CDCl₃) δ = 149.8, 148.7, 146.6, 141.4, 140.1, 138.6, 130.8 (2C), 130.4, 129.8, 128.7, 128.5, 128.1, 127.5, 127.4, 126.3, 125.8, 121.4 ppm. IR (ZnSe): v_{max} = 3031, 1563, 1480, 1394, 1287, 1156, 1070, 840, 765, 700 cm⁻¹. HRMS (ESI-TOF): m/z [M+H]⁺ calcd. for C₂₁H₁₆N 282.1277, found 282.1280.

Regioisomeric mixture of 7-methyl-4-phenylquinoline and 5-methyl-4-phenylquinoline (Table 1, entry **3ha**). Yellow liquid (28 mg 42%, a:b :: 1:2.5). ¹H NMR (600 MHz, CDCl₃) (isomer a) δ = 8.90 (d, *J* = 4.2 Hz, 1H), 7.95 (s, 1H), 7.81 (d, *J* = 8.4 Hz, 1H), 7.48-7.54 (m, 5H), 7.29 (d, *J* = 7.8 Hz, 2H), 7.21 (d, *J* = 4.2 Hz, 2H), 2.58 (s, 3H) ppm; ¹³C NMR (150 MHz, CDCl₃): δ = 149.7, 148.8, 148.6, 142.4, 135.7, 129.9, 128.9, 128.8, 127.9, 127.8, 126.3, 123.5, 24.5 ppm; ¹H NMR (600 MHz, CDCl₃) (isomer b): δ = 8.86 (d, *J* = 4.2 Hz, 1H), 7.60 (t, *J* = 7.8 Hz, 1H), 7.46-7.42 (m, 3H), 7.34-7.32 (m, 3H), 2.02 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) (isomer b): δ = 149.9, 149.0, 139.6, 138.1, 129.5, , 128.9, 128.6, 128.5, 128.3, 127.9, 125.5, 124.7, 120.6, 19.6

FULL PAPER

ppm. IR (ZnSe): v_{max} = 2928, 1632, 1575, 1459, 1244, 1196, 827, 759, 700 cm⁻¹. HRMS (ESI-TOF): m/z M+H]⁺ calcd. for C₁₆H₁₄N 220.1121, found 220.1112.

Regioisomeric mixture of 7-methyl-4-phenylquinoline and 5methyl-4-phenylquinoline (Table 1, entry 3ia). Pale yellow liquid (21 mg, 30%) (a: b :: 1: 1.3). ¹H NMR (600 MHz , CDCl₃): (isomer a): δ = 8.94 (d, J = 4.2 Hz, 1H), 8.17 (d, J = 1.8 Hz, 1H), 7.86 (d, J = 9.0 Hz, 1H), 7.49-7.47 (m, 2H), 7.42-7.43 (m, 4H) 7.31 (d, J = 4.2 Hz, 1H) ppm; ¹³C NMR (CDCl₃, 150 MHz): δ = 151.0, 149.1, 148.6, 140.8, 137.5, 135.3, 129.5, 128.93, 128.73, 127.6, 127.3, 125.2, 121.5 ppm; ¹H NMR (600 MHz, CDCl₃) (isomer b): δ = 8.91 (d, J = 4.8 Hz, 1H), 8.14 (dd, J = 8.4, 1.2 Hz, 1H), 7.25-7.64 (m, 1H), 7.58 (dd, J = 7.2, 1.2 Hz, 1H), 7.50-7.56 (m, 3H), 7.33-7.35 (m, 3H) ppm; ¹³C NMR (150 MHz, CDCl₃): δ = 150.1, 149.6, 148.3, 140.8, 130.8, 129.7, 128.9, 129.65, 128.72, 127.7, 124.9, 124.6, 121.5 ppm. IR (ZnSe): v_{max} = 3036, 2922, 1585, 1489, 1444, 1386, 1033, 856, 761 $\rm cm^{\text{-}1}.~HRMS$ calcd. for C15H11CIN 240.0575, found (ESI-TOF) m/z [M+H]+ 240.0560.

