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Abstract: With the vastly increasing applications of chiral phosphine-oxazoline (PHOX) hybrid 

ligands in various transition-metal-catalyzed reactions, novel PHOX ligands bearing innovative 

backbones are highly valuable and in great demand. This study describes the development of a new 

type of chiral PHOX ligands based on a hexamethyl-1,1’-spirobiindane scaffold and incorporating 

both a phosphine and an oxazoline moiety. The optimal ligand provided high yields and excellent 

enantioselectivities for the Ni-catalyzed asymmetric arylation of cyclic N-sulfonyl imines with 

arylboronic acids leading to chiral amines. 
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INTRODUCTION 

  The design and synthesis of novel chiral ligands are always a very important and challenging task in 

the development of efficient transition-metal-catalyzed asymmetric reactions.
1 

Chiral P, N ligands play a 

significant role in transition-metal-catalyzed asymmetric synthesis due to its characteristics of both 

phosphine ligands and nitrogen ligands.
2
 The chiral phosphine-oxazoline (PHOX) ligand, which 

coordinates to a metal center with a N- and a P-atom, is one of the more classic category among P, N 

ligands, and has been recognized as one of the most versatile types of chiral inducers in various 

transition-metal-catalyzed reactions.
3
 The steric and electronic properties can be tailored for a specific 

application by variation of the phosphine, the oxazoline ring, and the backbone moiety due to their 

modular structure. As pioneering works in this area, Pfaltz, Helmchen, and Williams independently 

reported the first synthesis and application of PHOX in 1993.
4
 After that, various kinds of skeletons 

such as biphenyl, hetero aryl, cyclophane, ferrocenyl, Ruthenocenyl, and binaphthyl backbones, also 

found successful applications in asymmetric catalysis during the past dacades, and the backbone of the 

chiral ligands had remarkable influence on its catalytic performance in many cases.
5
 

Despite these elegant contributions, the continued innovation of novel and practical backbone of 

PHOX is still a highly valuable but very challenging task. On the other hand, the spiro backbone has 

been recognized as a privileged structure to provide an excellent platform for chiral ligand and catalyst 

diversification
6
 since the pioneering work of Chan et al. with SpirOP.

7
 In this context, Zhou group

8
 and 

Ding group
9 

have developed spirobiindane-based PHOX and spirononadiene-based PHOX respectively, 

which have shown impressive activity in versatile transition-metal-catalyzed asymmetric 

transformations. Inspired by these elegant pioneering studies, we became interested in developing the 

hexamethyl-1,1’-spirobiindane-PHOX ligands (HMSI-PHOX, Scheme 1) with its readily accessible 

stable and rigid spiro backbone. The hexamethyl-1,1’-spirobiindane motif in HMSI-PHOX has one 

axially chiral center and can be easily derived from hexamethyl-1,1'-spirobiindane-6,6'-diol which is 

easily prepared from industrially available Bisphenol C. Herein, we report the preliminary results on the 
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development of one new type of chiral phosphine-oxazoline ligands based on a hexamethyl-1,1’-

spirobiindane backbone (HMSI-PHOX, 1) and their application in the Ni-catalyzed enantioselective 

arylation of cyclic N-sulfonyl imines with arylboronic acids. The reactions proceed smoothly under mild 

conditions with excellent enantioselectivities (93-99% ee), as shown in Scheme 1. 

Scheme 1. Ni/HMSI-PHOX-catalyzed asymmetric arylation of cyclic aldimines 

 

RESULTS AND DISCUSSION 

As illustrated in Scheme 2, the synthesis of enantiopure HMSI-PHOX (1) ligands started from 

industrially available Bisphenol C. Bisphenol C was firstly converted into hexamethyl-1,1'-

spirobiindane-6,6'-diol 5 in 92% yield by acid-catalyzed rearrangement in one step at room temperature 

on a large scale by a modified procedure.
10

 Then the bromination of 5 with N-bromosuccinimide (NBS) 

gave the brominated product 6 in 98% yield. The subsequent esterification of 6 with trifluoromethane 

sulfonic anhydride afforded the ditriflate 7 in nearly quantitative yield. The Pd-catalyzed selective 

reduction with formic acid in DMF furnished spiro-dibromide 8 as the key intermediate in 96% yield. 

Then, the Pd-catalyzed cross-coupling of 8 with diphenylphosphine oxide afforded compound 9 with 

high selectivity despite the moderate conversion.
11

 The monophosphine 10 was obtained in 92% yield 

by reduction of 9 with LiAlH4.
12

 The Pd-catalyzed reaction of 10 with zinc cyanide to afford cyanide 11 

in 65% yield,
13

 followed by hydrolyzing with dilute H2SO4 to give the acid 12 in 75% yield. The acid 12 

was further transformed to the corresponding hydroxyl amides 13a-d as a diastereomer mixture in 

quantitative yield by reacting with a variety of enantiopure amino alcohols in the presence of EDCI and 

HOBt.
14

 Finally, the target ligands 1a-d were obtained by cyclization of 13a-d with MsCl in the 
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presence of triethylamine.
15

 To our delight, the two diastereomers of 1a-d, respectively, could all be 

readily separated by flash chromatography with high yields (72-85% for two steps from racemic 12) to 

provide the enantiopure phosphine-oxazoline ligands based on a hexamethyl-1,1’-spirobiindane scaffold 

(HMSI-PHOX, 1). The absolute configuration of the ligand (Sa,S,S)-1d was determined by X-ray 

crystallographic analysis of a single crystal which was obtained from diisopropyl ether (Figure 1). 

Scheme 2. Synthesis of HMSI-PHOX ligands 
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5

 

 

Figure 1. X-ray crystal structure of the complex of (Sa,S,S)-1d and diisopropyl ether 

 

With the new chiral HMSI-PHOX ligands (1) in hand, we next evaluated the enantioselective 

arylation of cyclic N-sulfonyl imines with arylboronic acids. Highly efficient transition-metal-catalyzed 

asymmetric addition of arylboron reagents to imines to generate chiral amines is a current topic of 

interest,
16

 and many excellent examples have been reported using Rh
17

 or Pd
18

 catalysts. The 

development of nickel catalyst which is cheap and abundant remains at the forefront and desirable, only 

one nice Ni-catalyzed example for such asymmetric transformation has been realized recently by the 

group of Zhang.
19

 To our delight, with the newly synthesized  (Ra,S)-1a (7.5 mol %) as the ligand and 

