
ISOLATION, SYNTHESIS, AND ANTIFUNGAL ACTIVITY OF KOJIC ACID AND ITS DERIVATIVES

Shaopeng Wei and Zhiqin Ji*

Microorganisms produce a vast number of secondary metabolites with useful biological activities for both the medicine and agricultural industries, including antibiotics, immunosuppressive and antitumor agents, as well as herbicides, insecticides, and antiparasitic agents [1–3]. In the process of screening of new antibiotics from microbial products, an endophytic fungus F52 was isolated from *Vigna unguiculata*, and it was identified as *Aspergillus flavus* F52 according to morphological characteristics and ITS region of rDNA.

In the present paper, 5-hydroxy-2-hydroxymethyl-4*H*-pyran-4-one (kojic acid) was isolated from the fermentation broth of *Aspergillus flavus* F52 by extracted with ethyl acetate and recrystallized with ethanol. Furthermore, seven derivatives of kojic acid, including five new compounds (**2**, **3**, **5**, **6**, and **7**), were synthesized by acylation with corresponding acyl chlorides (Scheme 1). Their structures were confirmed by ¹H NMR and elemental analysis. Antifungal activity tests indicated that the derivatives exhibited obvious inhibitory activities against the mycelial growth of *Glomerella cingulata* and *Botrytis cinerea* (Table 1).

5-Hydroxy-2-hydroxymethyl-4H-pyran-4-one (1). White crystals, mp 151.2–152.3°C (ref. 151.5–152.3°C [4]). IR spectrum (KBr, v, cm⁻¹): 3200 (OH), 2927 (CH), 1700 (C=O), 1625 (C=C), 1600, 1482 (CH), 1077 (CO). Mass spectrum (HR-ESI-MS), *m/z* 143.0342 [M + H]⁺ (calcd for C₆H₇O₄, 143.0344). ¹H NMR (400 MHz, CD₃OD, δ , ppm): 4.41 (2H, s, CH₂O), 6.50 (1H, s, H-3), 7.94 (1H, s, H-6). ¹³C NMR (100 MHz, CD₃OD, δ , ppm): 59.8 (C-1'), 109.4 (C-3), 139.6 (C-6), 145.9 (C-5), 169.0 (C-2), 175.5 (C-4).

(5-Hydroxy-4-oxo-4*H*-pyran-2-yl)methyl Pentanoate (2). White wax. $C_{11}H_{14}O_5$. ¹H NMR (500 MHz, CDCl₃, δ, ppm, J/Hz): 0.93 (3H, t, J = 7.5, 6'-CH₃), 1.34–1.39 (2H, m, 5'-CH₂), 1.63–1.67 (2H, m, 4'-CH₂), 2.41 (2H, t, J = 7.5, 3'-CH₂), 4.94 (2H, s, CH₂O), 6.51 (1H, s, H-3), 7.86 (1H, s, H-6).

(5-Hydroxy-4-oxo-4*H*-pyran-2-yl)methyl Isobutyl Carbonate (3). White wax. $C_{11}H_{14}O_6$. ¹H NMR (500 MHz, CDCl₃, δ , ppm, J/Hz): 0.96 (6H, d, J = 7.5, 6', 7'-CH₃), 1.97–2.04 (1H, m, H-5'), 3.98 (2H, d, J = 6.5, 4'-CH₂), 4.97 (2H, s, CH₂O), 6.54 (1H, s, H-3), 7.86 (1H, s, H-6).

College of Plant Protection, Northwest A&F University, Yangling, 712100, Shaanxi, P. R. China, fax: +86 29 870 939 87, e-mail: 358486867@qq.com. Published in *Khimiya Prirodnykh Soedinenii*, No. 1, January–February, 2016, pp. 109–110. Original article submitted January 27, 2014.