6-methyl-4-phenylquinoline (Table 1, entry **3ja**). Orange liquid (59 mg, 90%). ¹H NMR (300 MHz, CDCl₃) δ = 8.87 (d, *J* = 4.5 Hz, 1H), 8.07 (d, *J* = 8.7 Hz, 1H), 7.66 (s, 1H), 7.48-7.54 (m, 6H), 7.28 (d, *J* = 4.5 Hz, 1H), 2.46 (s, 3H) ppm; ¹³C NMR (75 MHz, CDCl₃) δ = 150.2, 148.1, 147.1, 137.5, 132.8, 131.6, 130.5, 129.6, 128.96, 128.91, 127.7, 124.8, 122.2, 21.9; IR (ZnSe): v_{max} () 2922, 1622, 1574, 1462, 1244, 1190, 827, 759, 700 cm⁻¹. HRMS (ESI-TOF): m/z [M + H]⁺ calcd. for C₁₆H₁₄N 220.1121, found 220.1109.

6-fluoro-4-phenylquinoline (Table 1, entry **3ka**). Yellow liquid (31 mg, 47%). ¹H NMR (600 MHz, CDCl₃): δ = 8.91 (d, *J* = 4.8 Hz, 1H), 8.16-8.19 (m, 1H), 7.47-7.55 (m, 7H), 7.36 (d, 3.6Hz, 1H) ppm; ¹³C NMR (150 MHz, CDCl₃) δ = 161.6, 159.9, 149.4, 148.2, 145.9, 137.7, 132.5, 132.4, 129.5, 128.9, 128.8, 127.8, 127.7, 121.9, 119.8, 119.6ppm. IR (ZnSe): v_{max} = 2924, 1622, 1564, 1492, 1242, 914, 700, 613 cm⁻¹. HRMS (ESI-TOF): m/z [M + H]⁺ calcd. for C₁₅H₁₁FN 224.0870, found 224.0883.

6-chloro-4-phenylquinoline (Table 1, entry **3la**). Yellow solid (52 mg, 72%); m.p. 66.2- 66.8°C. ¹H NMR (600 MHz, CDCl₃) δ = 8.94 (d, *J* = 4.8 Hz, 1H), 8.12 (d, *J* = 9.0 Hz, 1H), 7.89 (d, *J* = 1.8 Hz, 1H), 7.67 (dd, *J* = 9.0, 2.4 Hz, 1H), 7.52-7.57 (m, 3H), 7.48-7.49 (m, 3H), 7.37 (d, *J* = 4.8 Hz, 1H) ppm; ¹³C NMR (150 MHz, CDCl₃) δ = 150.2, 148.1, 147.1, 137.5, 132.8, 131.6, 130.5, 129.6, 128.96, 128.91, 127.7, 124.8, 122.2. IR (ZnSe): v_{max} = 2920, 16.6, 1583, 1489, 1352, 1155, 1076, 970, 773, 698 cm⁻¹. HRMS (ESI-TOF): [M+H]⁺ m/z calcd. for C₁₅H₁₁CIN 240.0575, found 240.0570.

6-iodo-4-phenylquinoline (Table 1, entry **3ma**). Yellow solid (63 mg, 64%); m.p. 99.0-99.4°C. ¹H NMR (600 MHz, CDCl₃) δ = 8.94 (d, *J* = 4.2 Hz, 1H), 8.28 (d, *J* = 1.8 Hz, 1H), 7.97 (dd, *J* = 9.0, 1.8 Hz, 1H), 7.91 (d, *J* = 9.0 Hz, 1H), 7.53-7.57 (m, 3H), 7.48-7.49 (m, 2H), 7.35 (d, *J* = 4.2 Hz, 1H) ppm; ¹³C NMR (150 MHz, CDCl₃) δ = 150.4, 147.8, 147.6, 138.4, 137.4, 134.8, 131.5, 129.6, 128.98, 128.94, 128.7, 122.1, 92.9 ppm; IR (ZnSe) v_{max} () : 2926, 1479, 1348, 1149, 1033, 964, 819, 702, 617 cm⁻¹. HRMS (ESI-TOF) m/z [M+H]⁺ calcd. for C₁₅H₁₁IN 331.9931, found 331.9942.