Ni(ClO4)2·6H2O (5 mol %) as the catalyst precursor, the model reaction between 2a  and 3a was initially 

performed in trifluoroethanol (TFE) at 60 
o
C to give the desired chiral amine 4a  with 97% ee despite in 

low yield (Table 1, entry 1). To our delight, when the ligand was replaced with (Ra,S)-1b, the model 

reaction proceeded smoothly  to afford the addition product 4a with 99% ee and in 80% yield, indicating 

the high efficiency of this novel chiral HMSI-PHOX ligand (Table 1, entry 2). After screening of these 

new chiral ligands, we found that the chirality at the spiro backbone of 1 had a significant impact on the 
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reactivity and asymmetric induction of the catalysis (Table 1, entries 1-8). The combination of a Ra 

configuration of the spiro backbone and the S configuration of the oxazoline moiety was revealed as the 

well matched case, such as in (Ra,S)-1a-c and (Ra,S,S)-1d. Furthermore, investigation of the substituent 

effect of the oxazoline moiety of ligands with a Ra configuration of the spiro backbone on the catalysis 

disclosed that the ligand (Ra,S,S)-1d, bearing two Ph group in the oxazoline moiety, was the best choice 

in terms of both reactivity and enantioselectivity (Table 1, entries 1-4). With the best ligand (Ra,S,S)-1d, 

the corresponding product 4a was afforded in 88% yield and 99% ee (Table 1, entry 4). On the basis of 

this result, different nickel and iron salts were exampled instead of Ni(ClO4)2·6H2O to give only low 

yield and low enantioselectivity or trace amounts of the product (Table 1, entries 9-13). Further 

evalutation of solvents indicated that the solvent had a remarkable impact on the reactivity and 

asymmetric induction of the catalysis (Table 1, entries 14-18). The experiments showed that 

dichloromethane, toluene, chloroform, acetonitrile and ethanol all gave a poor result with low reactivity 

and only moderate enantioselectivity, and trifluoroethanol was the best solvent for the Ni/HMSI-PHOX-

catalyzed enantioselective arylation reaction. As a comparison, we tested the known spiro ligand (Ra,S)-

Ph-Bn-SIPHOX
8 

in the Ni-catalyzed asymmetric reaction with the model reaction under the current 

standard conditions to give the desired product in 85% yield and 97%. 

Table 1. Optimization of reaction parameters
a 

 

Entry Ligand [M] Solvent Yield [%]
b
 ee [%]

c 

1 (Ra,S)-1a Ni(ClO4)2·6H2O TFE 30 97 

2 (Ra,S)-1b Ni(ClO4)2·6H2O TFE 80 99 

3
 

(Ra,S)-1c Ni(ClO4)2·6H2O TFE 55 99 
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4 (Ra,S,S)-1d Ni(ClO4)2·6H2O TFE 88 99 

5 (Sa,S)-1a Ni(ClO4)2·6H2O TFE <10 -20 

6
 

(Sa,S)-1b Ni(ClO4)2·6H2O TFE <10 -5 

7 (Sa,S)-1c Ni(ClO4)2·6H2O TFE <10 -65 

8 (Sa,S,S)-1d Ni(ClO4)2·6H2O TFE trace --- 

9 (Ra,S,S)-1d NiCl2·6H2O TFE 25 39 

10 (Ra,S,S)-1d Ni(OAc)2·4H2O TFE trace --- 

11 (Ra,S,S)-1d FeCl2·4H2O TFE trace --- 

12 (Ra,S,S)-1d Fe(ClO4)2 TFE trace --- 

13 (Ra,S,S)-1d Fe(ClO4)3 TFE trace --- 

14 (Ra,S,S)-1d Ni(ClO4)2·6H2O DCE 10 47 

15 (Ra,S,S)-1d Ni(ClO4)2·6H2O toluene 8 56 

16 (Ra,S,S)-1d Ni(ClO4)2·6H2O CHCl3 15 61 

17 (Ra,S,S)-1d Ni(ClO4)2·6H2O MeCN 7 22 

18 (Ra,S,S)-1d Ni(ClO4)2·6H2O EtOH trace --- 

a
Reactions conditions: 0.1 mmol 2a, 0.15 mmol 3a, 5 mol % [M], and 7.5 mol % ligand in 1 mL of solvent at 60 

o
C 

at N2 atmosphere for 48 h. 
b
Isolated yields. 

c
Determined by chiral HPLC analysis. 

With the optimized conditions in hand, the scope of arylboronicacids was firstly examined, and the 

results were summarized as shown in Table 2. Notably, excellent enantioselectivity could be achieved in 

all case. Arylboronic acids with both electron-withdrawing (Table 2, 4b-4f) and electron-donating 

groups (Table 2, 4g-4i) afforded the corresponding products with excellent enantioselectivities (93%-

99% ee). Meanwhile, the different substitution position on the benzene ring gave excellent 

enantioselectivities with all examples, but had significant influence on the yield. The meta- and para-

substituted arylboronic acids showed outstanding performance in good to excellent yields (76%-93%), 

and ortho-substituted arylboronic acids disclosed moderate reactivity (51% yield, Table 2, 4d). 
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Furthermore, biphenyl, fused-ring aryl and hetero aryl boronic acids could also afford their 

corresponding products with high yields and excellent enantioselectivities (Table 2, 4j-4l). Besides, the 

scope of N-sulfonyl imine derivatives was also examined, and the results were also satisfying because 

the substrates possessing methyl, group on the  chlorine or brominephenyl ring all gave the 

corresponding products in good yields (85%-94%)  with 99% ee (Table 2, 4m-4o). The use of acyclic 

imine and alkylboronic acid under the current standard reaction conditions, however, these substrates 

showed hydrolyzed or very low reactivity under our conditions, respectively. 

Table 2.  Substate scope
a
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a
Reactions conditions: 0.1 mmol of 2, 0.15 mmol of 3, 5 mol % Ni(ClO4)2·6H2O, and 7.5 mol % (Ra,S,S)-1d in 1 mL 

TFE at 60 
o
C at N2 atmosphere for 48 h. Yields are of isolated products. Enantioselectivity was determined by chiral 

HPLC. 

CONCLUSION 

In summary, a new class of chiral phosphine-oxazoline ligands (HMSI-PHOX, 1) based on the 

hexamethyl-1,1’-spirobiindanebackbone has been developed from industrially available Bisphenol C. 

The optimal ligand (Ra,S,S)-1d provided high yields and excellent enantioselectivities for the Ni-

catalyzed asymmetric arylation of cyclic N-sulfonyl imines with a broad range of arylboronic acids 

leading to optically active amines. Expanding the applications of HMSI-PHOX ligands to other 

synthetically useful catalytic enantioselective transformations is currently under investigation in our 

laboratory. 

