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Abstract: Background: Thiosemicarbazones and its derivatives received a great pharmaceutical 
importance due to their prominent biological activities. 

Methods: A series of disubstituted thiosemicarbazone derivatives (1-12) were designed and synthe-
sized as pure compounds in good yield. All the synthesized compounds were analyzed by spectral 
data. The anticancer activity of all the compounds was performed against breast cancer MCF-7 and 
MDA-MB-231 cell lines. 

Results: Most of the compounds showed activity against breast cancer MCF-7 and MDA-MB-231 
cell lines with (IC50 = 12.25 µM ‒ 185.35 µM) and (IC50 = 12.97 µM ‒ 107.33 µM), respectively. 
Compound 9 presented (IC50 = 12.76 µM and 12.97 µM) against MCF-7 and MDA-MB-231 cell 
lines, respectively. 

Conclusion: Compound 9, was found to exhibit significant anti-breast cancer activity. This  
compound was further evaluated for side population percent inhibition assay on the breast cancer 
cell line MCF-7 at 5 and 10 μM concentration. It showed superiority to block side population by 
more than 80% at 5 μM concentration compared to the reference drug verapamil. 

Keywords: Thiosemicarbazones, MCF-7 cell line, MDA-MB-231 cell line, breast cancer, anti-cancer activity, verapamil. 

1. INTRODUCTION 

 Thiosemicarbazones and their derivatives received a 
great pharmaceutical importance due to their prominent bio-
logical activities. Thiosemicarbazones have been reported as 
anti-bacterial, anti-viral, anti-malarial and anti-tumor activi-
ties [1-4]. Methisazone, a drug used for the treatment of 
smallpox, is a classic example of thiosemicarbazone [5]. In 
literature, thiosemicarbazone derivatives have been reported 
as anticancer agents [6-9]. Examples of thiosemicarbazone 
derivatives reported to have significant anticancer activities 
are presented in Fig. (1). Thiosemicarbazones have been re-
ported to inhibit the synthesis of DNA by modification in the 
reductive conversion of ribonucleotides to deoxyribonucleo-
tides [10, 11]. 3-Aminopyridine-2-carboxaldehyde thiosemi-
carbazone (3-AP), (Triapine) displayed considerable ad-
vancements in cancer treatment and is presently in phase II 
clinical trials [12]. By inhibiting the ribonucleotide reductase, 
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it suppresses the tumor growth. Therapeutic potential of 3-
AP was found to be narrow due to its toxicity profile and 
sparingly solubility in water. The most popular cancer in 
women worldwide is breast cancer. Despite early detection, 
it remains to be the second most dominant cause of death. 
Breast cancer stem cells have been reported recently [13]. 
Prior investigations have identified adult stem cells by a side 
population (SP) phenotype. A side population is a small per-
centage, containing tumorigenic part of the total cell line. 
[14, 15]. Targeting both the normal cancer cells and cancer 
stem cells can cure cancer [16]. 

 Therefore, there is a need in the structural modification 
of thiosemicarbazone derivatives to improve the potencies of 
existing drug candidates. In continuation of our previous 
research on thiosemicarbazones [17-18], we described 
herein, the synthesis of novel thiosemicarbazone derivatives 
that inhibit the growth of breast cancer cell lines especially 
cancer stem cell and may be useful for the treatment of 
breast cancer. In our earlier research on thiosemicarbazone 
derivatives bearing cyclohexyl moiety, the most potent com-
pound showed activity against HER-2 expressed SKBr-3 
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cells with (IC50= 30.94 ± 0.19 µM) [19]. Optimization of the 
lead compound produced more potent compound A, contain-
ing 3-methoxyphenyl group targeting HER-2 overexpressed 
SKBr-3 cells with (IC50= 17.44 ± 0.01 µM) [20]. The com-
pound A was selected as a lead compound for further de-
rivatization (Fig. 2). Modulation of a 3-methoxyphenyl moi-
ety was carried out with various groups, such as phenyl, cy-
clohexyl, and allyl. In order to search novel thiosemicarba-
zone derivatives with significant activity against breast can-

cer cell lines and cancer stem cells, thiosemicarbazone de-
rivatives bearing phenyl, cyclohexyl, and allyl on one side 
and disubstituted phenyl groups at the terminal nitrogen were 
synthesized and their anti-cancer activities against MCF-7 
and MDA-MB-231 cell lines were determined. 