4-phenyl-6-(trifluoromethyl) quinoline (Table 1, entry **3na**). Yellow liquid (29 mg, 32%). ¹H NMR (600 MHz, CDCl₃) δ = 9.13 (d, *J* = 4.2 Hz, 1H), 8.17-8.33 (d, *J* = 8.4 Hz, 1H), 8.27 (s, 1H), 7.93 (d, *J* = 10.7 Hz, 1H), 7.65-7.56 (m, 3H), 7.53 (d, *J* = 8.0 Hz, 2H), 7.48 (d, *J* = 4.4 Hz, 1H) ppm; ¹³C NMR (150 MHz, CDCl₃) δ = 152.2, 149.7, 148.2, 136.9, 135.6, 131.3, 129.6, 129.2, 129.0, 127.0, 125.9, 123.0, 117.7,

113.7 ppm; 19F NMR (565 MHz, CDCl₃) δ = -62.25 ppm. IR (ZnSe): v_{max} = 2981, 2922, 2864, 1726, 1587, 1309, 1163, 1055, 1012, 812, 761, 702 cm-1. HRMS (ESI-TOF) m/z [M+H]⁺ calcd for C₁₆H₁₁CF₃N 240.0575, found 240.0570.

6-iodo-8-nitro-4-phenylquinoline (Table 1, entry **30a**). Orange solid (36 mg, 32%); m.p. 102-104°C. ¹H NMR (300 MHz, CDCl₃) δ = 9.07 (d, *J* = 4.2 Hz, 1H), 8.45 (s, 1H), 8.22 (s, 1H), 7.57-7.59 (m, 3H), 7.45-7.49 (m, 3H) ppm.¹³C NMR (75 MHz, CDCl₃) δ = 152.4, 149.1, 147.9, 139.3, 138.7, 136.4, 131.7, 129.56 (2C), 129.52, 129.3(2C), 123.7, 88.8 ppm. HRMS (ESI-TOF) m/z [M+H]⁺ calcd. for C₁₅H₁₀IN₂O₂ 376.9781, found 376.9790.

4-phenyl-6,7,8,9-tetrahydrobenzo[g]quinoline (Table 1, entry **3pa**). Reddish brown liquid (20 mg, 26%). ¹H NMR (600 MHz, CDCI₃) δ = 8.94 (d, *J* = 4.8 Hz, 1H), 7.64 (d, *J* = 8.4, 1H), 7.47-7.53 (m, 5H), 7.29 (d, *J* = 4.2 Hz, 1H), 7.23 (d, *J* = 8.4 Hz, 1H), 3.39-3.41 (m, 3H), 2.93-2.96 (m, 3H), 1.97-2.00 (m, 2H), 1.89-1.94 (m, 2H) ppm; ¹³C NMR (150 MHz, CDCI₃) δ = 148.8, 148.5, 147.5, 138.7, 138.4, 134.9, 129.7, 129.1, 128.6, 128.4, 125.0, 122.9, 120.7, 30.5, 25.4, 23.2, 23.0ppm. IR (ZnSe): v_{max} = 2927, 2862, 1668, 1435, 1278, 1155, 1028, 968, 781, 700, 675 cm⁻¹. HRMS (ESI-TOF): m/z [M+H]⁺ calcd. for C₁₉H₁₈N 260.1434, found 260.1450.

8-methyl-4-(p-tolyl)quinoline (Table 2, entry **3bb**). Yellow liquid (28 mg, 42%). ¹H NMR (600 MHz, CDCl₃) δ = 8.96 (d, *J* = 4.2 Hz, 1H), 7.79 (d, *J* = 8.4 Hz, 1H), 7.58 (d, *J* = 7.2 Hz, 1H), 7.37-7.40 (m, 3H), 7.32-7.34 (m, 3H), 2.87 (s, 3H), 2.47 (s, 3H) ppm; ¹³C NMR (150 MHz, CDCl₃): δ = 148.8, 148.8, 147.9, 138.3, 137.5, 135.7, 129.7, 129.6, 129.3, 127.0, 126.3, 124.2, 121.3, 21.4, 18.8 ppm. IR (ZnSe): v_{max} = 3369, 2927, 1610, 1498, 1450, 1398, 1276, 1111, 1037, 819, 765, 723 cm⁻¹. HRMS (ESI-TOF) m/z [M+H]⁺ calcd. for C₁₇H₁₆N 234.1277, found 234.1289.