  

Experimental Section 

     General information. 
1
H NMR, 

13
C NMR, 

31
P NMR and 

19
F NMR spectra were measured at 400, 

100, 162 and 376 MHz spectrometer, respectively. The chemical shifts were reported relative to internal 

standard TMS (0) in CDCl3 or DMSO. Infrared spectra were recorded on an ATR-FTIR spectrometer. 

HRMS were obtained using EI or ESI ionization. Optical rotation values were measured with 

instruments operating at λ = 589 nm, corresponding to the sodium D line at 20 °C. Enantiomeric 
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10

excesses (ee) were determined by chiral high-performance liquid chromatography. Analytical grade 

solvents for the column chromatography and commercially available reagents were used as received. 

Synthesis of 3,3,3',3',5,5'-hexamethyl-2,2',3,3'-tetrahydro-1,1'-spirobi[indene]-6,6'-diol (5).
10b

 A 

500 mL round bottom flask was charged with Bisphenol C (BPC, 50 g, 195 mmol) and methanesulfonic 

acid (250 mL). After stirring at room temperature for 3 days, additional 100 mL methanesulfonic acid 

was added to the mixture and the solution was allowed to stir for another 1 day. Then the mixture was 

directly poured into a large amount of crushed ice and filtered. The filter cake was washed with 

saturated NaHCO3 and water. The crude product was recrystallized sequentially with 

ethylacetate/petroleum ether and ethanol/water  to give the compound 5  (20.1 g, 92% yield) as a white 

solid. M.p. 249-250 
o
C; 

1
H NMR (400 MHz, CDCl3) δ 6.91 (s, 2H), 5.84 (s, 2H), 3.93 (s, 2H), 2.29 (d, J 

= 13.0 Hz, 2H), 2.20 (s, 6H), 2.15 (d, J = 13.0 Hz, 2H), 1.37 (s, 6H), 1.28 (s, 6H); 
13

C NMR (100 MHz, 

CDCl3) δ 153.2, 150.1, 144.5, 123.5, 122.9, 110.5, 59.4, 57.00 43.1, 31.9, 30.1, 16.0; IR (film): γ = 3515, 

2952, 2862, 1615, 1497, 1361, 1313, 858 cm
-1

; HRMS (GC-TOF, EI) m/z calcd for C23H28O2 [M
+
] 

336.2089, found 336.2085. 

Synthesis of 7,7'-dibromo-3,3,3',3',5,5'-hexamethyl-2,2',3,3'-tetrahydro-1,1'-spirobi[indene]-

6,6'-diol (6).
20
 To a solution of 5 (10.1 g, 30 mmol) in CH2Cl2 (200 mL) was added N-

bromosuccinimide (NBS, 11.2 g, 63 mmol) slowly and the mixture was stirred at room temperature for 

4 hours. Then saturated NaHSO3 (100 mL) was added and the solution was stirred for additional 30 

minutes. The organic phase was washed twice with saturated brine and dried over anhydrous Na2SO4. 

The solvent was removed under reduced pressure to afford a light yellow solid 6 (14.5 g, 98% yield) 

with enough purity for next step without further purification. M.p. 228-229 
o
C; 

1
H NMR (400 MHz, 

CDCl3) δ 6.87 (s, 2H), 5.57 (s, 2H), 2.46 (d, J = 13.1 Hz, 2H), 2.31 (s, 6H), 2.25 (d, J = 13.0 Hz, 2H), 

1.39 (s, 6H), 1.32 (s, 6H); 
13

C NMR (100 MHz, CDCl3) δ 149.2, 145.6, 142.7, 124.5, 123.6, 107.1, 60.8, 

55.6, 43.1, 32.6, 29.3, 17.1; IR (film): γ = 3506, 2958, 2861, 1610, 1466, 1360, 1313, 864 cm
-1

; HRMS 

(GC-TOF, EI) m/z calcd for C23H26Br2O2 [M
+
] 492.0300, found 492.0302. 

Synthesis of 7,7'-dibromo-3,3,3',3',5,5'-hexamethyl-2,2',3,3'-tetrahydro-1,1'-spirobi[indene]-

6,6'-diyl bis(trifluoromethanesulfonate) (7). The compound 6 (12.3 g, 25 mmol) was dissolved in 

CH2Cl2 (150 mL) under nitrogen, and pyridine (8.1 mL, 100 mmol) was added in one portion. After 
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11

cooling to 0 
o
C, triflic anhydride (10.5 mL, 62.5 mmol) was added dropwise. The resulting mixture was 

naturally warmed to room temperature and stirred for 3 hours. The reaction solution was then washed 

with aqueous HCl (4 M), saturated NaHCO3 and brine. The organic layer was dried over anhydrous 

Na2SO4 and concentrated in vacuum to obtain product 7 (18.6 g, 98% yield) as a yellow solid without 

further purification. M.p. 206-207 
o
C; 

1
H NMR (400 MHz, CDCl3) δ 7.02 (s, 2H), 2.55 (d, J = 13.2 Hz, 

2H), 2.45 (s, 6H), 2.30 (d, J = 13.2 Hz, 2H), 1.42 (s, 6H), 1.36 (s, 6H); 
13

C NMR (100 MHz, CDCl3) δ 

153.7, 145.1, 144.5, 132.6, 124.8, 118.5 (d, J = 320.7 Hz), 113.4, 61.3, 54.9, 43.4, 32.4, 28.8, 18.2; 
19

F 

NMR (376 MHz, CDCl3) δ -72.18; IR (film): γ = 2962, 2868, 1609, 1555, 1418, 1365, 1318, 846 cm
-1

; 

HRMS (GC-TOF, EI) m/z calcd for C25H24Br2F6O6S2 [M
+
] 755.9285, found 755.9285. 

Synthesis of 7,7'-dibromo-3,3,3',3',5,5'-hexamethyl-2,2',3,3'-tetrahydro-1,1'-spirobi[indene] (8). 

To a solution of triflate 7 (15.2 g, 20 mmol), bis(triphenylphosphine) palladium dichloride (633.5 mg, 

0.9 mmol), and 1,3-bis(diphenylphosphino)propane (dppp, 412.4 mg, 1 mmol) in 180 mL of DMF under 

nitrogen, triethylamine (33.3 mL, 240 mmol) was added in one portion at 0 
o
C. Then the formic acid 

(6.0 mL, 160 mmol) was added slowly under the ice bath, and the resulting solution was heated at 80 
o
C 

for 2 hours. The reaction system was diluted with water and extracted with ethyl acetate. The organic 

phase was washed with 30% aqueous H2O2, 10% aqueous HCl, saturated NaHCO3 and brine, and dried 

over anhydrous Na2SO4. After removal of the solvent, the residue was purified by flash chromatography 

(ethyl acetate/petroleum ether = 1/50) to give the hexamethyl sprio dibromide 8 (8.9 g, 96% yield). 