2. MATERIALS AND METHODS 

2.1. Chemistry 

 In order to check the purity of the synthesized com-
pounds, thin layer chromatography (TLC) was performed on 
Silica Gel 60 F254 coated plates (Merck). TLC spots were 
viewed using UV light. Spectrum BX, Perkin Elmer FT-IR 
spectrophotometer was used to carry out FTIR. Gallenkamp 
melting point apparatus was used to determine melting 
points. NMR Spectra were processed in DMSO-d6 on a 
Bruker NMR spectrophotometer operating at 500 MHz for 
1H and 125 MHz for 13C NMR. Mass spectroscopy was used 
for the measurement of molecular masses of compounds. The 
elemental analysis of the compounds was performed on the 
CHN Elementar (Analysensysteme GmbH, Germany). The 
elemental analysis for C, H, N, and S was within the limit of 
±0.4% and ±0.3% respectively of the theoretical values. 

2.1.1. Representative procedure for the synthesis of (1-12) 

 To a solution of phenyl/cyclohexyl/allyl thiosemicar-
bazide (0.0119 mol) in absolute ethanol (11 mL), water (22 
mL) was added. To this solution, disubstituted alde-
hydes/ketones (0.0125 mol) and glacial acetic acid (0.55 mL) 
were added. This mixture was refluxed for an hour prior to 
cooling it down to room temperature. The precipitate was 
collected with filtration under vacuum and washed several 
times with cold water. The compounds were recrystallized 
from absolute ethanol after filtration of the precipitate in 
vacuum conditions and washing numerous times with cold 
water [21]. 

2.1.1.1. 2-[(4-Hydroxy-3-methoxyphenyl)methylidene]-N-
phenylhydrazine-1-carbothioamide (1) 

 IR (KBr) cm-1: 3319 (OH str.), 3142 (NH str.), 1550 
(C=N str.), 1284 (NCSN str.), 1167 (C=S str.); 1H NMR 
(DMSO‒d6, 500 MHz) δ: 3.85 (3H, s, OCH3), 6.82‒7.59 
(8H, m, Ar‒H), 8.07 (1H, s, =C-H), 9.55 (1H, =NNH, D2O 
exchg.), 9.99 (s,1H, NHC=S, D2O exchg.); 13C NMR 
(DMSO‒d6, 125 MHz) δ: 56.3 (OCH3), 110.4, 115.8, 123.0, 
125.8, 126.5, 128.5, 128.9, 139.6, 144.0, 148.5, 149.5, 175.9 
(C=S); MS (ESI) m/z: 301 [M]+; Analysis for C15H15N3O2S: 
C (59.78) H (5.02) N (13.94) S (10.64) %; found C (60.00) 
H (5.04) N (13.99) S (10.61)% [22]. 

2.1.1.2. 2-[(3-Hydroxy-4-methoxyphenyl)methylidene]-N-
phenylhydrazine-1-carbothioamide (2) 

 IR KBr (cm−1): 333 (OH str.), 3200 (NH str.), 1550 (C=N 
str.), 1249 (NCSN str.), 1160 (C=S str.); 1H NMR 
(DMSO‒d6, 500 MHz) δ: 3.85 (3H, s, OCH3), 6.82-7.59 (8H, 
m, Ar‒H), 8.07 (1H, s, =C-H), 9.55 (1H, =NNH, D2O 
exchg.), 9.99 (s,1H, NHC=S, D2O exchg.); 13C NMR 
(DMSO‒d6, 125 MHz) δ: 56.2 (OCH3), 125.5, 125.8, 128.4, 
128.8, 129.7, 134.7, 136.7, 137.6, 139.4, 148.9, 176.0 (C=S); 
MS (ESI) m/z: 301.14 [M]+; Analysis for C15H15N3O2S: C 
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Fig. (1). Thiosemicarbazone derivatives demonstrating potent anti-
cancer activities. 
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Fig. (2). Structures of lead compound (A). 
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(59.78) H (5.02) N (13.94) S (10.64) %; found C (59.55) H 
(5.03) N (13.98) S (10.60)% [22]. 