TABLE 1. Antifungal Activity of Target Compounds against G. cingulata and B. cinerea

Compound	Inhibition ratio, %		Compound	Inhibition ratio, %	
	G. cingulata	B. cinerea	Compound	G. cingulata	B. cinerea
1	11.2	_	5	44.8	50.0
2	55.2	63.3	6	62.07	50.0
3	55.2	50.0	7	48.3	56.7
4	44.8	56.7	8	23.5	35.7
Azoxystrobin	86.2	46.7			

(5-Hydroxy-4-oxo-4*H***-pyran-2-yl)methyl Benzoate (4)**. White crystals, C₁₃H₁₀O₅, mp 173.2–174.9°C (ref. 174–175°C [5]). ¹H NMR (500 MHz, CDCl₃, δ, ppm, J/Hz): 5.22 (2H, s, CH₂O), 6.67 (1H, s, H-3), 7.48–7.52 (2H, m, Ar-H), 7.62–7.64 (1H, m, Ar-H), 8.01 (1H, s, H-6), 8.08 (2H, d, J = 7.0, Ar-H).

(5-Hydroxy-4-oxo-4*H*-pyran-2-yl)methyl 3-Methylbenzoate (5). White crystals, $C_{14}H_{12}O_5$, mp 99.7–101.2°C. ¹H NMR (500 MHz, CDCl₃, δ, ppm, J/Hz): 2.42 (3H, s, Ar-CH₃), 5.17 (2H, s, CH₂O), 6.61 (1H, s, H-3), 7.36–7.44 (2H, m, Ar-H), 7.86 (2H, d, J = 8.0, Ar-H), 7.87 (1H, s, H-6).

(5-Hydroxy-4-oxo-4*H*-pyran-2-yl)methyl 2-Chlorobenzoate (6). White crystals, $C_{13}H_9ClO_5$, mp 142.3–144.1°C. ¹H NMR (500 MHz, CDCl₃, δ , ppm, J/Hz): 5.19 (2H, s, CH₂O), 6.64 (1H, s, H-3), 7.34–7.38 (1H, m, Ar-H), 7.46–7.51 (2H, m, Ar-H), 7.89 (1H, s, H-6), 7.91 (1H, d, J = 8.0, Ar-H).

(5-Hydroxy-4-oxo-4*H***-pyran-2-yl)methyl 3-Chlorobenzoate (7)**. White crystals, C₁₃H₉ClO₅, mp 145.3–147.1°C. ¹H NMR (500 MHz, CDCl₃, δ, ppm): 5.19 (2H, s, CH₂O), 6.60 (1H, s, H-3), 7.38–7.42 (1H, m, Ar-H), 7.49–7.52 (2H, m, Ar-H), 7.89 (1H, s, H-6), 7.92–7.97 (1H, m, Ar-H).

2-(Chloromethyl)-5-hydroxy-4H-pyran-4-one (8). Yellow crystals, mp 165.3-168.1°C [6-9].

ACKNOWLEDGMENT

This study was supported in part by the grants of the National Natural Science Foundation of China (31371973 and 31301700), the Natural Science Foundation of Shaanxi Province (No. 2013JQ3003), and the Fundamental Research Funds for the Central Universities (QN2013009).

REFERENCES

- 1. Q. X Lin and Y. Liu, World J. Microbiol. Biotechnol., 26, 1549 (2010).
- O. Genilloud, I. Gonzalez, O. Salazar, J. Martin, J. R. Tormo, and F. Vicente, *J. Ind. Microbiol. Biotechnol.*, 38, 375 (2011).
- 3. L. X. Fan, Z. Q. Ji, Z. Y. Guo, and W. J. Wu, Chem. Nat. Compd., 49, 910 (2013).
- 4. L. Huo, Master Dissertation in Microbiology, Sichuan University, Chengdu, China, 2007.
- 5. N. S. Poonia, A. K. Arora, and A. Bajaj, Bull. Chem. Soc. Jpn., 53, 569 (1980).
- 6. M. D. Aytemir and B. Ozcelik, Eur. J. Med. Chem., 45, 4089 (2010).
- 7. M. D. Aytemir and B. Ozcelik, Med. Chem. Res., 20, 443 (2011).
- 8. G. Karakaya, M. D. Aytemir, B. Ozcelik, and U. Calis, J. Enzyme Inhib. Med. Chem., 28, 627 (2013).
- 9. M. D. Aytemir, B. Ozcelik, and G. Karakaya, *Bioorg. Med. Chem. Lett.*, 23, 3646 (2013).