White solid, m.p. 199-200 
o
C; 

1
H NMR (400 MHz, CDCl3) δ 7.12 (s, 2H), 6.92 (s, 2H), 2.51 (d, J = 13.0 

Hz, 2H), 2.32 (s, 6H), 2.23 (d, J = 13.0 Hz, 2H), 1.41 (s, 6H), 1.33 (s, 6H); 
13

C NMR (100 MHz, CDCl3) 

δ 154.9, 142.5, 138.9, 131.9, 122.3, 119.1, 59.8, 55.4, 43.4, 32.6, 28.9, 21.0; IR (film): γ = 2954, 2861, 

1602, 1558, 1459, 1360, 1316, 852 cm
-1

; HRMS (GC-TOF, EI) m/z calcd for C23H26Br2 [M
+
] 460.0401, 

found 460.0404. 

Synthesis of (7'-bromo-3,3,3',3',5,5'-hexamethyl-2,2',3,3'-tetrahydro-1,1'-spirobi[inden]-7-

yl)diphenylphosphine oxide (9). A mixture of dibromide 8 (4.62 g, 10 mmol), diphenylphosphine 
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12

oxide (4.02 g, 20 mmol), palladium acetate (224.5 mg, 1 mmol), 1,4-bis(diphenylphosphino)butane 

(dppb, 426.5 mg, 1 mmol), and N,N-diisopropylethylamine (7.0 mL, 40 mmol) in degassed DMSO (40 

mL) was stirred at 100 
o
C under a dry nitrogen atmosphere for 24 hours. After cooling to room 

temperature, the reaction solution was diluted with water, and the aqueous phase was extracted with 

ethyl acetate. The organic layer was washed sequentially with 5% aqueous HCl, saturated NaHCO3 and 

brine, and dried over anhydrous Na2SO4, and concentrated under reduced pressure. The resulting residue 

was purified by flash chromatography (ethyl acetate/petroleum ether = 1/4) to give the product  9 (2.1 g, 

81% yield based of consumable 8). White solid, m.p. 251-252 
o
C; 

1
H NMR (400 MHz, CDCl3) δ 7.46 – 

7.27 (m, 10H), 7.12 (s, 1H), 6.87 (s, 1H), 6.80 (d, J = 15.0 Hz, 1H), 6.27 (s, 1H), 3.45 (d, J = 12.2 Hz, 

1H), 2.48 (d, J = 13.1 Hz, 1H), 2.24 (dd, J = 20.6, 10.4 Hz, 8H), 1.63 (s, 3H), 1.40 (s, 3H), 1.35 (s, 3H), 

1.27 (s, 3H); 
13

C NMR (100 MHz, CDCl3) δ 156.6, 155.3 (d, J = 10.8 Hz), 151.5 (d, J = 7.0 Hz), 143.6, 

137.9, 137.1, 136.1, 135.5 (d, J = 13.2 Hz), 134.6 (d, J = 14.1 Hz), 131.9 (d, J = 3.6 Hz), 131.8 (d, J = 

3.9 Hz), 131.4, 130.8 (dd, J = 16.3, 2.5 Hz), 128.1, 128.0, 127.5, 127.4, 126.7 (d, J = 2.7 Hz), 121.6, 

119.2, 59.9 (d, J = 1.6 Hz), 57.0, 55.9, 44.2, 42.8, 33.4, 33.0, 28.8, 28.0, 21.4, 20.9; 
31

P NMR (162 MHz, 

CDCl3) δ 31.29; IR (film): γ = 2952, 2862, 1607, 1436, 1360, 1203, 1113 cm
-1

; HRMS (GC-TOF, EI) 

m/z calcd for C35H36OPBr [M
+
] 582.1687, found 582.1672. 

Synthesis of (7'-bromo-3,3,3',3',5,5'-hexamethyl-2,2',3,3'-tetrahydro-1,1'-spirobi[inden]-7-

yl)diphenylphosphane (10). To a stirred solution of phosphine oxide 9 (3.50 g, 6 mmol) in ethylene 

glycol dimethyl ether (DME, 40 mL) was added methyltrifluoromethanesulfonate (747 µL, 6.6 mmol) at 

room temperature under nitrogen. After 3 hours, the flask was immersed in an ice and lithium aluminum 

hydride (6 mL, 15 mmol, 2.5 mol/L in THF) was added dropwise. The resulting mixture was naturally 

warmed to room temperature and the mixture was stirred for 5 h, and then quenched by 1 M aqueous 

HCl. The organic phase was separated, and the aqueous layer was extracted with ethyl acetate. The 

combined extracts were washed by saturated brine and dried over anhydrous Na2SO4, and evaporated 

under reduced pressure. The residue was purified by flash chromatography (ethyl acetate/petroleum 

Page 12 of 31

ACS Paragon Plus Environment

The Journal of Organic Chemistry

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



 

13

ether = 1/50) to afford 10 (3.13 g, 92%) . White solid, m.p. 212-213 
o
C; 

1
H NMR (400 MHz, CDCl3) δ 

7.23 – 7.14 (m, 6H), 7.07 – 6.99 (m, 4H), 6.97 (s, 1H), 6.87 (s, 1H), 6.72 (d, J = 4.6 Hz, 1H), 6.64 (s, 

1H), 2.76 (d, J = 11.9 Hz, 1H), 2.55 (d, J = 13.1 Hz, 1H), 2.31 (d, J = 13.1 Hz, 1H), 2.24 (d, J = 5.8 Hz, 

7H), 1.42 (s, 3H), 1.37 (s, 3H), 1.35 (s, 3H), 1.28 (s, 3H); 
13

C NMR (100 MHz, CDCl3) δ 155.3 (d, J = 

2.9 Hz), 152.9 (d, J = 7.7 Hz), 151.3 (d, J = 24.6 Hz), 144.9 (d, J = 4.1 Hz), 139.3 (d, J = 14.1 Hz), 

138.6, 136.7, 136.5 (d, J = 13.5 Hz), 135.7 (d, J = 3.1 Hz), 134.1, 133.8, 133.6, 133.1, 132.9, 131.9, 

131.5 (d, J = 20.8 Hz), 128.1 – 128.0 (m), 127.7 – 127.4 (m), 124.1, 121.9, 119.5 (d, J = 2.4 Hz), 59.5 (d, 

J = 3.3 Hz), 58.5 (d, J = 5.9 Hz), 55.7, 43.7, 42.9, 33.1, 28.9, 28.2 (d, J = 2.4 Hz), 21.4, 20.9; 
31

P NMR 

(162 MHz, CDCl3) δ -22.66; IR (film): γ = 2952, 2862, 1585, 1434, 1360, 1313, 1140 cm
-1

; HRMS 

(GC-TOF, EI) m/z calcd for C35H36PBr [M
+
] 566.1738, found 566.1756. 