2.1.1.3. 2-[(2-Hydroxy-3-methoxyphenyl)methylidene]-N-
phenylhydrazine-1-carbothioamide (3) 

 IR KBr (cm−1): 3300 (OH str.), 3200 (NH str.), 1546 
(C=N str.), 1206 (NCSN str.), 1150 (C=S str.); 1H NMR 
(DMSO‒d6, 500 MHz) δ: 3.85 (3H, s, OCH3), 6.82-7.59 (8H, 
m, Ar‒H), 8.07 (1H, s, =C-H), 9.55 (1H, =NNH, D2O 
exchg.), 9.99 (s,1H, NHC=S, D2O exchg.); 13C NMR 
(DMSO‒d6, 125 MHz) δ: 56.2 (OCH3), 113.1, 118.5, 119.3, 
121.1, 139.8, 146.3, 148.2, 178.0 (C=S); MS (ESI) m/z: 
301.14 [M]+; Analysis for C15H15N3O2S: C (59.78) H (5.02) 
N (13.94) S (10.64) %; found C (59.58) H (5.01) N (13.98)% 
[23]. 

2.1.1.4. 2-[1-(4-Hydroxy-3-methoxyphenyl)ethylidene]-N-
phenylhydrazine-1-carbothioamide (4) 

 IR KBr (cm−1): 3332 (OH str.), 3000 (NH str.), 1508 
(C=N str.), 1313 (NCSN str.), 1150 (C=S str.); 1H NMR 
(DMSO‒d6, 500 MHz) δ: 2.35 (3H, s, CH3), 3.85 (3H, s, -
OCH3), 6.80‒7.63 (8H, m, Ar‒H), 9.42 (1H, s, =NNH, D2O 
exchg.), 9.98 (1H, s, NHC=S, D2O exchg.), 10.48 (1H, s, -
OH, D2O exchg.); 13C NMR (DMSO‒d6, 125 MHz) δ: 14.9 
(CH3), 56.3 (OCH3), 111.2, 115.4, 121.0, 124.1, 125.6, 
125.9, 128.5, 129.1, 139.6, 147.8, 148.9, 150.2, 176.9 (C=S); 
MS (ESI) m/z: 312.14 [M-3]+; Analysis for C16H17N3O2S: C 
(60.93) H (5.43) N (13.32) S (10.17) %; found C (60.70) H 
(5.45) N (13.37) S (10.20)%. 

2.1.1.5. N-cyclohexyl-2-[(4-hydroxy-3-methoxyphenyl) 
methylidene]hydrazine-1-carbothioamide (5) 

 IR KBr (cm−1): 3335 (OH str.), 2928 (NH str.), 1510 
(C=N str.), 1281 (NCSN str.), 1117 (C=S str.); 1H NMR 
(DMSO‒d6, 500 MHz) δ: 1.12‒1.91 (10 H, m, cyclohexyl), 
4.20 (1H, s, cyclohexyl), 6.80‒7.32 (3H, m, Ar‒H), 7.80 
(1H, s, =CH), 7.97 (1H, s, =NNH, D2O exchg.), 11.28 (1H, 
s, NHC=S, D2O exchg.); 13C NMR (DMSO‒d6, 125 MHz) δ: 
21.5 (CH2), 25.3 (CH2), 25.5 (CH2), 32.3 (2CH2), 52.9 (CH), 
56.2 (OCH3), 110.9, 115.9, 122.0, 125.8, 143.2, 148.3, 
149.2, 175.7 (C=S); MS (ESI) m/z: 308.38 [M+1]+; Analysis 
for C15H21N3O2S: C (58.61) H (6.89) N (13.67) S (10.43) %; 
found C (58.38) H (6.87) N (13.72) S (10.40)%. 