4-(4-bromophenyl)-8-methylquinoline (Table 2, entry **3bc**). Yellow liquid (29 mg, 32%). ¹H NMR (600 MHz, CDCl₃): δ = 8.97 (d, *J* = 4.⁵ Hz, 1H), 7.71-7.67 (m, 1H), 7.65 (d, *J* = 8.3 Hz, 1H), 7.59 (dt, *J* = 7.0, 1.3 Hz, 1H), 7.40 (dd, *J* = 8.4, 7.0 Hz, 1H), 7.37 (d, *J* = 8.4 Hz, 1H), 7.30 (d, *J* = 4.3 Hz, 1H), 2.87 (s, 3H) ppm; ¹³C NMR (150 MHz, CDCl₃) δ = 148.8, 148.8, 147.9, 138.3, 137.4, 135.6, 129.6, 129.6, 129.3, 127.0, 126.2, 124.1, 121.3, 21.4, 18.8 ppm. IR (ZnSe): v_{max} () 2930, 1668, 1593, 1483, 1406, 1390, 1274, 1072, 1008, 825, 800, 765, 721 cm⁻¹. HRMS (ESI-TOF): calcd m/z [M+H]⁺ for C₁₆H₁₃BrN 298.0026, found 298.0218.

4-(4-methoxyphenyl)-8-methylquinoline (Table 2, entry **3bd**). Yellow liquid (29 mg, 40%). ¹H NMR (600 MHz, CDCl₃): δ = 8.96 (d, J = 4.2 Hz, 1H), 7.81 (d, J = 8.4 Hz, 1H), 7.58 (d, J = 7.2 Hz, 1H), 7.44 (d, J = 8.4 Hz, 2H), 7.41-7.37 (m, 1H), 7.05 (d, J = 9.0 Hz, 2H), 3.90 (s, 3H), 2.87 (s, 3H) ppm; ¹³C NMR (150 MHz, CDCl₃) δ = 159.9, 148.7, 130.9, 130.8, 129.6, 129.3, 127.0, 126.2, 124.1, 121.2, 114.3, 114.1, 55.5, 18.8 ppm. IR (ZnSe): v_{max} = 2958, 1648, 1483, 1367, 1224, 1145,760, 720 cm⁻¹. HRMS (ESI-TOF): m/z [M+H]⁺ calcd. for C₁₇H₁₆NO 250.1226, found 250.1204.

4-(4-(tert-butyl) phenyl)-8-methylquinoline (Table2, entry **3be**). White solid (96 mg, 70%); m.p. 126.0- 127.0°C. ¹H NMR (600 MHz, CDCl₃): δ = 8.97 (d, *J* = 4.2 Hz, 1H), 7.83 (d, *J* = 8.4 Hz, 1H), 7.58 (d, *J* = 7.2 Hz, 1H), 7.54 (d, *J* = 7.8 Hz, 2H), 7.45 (d, *J* = 8.4 Hz, 2H), 7.38-7.40 (m, 1H), 7.34 (d, *J* = 4.8 Hz, 1H), 2.87 (s, 3H), 1.41 (s, 9H); ¹³C NMR (150 MHz, CDCl₃) δ = 151.5, 148.89, 148.84, 147.9, 137.4, 135.6, 129.6, 129.5, 127.0, 126.2, 125.6, 124.3, 121.3, 34.9, 31.5, 18.9 ppm. IR (ZnSe): v_{max} = 2953, 2922, 1680, 1500, 1363, 1269, 1109, 833, 771

FULL PAPER

cm $^{-1}.$ HRMS (ESI-TOF): m/z [M+H]* calcd. for $C_{20}H_{22}N$ 276.1747, found 276.1759.