Synthesis of 7'-(diphenylphosphanyl)-3,3,3',3',5,5'-hexamethyl-2,2',3,3'-tetrahydro-1,1'-

spirobi[indene]-7-carbonitrile (11). A mixture of the reduction product 10 (2.84 g, 5 mmol), Zn(CN)2 

(645.7 mg, 5.5 mmol), and Pd(PPh3)4 (577.8 mg, 0.5 mmol) in DMF (50 mL) was stirred at 130 
o
C for 

36 hours under nitrogen. The reaction solution was diluted with ethyl acetate, washed sequentially with 

saturated NaHCO3 and brine, and dried over by anhydrous Na2SO4. The solvent was removed in vacuum 

to give a product 11 (1.67 g, 65%) for next step without further purification.  White solid, m.p. 220-221 

o
C; 

1
H NMR (400 MHz, CDCl3) δ 7.26 (dd, J = 12.3, 4.6 Hz, 1H), 7.23 – 7.15 (m, 5H), 7.06 (s, 1H), 

7.02 (s, 1H), 6.97 (td, J = 9.2, 3.9 Hz, 4H), 6.69 (d, J = 4.1 Hz, 1H), 6.41 (s, 1H), 3.06 (dd, J = 13.1, 2.5 

Hz, 1H), 2.44 – 2.39 (m, 1H), 2.36 (d, J = 1.8 Hz, 2H), 2.23 (s, 3H), 2.20 (s, 3H), 1.55 (s, 3H), 1.47 (s, 

3H), 1.36 (s, 3H), 1.29 (s, 3H); 
13

C NMR (100 MHz, CDCl3) δ 154.0 (d, J = 3.2 Hz), 153.3 (d, J = 7.6 

Hz), 151.2 (d, J = 4.1 Hz), 150.3, 150.1, 139.2 (d, J = 13.5 Hz), 137.6, 137.1, 136.0 (d, J = 2.5 Hz), 

135.3 (d, J = 11.2 Hz), 133.9, 133.7, 132.9 (d, J = 19.0 Hz), 131.5, 131.1 (d, J = 19.5 Hz), 128.4, 128.1 

(d, J = 6.0 Hz), 127.9 – 127.5 (m), 127.0, 124.3, 117.2, 107.7, 58.4, 58.2 (d, J = 3.0 Hz), 43.6, 43.3, 33.1 

(d, J = 2.6 Hz), 32.7, 28.6, 27.7 (d, J = 3.3 Hz), 21.5, 20.9; 
31

P NMR (162 MHz, CDCl3) δ -21.87; IR 

(film): γ = 2951, 2852, 1721, 1435, 1381, 1262, 1096, 862 cm
-1

; HRMS (GC-TOF, EI) m/z calcd for 

C36H36NP [M
+
] 513.2585, found 513.2584. 
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Synthesis of 7'-(diphenylphosphanyl)-3,3,3',3',5,5'-hexamethyl-2,2',3,3'-tetrahydro-1,1'-

spirobi[indene]-7-carboxylic acid (12). The cyanide 11 (1.03 g, 2 mmol) was added to a solution of 

H2O (15 mL), H2SO4 (10 mL), and AcOH (5 mL) under a nitrogen atmosphere, and the suspension was 

allowed to stir at 145 
o
C for 48 hours. The resulting mixture was then cooled to room temperature, 

diluted with water, and extracted with ethyl acetate. The organic phase was washed with brine and dried 

over anhydrous Na2SO4. After removal of the solvent, the residue was purified by flash chromatography 

(ethyl acetate/petroleum ether = 1/10) to afford the carboxylic acid 12 (0.80 g, 75%). White solid, m.p. 

237-238 
o
C; 

1
H NMR (400 MHz, DMSO) δ 12.13 (s, 1H), 7.30 (d, J = 6.5 Hz, 4H), 7.24 – 7.14 (m, 4H), 

7.00 – 6.91 (m, 3H), 6.86 (dd, J = 10.9, 4.1 Hz, 2H), 6.48 (d, J = 4.0 Hz, 1H), 2.74 (d, J = 12.3 Hz, 1H), 

2.32 (s, 3H), 2.21 (s, 2H), 2.18 – 2.10 (m, 4H), 1.40 (s, 3H), 1.30 (s, 3H), 1.25 (s, 3H), 1.14 (s, 3H); 
13

C 

NMR (100 MHz, DMSO) δ 167.79, 153.9 (d, J = 2.8 Hz), 153.3 (d, J = 8.0 Hz), 152.6, 152.3, 147.5 (d, 

J = 3.4 Hz), 137.8 (dd, J = 29.7, 14.9 Hz), 136.0, 135.2, 134.4 (d, J = 2.6 Hz), 132.7 (d, J = 11.9 Hz), 

132.5 877, 127.6 (d, J = 3.0 Hz), 126.2, 123.7, 58.8 (d, J = 3.5 Hz), 58.7 (d, J = 4.4 Hz), 56.1, 42.5, 42.1, 

33.1, 32.2, 28.8, 28.6, 20.9, 20.7; 
31

P NMR (162 MHz, DMSO) δ -23.06; IR (film): γ = 2951, 2856, 

1694, 1607, 1434, 1360, 1307, 1256 cm
-1

; HRMS (GC-TOF, EI) m/z calcd for C36H37O2P [M
+
] 

532.2531, found 532.2531. 

General procedure for synthesis of HMSI-PHOX ligands (1). A solution of acid 12 (532.7 mg, 

1.0 mmol), chiral amino alcohol (3.0 mmol), 1-ethyl-3-[3-(dimethylamino)propyl]carbodiimide (EDCI, 

575.2 mg, 3.0 mmol) and benzotriazol-1-ol (HOBt, 405.4 mg, 3.0 mmol) in DMF (40 mL) was stirred at 

room temperature under nitrogen. The mixture was monitored by TLC for a complete conversion. Then 

the resulting solution was diluted with water and extracted with ethyl acetate. The organic layer was 

washed with saturated brine and dried over anhydrous Na2SO4. After evaporation in vacuum, the crude 

product 13 which could be used directly in the next step was obtained. To a solution of amide 13 (1.0 

mmol) and 4-dimethlaminopridine (DMAP, 12.2 mg, 0.1 mmol) in CH2Cl2 (30 mL) was added 

triethylamine (1.1 mL, 8 mmol) and methanesulfonyl chloride (310 µL, 4 mmol) sequentially at 0 
o
C 
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under a nitrogen atmosphere. Then the resulting mixture was allowed to warm up to room temperature 

and stirred overnight. The reaction was quenched with water and extracted with CH2Cl2. The combined 

extracts were washed with brine, dried over anhydrous Na2SO4, and evaporated under reduced pressure. 