2.1.1.6. N-cyclohexyl-2-[(3-hydroxy-4-methoxyphenyl) 
methylidene]hydrazine-1-carbothioamide (6) 

 IR KBr (cm−1): 3304 (OH str.), 3001 (NH str.), 1548 
(C=N str.), 1280 (NCSN str.), 1125 (C=S str.); 1H NMR 
(DMSO‒d6, 500 MHz) δ: 1.12‒1.91 (10 H, m, cyclohexyl), 
4.20 (1H, s, cyclohexyl), 6.93‒7.29 (3H, m, Ar‒H), 7.86 
(1H, s, =CH), 7.93 (1H, s, =NNH, D2O exchg.), 9.17 (1H, s, 
NHC=S, D2O exchg.), 11.25 (1H, s, -OH, D2O exchg.); 13C 
NMR (DMSO‒d6, 125 MHz) δ: 21.5 (CH2), 25.3 (CH2), 25.5 
(CH2), 32.3 (2CH2), 52.8 (CH), 56.0 (OCH3), 112.0, 113.2, 
120.9, 127.3, 143.1, 147.1, 150.0, 175.7 (C=S); MS (ESI) 
m/z: 306.14 [M-1]+; Analysis for C15H21N3O2S: C (58.61) H 
(6.89) N (13.67) S (10.43) %; found C (58.39) H (6.88) N 
(13.70) S (10.41)%. 

 

2.1.1.7. N-cyclohexyl-2-[(2-hydroxy-3-methoxyphenyl) 
methylidene]hydrazine-1-carbothioamide (7) 

 IR KBr (cm−1): 3348 (OH str.), 3200 (NH str.), 1550 
(C=N str.), 1263 (NCSN str.), 1121 (C=S str.); 1H NMR 
(DMSO‒d6, 500 MHz) δ: 1.12‒2.0 (10 H, m, cyclohexyl), 
4.20 (1H, s, cyclohexyl), 6.70‒7.50 (3H, m, Ar‒H), 7.92 
(1H, s, =CH), 8.41 (1H, s, =NNH, D2O exchg.), 11.38 (1H, 
s, NHC=S, D2O exchg.); 13C NMR (DMSO‒d6, 125 MHz) δ: 
25.3 (2CH2), 25.5 (CH2), 32.2 (2CH2), 53.0 (CH), 56.2 
(OCH3), 113.1, 118.4, 119.4, 121.0, 139.7, 146.4, 148.3, 
175.9 (C=S); MS (ESI) m/z: 307.40 [M]+; Analysis for 
C15H21N3O2S: C (58.61) H (6.89) N (13.67) S (10.43) %; 
found C (58.40) H (6.90) N (13.69) S (10.44)%. 

2.1.1.8. N-cyclohexyl-2-[1-(4-hydroxy-3-methoxyphenyl) 
ethylidene]hydrazine-1-carbothioamide (8) 

 IR KBr (cm−1): 3335 (OH str.), 2936 (NH str.), 1550 
(C=N str.), 1201 (NCSN str.), 1117 (C=S str.); 1H NMR 
(DMSO‒d6, 500 MHz) δ: 1.35-1.91 (10 H, m, cyclohexyl), 
2.27 (3H, s, CH3), 4.20 (1H, s, cyclohexyl), 6.80‒7.42 (3H, 
m, Ar‒H), 7.94 (1H, s, =CH), 7.80 (1H, s, =NNH, D2O 
exchg.), 10.09 (1H, s, NHC=S, D2O exchg.); 13C NMR 
(DMSO‒d6, 125 MHz) δ: 14.6 (CH3), 18.9 (CH2), 25.0 
(CH2), 25.5 (CH2), 32.1 (CH2), 32.2 (CH2), 52.6 (CH), 56.5 
(OCH3), 110.5, 115.5, 120.5, 129.3, 147.8, 148.7, 148.8, 
176.9 (C=S); MS (ESI) m/z: 321.68 [M]+; Analysis for 
C16H23N3O2S: C (59.78) H (7.21) N (13.7) S (9.98) %; found 
C (59.55) H (7.24) N (13.74) S (9.95) %. 

2.1.1.9. 2-[(4-Hydroxy-3-methoxyphenyl)methylidene]-N-
(prop-2-en-1-yl)hydrazine-1-carbothioamide (9) 

 IR KBr (cm−1): 3318 (OH str.), 3200 (NH str.), 1550 
(C=N str.), 1278 (NCSN str.), 1121 (C=S str.); 1H NMR 
(DMSO‒d6, 500 MHz) δ: 3.80 (3H, s, -OCH3), 4.22 (2H, d, 
CH2), 5.10 (2H, m, =CH2), 5.88 (1H, m, =CH), 6.77‒7.37 
(3H, m, Ar‒H), 7.95 (1H, s, =CH), 8.52 (1H, s, =NNH, D2O 
exchg.), 11.35 (1H, s, NHC=S, D2O exchg.); 13C NMR 
(DMSO‒d6, 125 MHz) δ: 21.6 (CH2), 46.1 (=CH2), 56.3 
(OCH3), 110.5, 115.8, 112.4, 125.9, 135.6, 143.3, 148.4, 
149.2, 177.2 (C=S); MS (ESI) m/z: 264.14 [M-1]+; Analysis 
for C12H15N3O2S: C (54.32) H (5.70) N (15.84) S (12.08) %; 
found C (54.11) H (5.71) N (15.90) S (12.05)%. 