8-methyl-4-(4-phenoxyphenyl) quinoline (Table2, entry **3bf**). Yellow liquid (48 mg, 31%). ¹H NMR (600 MHz, CDCl₃) δ = 8.97 (d, J = 4.2 Hz, 1H), 7.81 (d, J = 8.4 Hz, 1H), 7.58 (d, J = 7.2 Hz, 1H), 7.46 (d, J = 8.4 Hz, 2H), 7.39-7.42 (m, 3H), 7.33 (d, J = 4.2 Hz, 1H), 7.13-7.19 (m, 5H), 2.88 (s, 3H) ppm; ¹³C NMR (150 MHz, CDCl₃) δ = 157.8, 156.7, 148.7, 148.1, 147.8, 137.4, 133.1, 131.1, 129.9, 129.6, 126.8, 126.3, 123.91, 123.86, 121.2, 119.5, 118.4, 18.7 ppm; IR (ZnSe): v_{max} 2951, 2922, 1672, 1587, 1487, 1396, 1232, 1166, 767, 748, 692 cm⁻¹. HRMS (ESI-TOF): m/z [M+H]⁺ calcd. for C₂₂H₁₈NO 312.1383, found 311.6693.

8-methyl-4-(4-pentylphenyl) quinoline (Table2, entry **3bg**). Colourless liquid (88 mg, 61%). ¹H NMR (600 MHz, CDCl₃) δ = 8.96 (d, *J* = 4.2 Hz, 1H), 7.81 (d, *J* = 7.8 Hz, 1H), 7.58 (d, *J* = 7.2 Hz, 1H), 7.37-7.42 (m, 3H), 7.33 (dd, *J* = 6.6, 1.8 Hz, 3H), 2.88 (s, 3H), 2.71 (t, *J* = 7.8 Hz, 2H), 1.68-1.74 (m, 2H), 1.40 (dq, *J* = 7.2, 3.6 Hz, 4H), 0.94 (t, *J* = 7.2 Hz, 3H) ppm; ¹³C NMR (150 MHz, CDCl₃) δ = 148.9, 148.8, 147.9, 143.4, 137.4, 135.8, 129.64, 129.60, 128.6, 126.9, 126.2, 124.2, 121.3, 35.9, 31.7, 31.3, 22.7, 18.8, 14.2 ppm; IR (ZnSe): v_{max} = 2922, 2868, 1680, 1496, 1398, 1118, 817, 765, 732 cm⁻¹; HRMS (ESI-TOF): m/z [M+H]⁺ calcd. for C₂₁H₂₄N 290.1903, found 290.1893.

8-methyl-4-(phenanthren-9-yl) quinoline (Table 2, entry **3bh**). Colourless liquid (46 mg, 48%); ¹H NMR (600 MHz, CDCl₃) δ = 9.10 (d, *J* = 4.2 Hz, 1H), 8.82 (d, *J* = 8.4 Hz, 1H), 8.79 (d, *J* = 8.4 Hz, 1H), 7.74 (t, *J* = 7.2 Hz, 2H), 7.65-7.68 (m, 2H), 7.58 (d, *J* = 7.2, 1H), 7.49 (d, *J* = 4.2 Hz, 1H), 7.41 -7.43 (m, 1H), 7.35-7.39 (m, 2H), 7.23-7.25 (m, 1H), 2.94 (s, 3H) ppm; ¹³C NMR (150 MHz, CDCl₃) δ = 148.9, 147.71, 147.65, 137.5, 134.9, 131.4, 131.3, 130.6, 130.5, 129.9, 128.9, 128.32, 128.28, 127.3, 127.23, 127.16, 126.96, 126.94, 126.49, 124.7, 123.1, 122.8, 122.51, 18.7 ppm; IR (ZnSe): v_{max} = 3419, 3296, 1592, 1402, 1249, 1211, 1006, 758 cm⁻¹; HRMS (ESI-TOF): m/z [M+Na]⁺ calcd. for C₂₄H₁₈N 341.1175, found 342.7653.