The residue was purified by silica gel column chromatography (ethyl acetate/petroleum ether = 1/20-

1/10) to give a pair of diastereomers 1 as white solids. 

(S)-2-((R)-7'-(diphenylphosphanyl)-3,3,3',3',5,5'-hexamethyl-2,2',3,3'-tetrahydro-1,1'-spirobi[inden]-7-

yl)-4-isopropyl-4,5-dihydrooxazole [(Ra,S)-1a]: 258 mg, 44% yield; white solid, m.p. 199-200 
o
C; [α]D

20
 

= +131 (c 0.1, CH2Cl2); 
1
H NMR (400 MHz, CDCl3) δ 7.39 (s, 1H), 7.22 (dd, J = 6.8, 3.4 Hz, 3H), 7.20 

– 7.16 (m, 3H), 7.09 (td, J = 7.0, 3.1 Hz, 2H), 7.04 (s, 1H), 6.98 – 6.92 (m, 3H), 6.57 (d, J = 4.4 Hz, 1H), 

3.79 – 3.68 (m, 1H), 3.41 (dd, J = 17.7, 9.6 Hz, 1H), 2.84 (t, J = 9.2 Hz, 2H), 2.39 (s, 3H), 2.28 – 2.07 

(m, 6H), 1.41 (s, 3H), 1.29 (s, 6H), 1.16 – 1.06 (m, 4H), 0.89 (d, J = 6.6 Hz, 3H), 0.56 (d, J = 6.7 Hz, 

3H); 
13

C NMR (100 MHz, CDCl3) δ 163.58, 152.74 (dd, J = 5.1, 3.9 Hz), 150.43 (d, J = 24.7 Hz), 

145.92 (d, J = 2.9 Hz), 137.4 (dd, J = 28.6, 14.9 Hz), 135.4, 134.9, 133.6 (d, J = 3.0 Hz), 133.2, 133.0, 

132.3 (d, J = 19.0 Hz), 130.4 (d, J = 21.7 Hz), 129.0, 127.0 (d, J = 6.1 Hz), 126.7 (dd, J = 9.8, 5.6 Hz), 

124.2, 123.7 (d, J = 2.9 Hz), 122.1, 76.3, 76.0, 75.6, 71.5, 68.7, 57.7 (d, J = 3.5 Hz), 57.0 (d, J = 5.2 Hz), 

56.3, 42.0, 41.7, 32.6, 31.7, 31.3, 28.1, 27.2, 20.1, 19.1, 17.3; 
31

P NMR (162 MHz, CDCl3) δ -21.49; IR 

(film): γ = 2952, 2856, 1640, 1434, 1383, 1358, 1134 cm
-1

; HRMS (GC-TOF, EI) m/z calcd for 

C41H46NOP [M
+
] 599.3317,found 599.3320. 

(S)-2-((S)-7'-(diphenylphosphanyl)-3,3,3',3',5,5'-hexamethyl-2,2',3,3'-tetrahydro-1,1'-spirobi[inden]-7-

yl)-4-isopropyl-4,5-dihydrooxazole [(Sa,S)-1a]: 244 mg, 41% yield; white solid, m.p. 190-191 
o
C; [α]D

20
 

= -182 (c 0.1,CH2Cl2);
1
H NMR (400 MHz, CDCl3) δ 7.47 (s, 1H), 7.22 (dd, J = 4.0, 2.3 Hz, 3H), 7.17 

(d, J = 4.6 Hz, 3H), 7.13 – 7.06 (m, 2H), 7.04 (s, 1H), 7.03 – 6.97 (m, 2H), 6.96 (s, 1H), 6.55 (d, J = 4.5 

Hz, 1H), 3.64 – 3.54 (m, 1H), 3.45 (dt, J = 9.8, 6.3 Hz, 1H), 2.97 (dd, J = 9.8, 8.2 Hz, 1H), 2.66 (d, J = 

12.6 Hz, 1H), 2.38 (s, 3H), 2.30 – 2.13 (m, 6H), 1.68 (dt, J = 13.0, 6.7 Hz, 1H), 1.38 (s, 3H), 1.32 (s, 

3H), 1.29 (s, 3H), 1.08 (s, 3H), 0.87 (d, J = 6.8 Hz, 3H), 0.77 (d, J = 6.8 Hz, 3H); 
13

C NMR (100 MHz, 
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CDCl3) δ 164.5, 153.7 (d, J = 2.6 Hz), 153.3 (d, J = 7.6 Hz), 151.7, 151.5, 146.1 (d, J = 2.9 Hz), 138.7 – 

138.3 (m), 136.4, 135.7, 134.6 (d, J = 2.6 Hz), 133.6 (dd, J = 26.9, 19.6 Hz), 131.3, 131.1, 130.1, 128.0 

(d, J = 6.3 Hz), 127.9 – 127.4 (m), 125.6, 124.5 (d, J = 3.5 Hz), 123.5, 77.3, 77.0, 76.7, 71.1, 68.8, 59.2 

(d, J = 3.6 Hz), 58.0 (d, J = 4.3 Hz), 57.4, 42.8, 42.4, 33.3, 32.5 – 32.1 (m), 29.3, 28.9, 21.2 (d, J = 14.4 

Hz), 18.9, 17.7; 
31

P NMR (162 MHz, CDCl3) δ -21.19; IR (film): γ = 2953, 2860, 1646, 1434, 1384, 

1358, 1132 cm
-1

; HRMS (GC-TOF, EI) m/z calcd for C41H46NOP [M
+
] 599.3317, found 599.3322. 