2.1.1.10. 2-[(3-Hydroxy-4-methoxyphenyl)methylidene]-N-
(prop-2-en-1-yl)hydrazine-1-carbothioamide (10) 

 IR KBr (cm−1): 3149 (OH str.), 2929 (NH str.), 1542 
(C=N str.), 1272 (NCSN str.), 1121 (C=S str.); 1H NMR 
(DMSO‒d6, 500 MHz) δ: 3.80 (3H, s, -OCH3), 4.22 (2H, d, 
CH2), 5.10 (2H, m, =CH2), 5.89 (1H, m, =CH), 6.77‒7.37 
(3H, m, Ar‒H), 7.95 (1H, s, =CH), 8.52 (1H, s, =NNH, D2O 
exchg.), 11.35 (1H, s, NHC=S, D2O exchg.); 13C NMR 
(DMSO‒d6, 125 MHz) δ: 22.7 (CH2), 46.1 (=CH2), 56.0 
(OCH3), 112.0, 113.4, 115.9, 120.8, 127.5, 135.6, 143.0, 
147.1, 150.1, 177.3 (C=S); MS (ESI) m/z: 265.13 [M]+; 
Analysis for C12H15N3O2S: C (54.32) H (5.70) N (15.84) S 
(12.08) %; found C (54.50) H (5.69) N (15.87) S (12.07)%. 
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2.1.1.11. 2-[(2-Hydroxy-3-methoxyphenyl)methylidene]-N-
(prop-2-en-1-yl)hydrazine-1-carbothioamide (11) 

 IR KBr (cm−1): 3308 (OH str.), 3000 (NH str.), 1578 
(C=N str.), 1281 (NCSN str.), 1208 (C=S str.); 1H NMR 
(DMSO‒d6, 500 MHz) δ: 3.83 (3H, s, -OCH3), 4.22 (2H, t, 
CH2), 5.10 (2H, m, =CH2), 5.91 (1H, m, =CH), 6.78‒7.57 
(3H, m, Ar‒H), 8.44 (1H, s, =CH), 8.59 (1H, s, =NNH, D2O 
exchg.), 11.51 (1H, s, NHC=S, D2O exchg.); 13C NMR 
(DMSO‒d6, 125 MHz) δ: 11.7 (CH2), 46.2 (=CH2), 56.3 
(OCH3), 113.1, 115.9, 118.5, 119.4, 121.2, 135.5, 139.7, 
146.4, 148.3, 177.4 (C=S); MS (ESI) m/z: 265.30 [M]+; 
Analysis for C12H15N3O2S: C (54.32) H (5.70) N (15.84) S 
(12.08) %; found C (54.52) H (5.72) N (15.90) S (12.04)%. 

2.1.1.12. 2-[1-(4-Hydroxy-3-methoxyphenyl)ethylidene]-N-
(prop-2-en-1-yl)hydrazine-1-carbothioamide (12) 

 IR KBr (cm−1): 3348 (OH str.), 3100 (NH str.), 1550 
(C=N str.), 1263 (NCSN str.), 1121 (C=S str.); 1H NMR 
(DMSO‒d6, 500 MHz) δ: 3.83 (3H, s, -OCH3), 4.25 (2H, m, 
CH2), 5.14 (2H, m, =CH2), 5.92 (1H, m, =CH), 7.32‒7.45 
(3H, m, Ar‒H), 8.50 (1H, s, =CH), 9.37 (1H, s, =NNH, D2O 
exchg.), 10.16 (1H, s, NHC=S, D2O exchg.); 13C NMR 
(DMSO‒d6, 125 MHz) δ: 14.6 (CH2), 46.2 (=CH2), 56.3 
(OCH3), 111.1, 115.5, 115.7, 120.7, 129.3, 135.6, 147.8, 
148.7, 149.1, 178.3; MS (ESI) m/z: 279.08 [M]+; Analysis 
for C13H17N3O2S: C (55.89) H (6.13) N (15.04) S (11.48) %; 
found C (55.70) H (6.15) N (15.10) S (11.45)%. 