8-methyl-4-(thiophen-2-yl)quinoline (Table 2, entry **3bi**). Yellow solid (32 mg, 48 %; m.p. 76.0-77.0°C. ¹H NMR (600 MHz, CDCI₃): δ = 8.95 (d, *J* = 4.2 Hz, 1H), 7.93 (d, *J* = 8.4 Hz, 1H), 7.59 (d, *J* = 6.6 Hz, 1H), 7.50 – 7.51 (m, 2H), 7.41-7.43 (m, 1H), 7.38 (d, *J* = 4.2 Hz, 1H), 7.33-7.34 (m, 1H), 2.86 (s, 3H) ppm; ¹³C NMR (150 MHz, CDCI₃) δ = 149.1, 148.2, 143.8, 139.3, 137.8, 129.9, 129.4, 127.2, 126.7, 126.4, 125.2, 124.1, 121.4, 18.9 ppm; IR (ZnSe): v_{max} = 3086, 2922, 1664, 1587, 1496, 1413, 1085, 1041, 850, 771, 698 cm⁻¹; HRMS (ESI-TOF): m/z [M+H]⁺ calcd. for C₁₄H₁₂SN 226.0685, found 226.0679.

8-methyl-2,4-diphenylquinoline (Table 3, entry **3aaa**). Brown resin (39 mg, 45%). ¹H NMR (600 MHz, CDCl₃): δ = 8.30 (d, *J* = 7.2 Hz, 2H), 7.86 (s, 1H), 7.74 (d, *J* = 7.8 Hz, 1H), 7.60 (d, *J* = 7.2 Hz, 1H), 7.58-7.50 (m, 7H), 7.49-7.45 (m, 1H), 7.39-7.33 (m, 1H), 2.97 (s, 3H) ppm; ¹³C NMR (150 MHz, CDCl₃): δ = 148.89, 148.85, 147.91, 138.31, 137.46, 135.69, 129.65, 129.61, 129.32, 127.00, 126.26, 124.19, 121.30, 21.43, 18.80 ppm. IR (ZnSe): v_{max} = 2918, 1591, 1554, 1485,1355, 1178, 1095, 1028, 763, 690 cm⁻¹. HRMS (ESI-TOF): m/z [M+H]⁺ calcd. for C₂₂H₁₈N 296.1434, found 296.1456.

2-(furan-2-yl)-4-phenylquinoline (Table 3, entry **3aab**). Black resin (42 mg, 52%). ¹H NMR (600 MHz, CDCl₃) δ = 8.23 (d, *J* = 8.4 Hz, 1H), 7.89 (d, *J* = 8.3 Hz, 1H), 7.80 (s, 1H), 7.74 (t, *J* = 8.2 Hz, 1H), 7.65 (s, 1H), 7.58 (d, *J* = 4.3 Hz, 4H), 7.55 (dd, *J* = 8.4, 4.4 Hz, 1H), 7.47 (t, *J* = 8.0 Hz, 1H), 7.26 (d, *J* = 3.4 Hz, 1H) ppm; ¹³C NMR (150 MHz, CDCl₃) δ = 153.9, 149.3, 148.8, 148.7, 144.3, 138.3, 129.9, 129.9, 129.7, 128.7, 128.6, 126.4, 125.9, 125.9, 117.9, 112.4, 110.3 ppm. IR

(ZnSe): v_{max} = 1591, 1573, 1492, 1409, 1008, 883, 632, 698 cm^-1; HRMS (ESI-TOF): m/z [M+H]^+ calcd. for C19H14NO 272.1070, found 272.1054.

6H,13H-5,12-methano[1,3]dioxolo[4',5':4,5]benzo[1,2

b][1,3]dioxolo[4',5':4,5]benzo[1,2-f][1,5]diazocine (Scheme 1, A₁). ¹H NMR (600 MHz, CDCl₃) δ = 6.61 (s, 2H), 6.34 (s, 2H), 5.86 (d, *J* = 1.2 Hz, 2H), 5.83 (d, *J* = 1.2 Hz, 2H), 4.54 (d, *J* = 16.4 Hz, 2H), 4.22 (s, 2H), 3.97 (d, *J* = 16.4 Hz, 2H) ppm; ¹³C NMR (150 MHz, CDCl₃) δ = 146.8, 144.6, 141.6, 120.0, 105.9, 105.6, 100.9, 67.1, 58.4 ppm.