(S)-2-((R)-7'-(diphenylphosphanyl)-3,3,3',3',5,5'-hexamethyl-2,2',3,3'-tetrahydro-1,1'-spirobi[inden]-7-

yl)-4-phenyl-4,5-dihydrooxazole [(Ra,S)-1b]: 250 mg, 40% yield; white solid, m.p. 67-68
o
C; [α]D

20
 = 

+74 (c 0.1, CH2Cl2); 
1
H NMR (400 MHz, CDCl3) δ 7.57 (s, 1H), 7.24 – 7.19 (m, 3H), 7.13 – 6.94 (m, 

11H), 6.90 (s, 1H), 6.73 (dd, J = 8.0, 6.8 Hz, 3H), 4.83 (t, J = 10.5 Hz, 1H), 4.21 (dd, J = 9.9, 8.3 Hz, 

1H), 3.14 – 2.87 (m, 2H), 2.41 (s, 3H), 2.27 (d, J = 12.7 Hz, 2H), 2.19 (d, J = 13.6 Hz, 1H), 2.08 (s, 3H), 

1.37 (s, 3H), 1.32 (s, 3H), 1.30 (s, 3H), 1.13 (s, 3H); 
13

C NMR (100 MHz, CDCl3) δ 166.2, 154.2 (d, J = 

2.8 Hz), 153.9 (d, J = 7.4 Hz), 151.7 (d, J = 25.0 Hz), 147.7 (d, J = 3.0 Hz), 141.2, 138.7 (d, J = 13.7 

Hz), 137.9 (d, J = 15.6 Hz), 136.6, 136.2, 135.0 (d, J = 2.8 Hz), 134.4, 134.2, 133.2, 133.0, 130.8, 128.0, 

128.0, 127.9, 127.8, 127.6, 127.4, 127.0, 125.8, 123.9 (d, J = 3.0 Hz), 123.2, 73.9, 69.7, 58.8 (d, J = 3.4 

Hz), 58.56 (d, J = 5.5 Hz), 57.2, 43.2, 42.8, 33.8, 32.4, 29.0, 28.0, 21.2; 
31

P NMR (162 MHz, CDCl3) δ -

22.22; IR (film): γ=2950, 2856, 1635, 1434, 1381, 1359, 1266, 1137 cm
-1

; HRMS (GC-TOF, EI) m/z 

calcd for C44H44NOP [M
+
] 633.3161, found 633.3161. 

(S)-2-((S)-7'-(diphenylphosphanyl)-3,3,3',3',5,5'-hexamethyl-2,2',3,3'-tetrahydro-1,1'-spirobi[inden]-7-

yl)-4-phenyl-4,5-dihydrooxazole [(Sa,S)-1b]: 238 mg, 38% yield; white solid, m.p. 38-39
o
C; [α]D

20
 = -

138 (c 0.1, CH2Cl2); 
1
H NMR (400 MHz, CDCl3) δ 7.59 (s, 1H), 7.30 – 7.08 (m, 12H), 7.07 – 6.95 (m, 

4H), 6.94 (s, 1H), 6.63 (d, J = 2.3 Hz, 1H), 4.90 – 4.56 (m, 1H), 3.82 – 3.65 (m, 1H), 3.42 – 3.30 (m, 

1H), 2.84 – 2.70 (m, 1H), 2.40 (s, 3H), 2.33 – 2.16 (m, 6H), 1.33 (d, J = 6.0 Hz, 6H), 1.26 (s, 3H), 1.15 

(s, 3H); 
13

C NMR (100 MHz, CDCl3) δ 165.7, 154.1, 153.3 (d, J = 7.6 Hz), 152.1 (d, J = 25.3 Hz), 

146.7, 142.7, 138.6 (d, J = 14.5 Hz), 138.0 (d, J = 15.1 Hz), 136.6, 135.7, 134.7, 134.0, 133.8, 133.4, 
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133.2, 130.5, 128.5, 128.0, 128.0, 127.8, 127.8, 127.7, 127.2, 126.6, 126.1, 123.7, 73.9, 68.6, 59.4 (d, J 

= 3.7 Hz), 58.4 (d, J = 4.3 Hz), 57.1, 42.9, 42.5, 33.3, 32.4, 29.2, 28.9, 21.4; 
31

P NMR (162 MHz, 

CDCl3) δ -21.71; IR (film): γ = 2955, 2856, 1641, 1436, 1383, 1356, 1263, 1132 cm
-1

; HRMS (GC-TOF, 

EI) m/z calcd for C44H44NOP [M
+
] 633.3161, found 633.3162. 

(S)-4-benzyl-2-((R)-7'-(diphenylphosphanyl)-3,3,3',3',5,5'-hexamethyl-2,2',3,3'-tetrahydro-1,1'-

spirobi[inden]-7-yl)-4,5-dihydrooxazole [(Ra,S)-1c]: 249 mg, 39% yield; white solid, m.p. 57-58
o
C; 

[α]D
20

 = +106 (c 0.1, CH2Cl2); 
1
H NMR (400 MHz, CDCl3) δ 7.46 (s, 1H), 7.23 (dd, J = 7.0, 4.8 Hz, 

5H), 7.17 (dd, J = 7.4, 6.1 Hz, 6H), 7.07 (s, 1H), 6.97 (ddd, J = 17.5, 11.6, 6.8 Hz, 5H), 6.64 (d, J = 4.4 

Hz, 1H), 4.10 (qd, J = 9.3, 4.1 Hz, 1H), 3.75 (t, J = 8.7 Hz, 1H), 3.04 (dd, J = 13.7, 4.1 Hz, 1H), 2.89 – 

2.71 (m, 2H), 2.41 (s, 3H), 2.25 (d, J = 10.8 Hz, 4H), 2.20 – 2.06 (m, 2H), 1.73 (dd, J = 13.6, 10.7 Hz, 

1H), 1.37 (s, 3H), 1.31 (d, J = 1.9 Hz, 6H), 1.08 (s, 3H); 
13

C NMR (100 MHz, CDCl3) δ 165.6, 154.0 (d, 

J = 7.4 Hz), 153.87 151.3, 146.8, 138.6, 138.3, 138.2 (d, J = 3.0 Hz), 136.6, 136.0, 134.8 (d, J = 2.8 Hz), 

134.3, 134.1, 133.4, 133.2, 131.6 (d, J = 21.8 Hz), 130.1, 128.7, 128.4, 128.1, 128.0, 127.8 (d, J = 2.0 

Hz), 127.8, 126.2, 125.7, 124.2, 123.4, 71.7, 67.2, 58.9 (d, J = 3.6 Hz), 58.0 (d, J = 4.9 Hz), 57.3, 43.0, 

42.7, 41.8, 33.6, 32.2, 29.2, 28.4, 21.4, 21.2; 
31

P NMR (162 MHz, CDCl3) δ -21.80; IR (film): γ = 2950, 

2856, 1646, 1434, 1379, 1359, 1132 cm
-1

; HRMS (GC-TOF, EI) m/z calcd for C45H46NOP [M
+
] 

647.3317, found 647.3313. 