2.2. Cell lines 

 MCF-7 cells were grown in McCoy’s 5A (GIBCO, 8717, 
Grovement Cir, Gaithersberg, MD, USA), and MDA-MB-
231 cells were grown in DMEM (Sigma, 82024 Taufkirchen, 
Germany). MCF-7 and MDA-MB-231 breast cancer cell 
lines were procured from the American Type Culture Collec-
tion (ATCC) (0801 University Boulevard, Manassas, VA, 
USA). Hemocytometer was used to calculate the number of 
cells. 

2.3. Measurement of IC50 

 IC50 was mathematically calculated as IC50 = fixed dose 
(20) × 50/ (formazan quantity of treated cells/formazan 
quantity of untreated cells) × 100 [24]. 

2.4. Side Population Staining by DYECYCLE Violet 
Stain 

 Functionally, to gate only side population cells, verapa-
mil 50 µM was used. All analyses were performed on a 
FACS LSRII (BD Biosciences, San Jose, CA, USA) [25]. 

3. RESULTS AND DISCUSSIONS 

 The synthesis of thiosemicarbazone derivatives (1-12) 
was carried out as shown in Scheme 1. The phenyl/cyclohexyl/ 
allyl thiosemicarbazides were reacted with disubstituted al-
dehydes/ketones in the presence of absolute ethanol and gla-
cial acetic acid to yield final thiosemicarbazones (1-12). 
Elemental analysis verified the purities of compounds. The 
compounds were confirmed and characterized by spectro-
scopic methods. The spectra of all thiosemicarbazones 
showed D2O exchangeable singlet at δ 7.80‒9.55 ppm corre-
sponding to NH protons and NHC=S protons, respectively. 
The presence of all carbon atoms for compounds was con-
firmed by 13C NMR spectra. Carbon signal of the C=S group 
of thiosemicarbazone appeared in the 175.6‒178.0 ppm re-
gion. The experimental part contains the detailed spectral 
results of 1H NMR, 13C NMR spectra, and mass spectra of all 
the synthesized compounds. The physicochemical data of all 
the synthesized compounds are given in Table 1. 

 Cell growth inhibition assay was used for the in vitro 
antiproliferative activity. WST-1 was used according to the 
protocol for the calculation of IC50 for each compound (Ta-
ble 2). The compounds showed activity against luminal 
MCF-7 cells with IC50 ranging between (12.2 ± 0.59 µM) to 
(185 ± 0.35 µM). The compounds also showed activity 
against basal cell line MDA-MB-231 with IC50 ranging be-
tween (12.9 ± 0.76 µM) to (107 ± 0.33 µM). Compound 12 
was found to be inactive up to 300 µM concentration. Com-
pound 9 was found to be the most potent compound of the 
series with IC50 = (12.7 ± 0.64 µM) and (12.9 ± 0.76 µM) 
against luminal MCF-7 and basal cell line MDA-MB-231 
respectively compared to the standard drug 5-fluorouracil (5-
FU) IC50 = (15.23 ± 0.80 µM) and (29.38 ± 1.24 µM) against 
MCF-7 and MDA-MB-231, respectively. This compound 
was then further assessed for side population percent inhibi-
tion assay on the MCF-7 cell line at 5 µM and 10 µM con-
centration (Fig. 3). The reference drug verapamil was used to 
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Scheme 1. Synthetic protocol of compounds (1-12). 
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block side population cells at 50 μM concentration. The un-
treated MCF-7 cells showed a 4.8% side population. When 
the MCF-7 cells were treated with compound 9, 0.8% and 
0.7% side population were obtained at 5 µM and 10 µM 
concentrations, respectively as compared to verapamil (50 
µM) with 0.6% of side population. Compound 9 showed 
superiority to block side population by more than 80%  
at lower concentration compared with the reference drug 
verapamil. 