Acknowledgements

Authors thanks Director, CSIR-IHBT for continuous encouragement and providing necessary facilities. D.C. and R.K. acknowledge DST and UGC, New Delhi, respectively, for the research fellowship. Financial support from CSIR (MLP0148/HCP010) is also acknowledged. CSIR-IHBT communication no. for this manuscript is 0000.

Keywords: Quinoline; alkyne; (±) camphor-10-sulfonic acid; Povarov type multicomponent reaction; Microwave synthesis

References

- a) S. Kumar, S. Bawa, H. Gupta, *Mini-Rev. Med. Chem.* 2009, *9*, 1648-1654;
 b) A. Marella, O. P. Tanwar, R. Saha, M. R. Ali, S. Srivastava, M. Akhter, M. Shaquiquzzaman, M. M. Alam, *Saudi Pharm. J.* 2013, *21*, 1-12;
 c) O. Afzal, S. Kumar, M. R. Haider, M. R. Ali, R. Kumar, M. Jaggi, S. Bawa, *Eur. J. Med. Chem.* 2015, *97*, 871-910.
- [2] a) A. A. Alhaider, M. A. Abdelkader, E. J. Lien, *J. Med. Chem.* **198**; 28, 1394-1398; b) J. Galambos, G. Domany, K. Nogradi, G. Wagner, G. M. Keserű, A. Bobok, S. Kolok, M. L. Miko-Bakk, M. Vastag, K. Saghy, *Bioorg. Med. Chem. Lett.* **2016**, *26*, 1249-1252; c) P. V. Josh A. A. Sayed, A. RaviKumar, V. G. Puranik, S. S. Zinjarde, *Eur. J. Org. Chem.* **2017**, *136*, 246-258.
- [3] a) R. Uchida, R. Imasato, K. Shiomi, H. Tomoda, S. Ōmura, Org. let.. 2005, 7, 5701-5704; b) R. Uchida, R. Imasato, H. Tomoda, S. Ōmura, J. Antibiot. 2006, 59, 652.
- [4] J. He, U. Lion, I. Sattler, F. A. Gollmick, S. Grabley, J. Cai, M. Meiners, H. Schünke, K. Schaumann, U. Dechert, *J. Nat. Prod.* 2005, 68, 1397-1399.
- [5] a) J. P. Michael, Nat. Prod. Rep. 1999, 16, 697-709; b) Z. Sadeghi, J Safari, Dyes Pigm. 2006, 70, 164-170.
- [6] a) G. Jégou, S. A. Jenekhe, *Macromolecules* 2001, 34, 7926-7928; bS. J. Lee, J. S. Park, M. Song, I. A. Shin, Y. I. Kim, J. W. Lee, J. W. Kang, Y. S. Gal, S. Kang, J. Y. Lee, *Adv. Funct. Mater.* 2009, *19*, 2205-2212.
 - R. P. Korivi, C.-H. Cheng, J. Org. Chem. 2006, 71, 7079-7082.
- [8] H. Z. S. Huma, R. Halder, S. S. Kalra, J. Das, J. Iqbal, *Tetrahedron Lett.* 2002, 43, 6485-6488.
- [9] a) S. S. Patil, S. V. Patil, V. D. Bobade, Synlett 2011, 2011, 2379-2383;
 bS. Naidoo, Heterocycles 2016, 92, 1655-1664.
- [10] A. Kulkarni, B. Török, Green Chem. 2010, 12, 875-878.
- [11] a) R. R. Mondal, S. Khamarui, D. K. Maiti, ACS Omega 2016, 1, 251-263; b) J. Cen, J. Li, Y. Zhang, Z. Zhu, S. Yang, H. Jiang, Org. Lett. 2018, 20, 4434-4438.
- [12] S. D. Jadhav, A. Singh, Org. Lett. 2017, 19, 5673-5676.
- [13]a) X. Xu, Y. Yang, X. Chen, X. Zhang, W. Yi, Org. Biomol. Chem. 201, 15, 9061-9065; b) X. Xu, Y. Yang, X. Zhang, W. Yi, Org. Lett. 2018, 20, 566-569.
- [14] Q. Yan, Z. Chen, Z. Liu, Y. Zhang, Org. Chem. Front. 2016, 3, 678-682.
- [15] L. Kong, S. Yu, X. Zhou, X. Li, Org. Lett. 2016, 18, 588-591.
- [16] C. J. Welch, J. Albaneze-Walker, W. R. Leonard, M. Biba, J. DaSilva, D. Henderson, B. Laing, D. J. Mathre, S. Spencer, X. Bu, Org. Process Res. Dev. 2005, 9, 198-205.
- [17] a) X. Zhang, X. Xu, L. Yu, Q. Zhao, Asian. J. Org. Chem. 2014, 3, 281-284; b) G. Ramann, B. Cowen, *Molecules* 2016, *21*, 986; c) M. Phanindrudu, S. B. Wakade, D. K. Tiwari, P. R. Likhar, D. K. Tiwari, J.

10.1002/ejoc.201900325

WILEY-VCH

FULL PAPER

Org. Chem. 2018, 83, 9137-9143; d) T.-S. Jiang, X. Wang, X. Zhang, Tetrahedron Lett. 2018, 59, 2979-2982.

- [18] a) L. S. Povarov, Russ. Chem. Bull. 1967, 36, 656-670; bX. Jiang, R. Wang, Chem. Rev. 2013, 113, 5515-5546.
- [19] V. V. Kouznetsov, Tetrahedron Lett. 2009, 14, 2721-2750.
- [10] a) C. D. Smith, J. I. Gavrilyuk, A. J. Lough, R. A. Batey, J. Org. Chem. 2010, 75, 702-715; b) Q. Liu, C. Wang, Q. Li, Y. Hou, Y. Wu, L. Liu, W. Chang, J. Li, J. Org. Chem. 2017, 82, 950-958; c) O. Ghashghaei, C. Masdeu, C. Alonso, F. Palacios, R. Lavilla, Drug. Discov. Today. 2018, 29, 71-79.
- [21] F. Shi, G.-J. Xing, Z.-L. Tao, S.-W. Luo, S.-J. Tu, L.-Z. Gong, J. Org. Chem. 2012, 77, 6970-6979.
- [22] B. List, Chem. Rev. 2007, 107, 5413-5415.
- [23] a) R. Sharma, R. Kumar, I. Kumar, U. Sharma, *Eur. J. Org. Chem.* 2015, 2015, 7519-7528; b) R. Kumar, I. Kumar, R. Sharma, U. Sharma, *Org. Biomol. Chem.* 2016, *14*, 2613-2617; c) A. K. Dhiman, R. Kumar, R. Kumar, U. Sharma, *J. Org. Chem.* 2017, *82*, 12307-12317; d) R.

Kumar, R. Kumar, A. K. Dhiman, U. Sharma, Asian J. Chem. 2017, 6, 1043-1053; e) R. Sharma, I. Kumar, R. Kumar, U. Sharma, Adv. Synth. Catal. 2017, 359, 3022-3028; f) R. Kumar, S. Chaudhary, R. Kumar, P. Upadhyay, D. Sahal, U. Sharma, J. Org. Chem. 2018, 83, 11552-11570; g) R. Sharma, R. Kumar, R. Kumar, P. Upadhyay, D. Sahal, U. Sharma, J. Org. Chem. 2018, 83, 12702-12710; h) R. Kumar, R. Kumar, D. Chandra, U. Sharma, J. Org. Chem. 2019, 84, 1542–1552
i) R. Sharma, R. Kumar, U. Sharma, J. Org. Chem. 2019, 84, 2786–2797

[24] See Supporting Information

FULL PAPER

FULL PAPER

Key Topic* Quinoline Synthesis

Devesh Chandra, Ankit Kumar Dhiman, Rakesh Kumar, and Upendra Sharma*

Page No. – Page No.

Microwave-Assisted Metal-Free Rapid Synthesis of C4-Arylated Quinolines *via* Povarov Type Multicomponent Reaction