 The design of new compounds was based on compound 
(A) and the structural modifications were done not only to 
obtain derivatives with higher anti-proliferative activity but 
also to collect data regarding structure-activity relationship 
(SAR). We showed that the presence of pharmacophore 
(NHC=SNHN) is essential for the activity. The anti-
proliferative activity of the compounds was affected by re-
placing 3-methoxyphenyl with phenyl, cyclohexyl and allyl 
groups. Phenyl group at the proximal end decreased the ac-
tivity whereas the anti-proliferative activity was increased by 
replacing with cyclohexyl and allyl groups. The compounds 
containing allyl group were found to be most active in the 
series. The disubstituted phenyl moiety at the terminal nitro-
gen had a minimum effect on the activity. Methyl group at 
R4 increased the anti-proliferative effect. These results indi-
cate that substitution at the proximal nitrogen of the 
thiosemicarbazone has a more significant role in the anti-
proliferative activity than the substitution at the terminal 
nitrogen of the thiosemicarbazone. 

CONCLUSION 

 In conclusion, we synthesized novel thiosemicarbazone 
derivatives (1-12) from the lead compound and were con-
firmed by spectral data. The synthesized compounds (1-12) 
were evaluated in vitro against breast cancer cell lines MCF-
7 and MDA-MB-231. All the compounds except compound 
12 were active against both the cell lines. Compound 9 was 

having the most potent anti-proliferative activity against both 
the tested cell lines. It presented more than 80% inhibition of 
side population in comparison to the standard drug verapamil 
using the MCF-7 cell line. It can act a lead for targeting 
breast cancer cell line MCF-7 and MDA-MB-231. There is 
wide scope for the further development of this compound in 
pharmacokinetic and pharmacodynamic studies. 

Table 1. Physical data of the synthesized compounds (1-12). 

Compounds� R� R1� R2� R3� R4� Molecular Weight� Yield (%)� M.p. (°C) 

1� Phenyl� H� OCH3� OH� H� C15H15N3O2S� 80� 165-167 

2� Phenyl� H� OH� OCH3� H� C15H15N3O2S� 85� 170-172 

3� Phenyl� OH� CH3� H� H� C15H15N3O2S� 90� 195-197 

4� Phenyl� H� OCH3� OH� CH3� C16H17N3O2S� 75� 198-200 

5� Cyclohexyl� H� OCH3� OH� H� C15H21N3O2S� 75� 108-110 

6� Cyclohexyl� H� OH� OCH3� H� C15H21N3O2S� 70� 168-170 

7� Cyclohexyl� OH� OCH3� H� H� C15H21N3O2S� 85� ≥230 

8� Cyclohexyl� H� OCH3� OH� CH3� C16H23N3O2S� 75� 178-180 

9� Allyl� H� OCH3� OH� H� C12H15N3O2S� 70� 125-127 

10� Allyl� H� OH� OCH3� H� C12H15N3O2S� 75� 176-178 

11� Allyl� OH� OCH3� H� H� C12H15N3O2S� 70� 218-220 

12� Allyl� H� OCH3� OH� CH3� C13H17N3O2S� 65� 128-130 
 

Table 2. In vitro cytotoxicity of compounds against breast 
cancer cell lines MCF-7 and MDA-MB-231. 

Compounds� IC50
a
 (µM) MCF-7 

(Mean ±SD)*�
IC50 (µM) MDA-MB-231 

(Mean ±SD)* 

1� 185±0.35� 107±0.33 

2� 30±0.64� 25.6±0.81 

3� 20±0.72� 24.5±0.13 

4� 16±0.91� 18.6±0.43 

5� 14.7±0.86� 14.5±0.62 

6� 13.8±0.30� 13.4±0.56 

7� 17.3±0.84� 20.9±0.81 

8� 13±0.10� 13.3±0.56 

9� 12.7±0.64� 12.9±0.76 

10� 12.2±0.59� 13.8±0.79 

11� 12.5±0.33� 14.2±0.91 

12� Inb� In 

5-FUc� 15.23±0.80� 29.38 ± 1.24 
a IC50: concentration of the compound (µM) producing 50% cell growth inhibition after 
48 h of compound exposure. b Inactive within 300 (µM) concentration range. c 5-FU: 5-
fluorouracil. *Mean ±SD of three independent experiments. 
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