(S)-4-benzyl-2-((S)-7'-(diphenylphosphanyl)-3,3,3',3',5,5'-hexamethyl-2,2',3,3'-tetrahydro-1,1'-

spirobi[inden]-7-yl)-4,5-dihydrooxazole [(Sa,S)-1c]: 246 mg, 38% yield; white solid, m.p. 61-62
o
C; 

[α]D
20

 = -125 (c 0.1, CH2Cl2); 
1
H NMR (400 MHz, CDCl3) δ 7.42 (s, 1H), 7.29 – 7.23 (m, 2H), 7.23 – 

7.14 (m, 7H), 7.07 (dd, J = 10.4, 3.3 Hz, 5H), 7.01 – 6.95 (m, 2H), 6.92 (s, 1H), 6.59 (d, J = 3.9 Hz, 1H), 

4.05 – 3.91 (m, 1H), 3.52 (dd, J = 8.3, 6.2 Hz, 1H), 3.12 (t, J = 8.8 Hz, 1H), 2.87 (dd, J = 13.9, 4.3 Hz, 

1H), 2.75 (d, J = 12.5 Hz, 1H), 2.39 (s, 3H), 2.29 – 2.17 (m, 3H), 2.15 (s, 3H), 2.04 (dd, J = 13.8, 10.2 

Hz, 1H), 1.39 (s, 3H), 1.33 (s, 3H), 1.30 (s, 3H), 1.13 (s, 3H); 
13

C NMR (100 MHz, CDCl3) δ 164.3, 

154.0 (d, J = 2.6 Hz), 153.4 (d, J = 8.1 Hz), 152.2 (d, J = 25.1 Hz), 146.5 (d, J = 3.4 Hz), 138.7 (d, J = 
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14.3 Hz), 138.5, 138.2 (d, J = 15.4 Hz), 136.4, 135.7, 134.7 (d, J = 2.7 Hz), 133.9, 133.7, 133.3, 133.2, 

130.8 (d, J = 20.9 Hz), 130.1, 129.0, 128.4, 128.0, 128.0, 127.8 – 127.7 (m), 127.6, 126.2, 125.8, 124.1 

(d, J = 2.9 Hz), 123.7, 70.5, 66.8, 59.3 (d, J = 3.9 Hz), 58.3 (d, J = 4.2 Hz), 57.0, 42.8, 42.4, 41.1, 33.2, 

32.4, 29.2, 28.9, 21.2, 21.1; 
31

P NMR (162 MHz, CDCl3) δ -21.96; IR (film): γ = 2950, 2856, 1652, 

1434, 1381, 1356, 1132 cm
-1

; HRMS (GC-TOF, EI) m/z calcd for C45H46NOP [M
+
] 647.3317, found 

647.3318. 

(4S,5S)-2-((R)-7'-(diphenylphosphanyl)-3,3,3',3',5,5'-hexamethyl-2,2',3,3'-tetrahydro-1,1'-spirobi[inden]-

7-yl)-4,5-diphenyl-4,5-dihydrooxazole [(Ra,S,S)-1d]: 258 mg, 36% yield; white solid, m.p. 213-214
o
C; 

[α]D
20

 = +94 (c 0.1, CH2Cl2); 
1
H NMR (400 MHz, CDCl3) δ 7.71 (s, 1H), 7.25 – 7.18 (m, 6H), 7.11 (ddd, 

J = 12.0, 7.4, 4.6 Hz, 5H), 7.05 – 6.90 (m, 8H), 6.87 (s, 1H), 6.81 (d, J = 4.5 Hz, 1H), 6.64 (s, 1H), 6.62 

(s, 1H), 4.62 (d, J = 10.5 Hz, 1H), 4.14 (d, J = 10.5 Hz, 1H), 3.03 (d, J = 12.4 Hz, 1H), 2.45 (s, 3H), 

2.29 – 2.16 (m, 3H), 2.10 (s, 3H), 1.33 (s, 3H), 1.22 (s, 3H), 1.13 (s, 3H), 1.00 (s, 3H); 
13

C NMR (100 

MHz, CDCl3) δ 165.5, 154.4, 154.4, 154.3, 151.6 (d, J = 24.6 Hz), 148.1 (d, J = 2.9 Hz), 140.4, 139.4, 

138.8, 138.7, 137.8, 137.6, 136.7, 136.3, 135.1, 135.0, 133.2, 133.0, 131.1, 130.8 (d, J = 22.0 Hz), 128.4, 

128.1, 128.0, 128.0, 127.9, 127.6, 127.4, 127.0, 126.3, 126.0, 124.1 (d, J = 2.9 Hz), 123.1, 89.2, 78.7, 

58.7, 58.7, 58.4, 58.4, 57.1, 43.3, 42.9, 34.1, 32.3, 29.1, 27.3, 21.2; 
31

P NMR (162 MHz, CDCl3) δ -

22.26; IR (film): γ = 2950, 2852, 1639, 1605, 1454, 1384, 1264, 1136 cm
-1

; HRMS (GC-TOF, EI) m/z 

calcd for C50H48NOP [M
+
] 709.3474, found 709.3478. 

(4S,5S)-2-((S)-7'-(diphenylphosphanyl)-3,3,3',3',5,5'-hexamethyl-2,2',3,3'-tetrahydro-1,1'-spirobi[inden]-

7-yl)-4,5-diphenyl-4,5-dihydrooxazole [(Sa,S,S)-1d]: 256 mg, 36% yield; white solid, m.p. 167-168
o
C; 

[α]D
20

 = -43 (c 0.1, CH2Cl2); 
1
H NMR (400 MHz, CDCl3) δ 7.54 (d, J = 0.9 Hz, 1H), 7.25 – 7.05 (m, 

15H), 6.97 (ddd, J = 11.2, 7.9, 2.8 Hz, 4H), 6.77 – 6.53 (m, 4H), 4.85 (d, J = 9.8 Hz, 1H), 4.67 (d, J = 

9.8 Hz, 1H), 2.90 (d, J = 12.5 Hz, 1H), 2.56 (d, J = 12.9 Hz, 1H), 2.41 (d, J = 12.4 Hz, 4H), 2.18 (d, J = 

12.5 Hz, 1H), 2.07 (s, 3H), 1.32 (d, J = 11.3 Hz, 9H), 1.13 (s, 3H); 
13

C NMR (100 MHz, CDCl3) δ 162.2, 

154.0 (d, J = 3.0 Hz), 153.3, 153.0, 151.3 (d, J = 8.0 Hz), 145.7 (d, J = 4.2 Hz), 140.2, 138.7, 135.5, 
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134.6, 134.0 (d, J = 3.1 Hz), 133.4, 133.2, 131.8, 131.6, 129.6, 129.0 (d, J = 20.1 Hz), 127.3, 127.2, 

127.0, 126.9, 126.9, 126.8, 126.6, 126.5, 126.2, 125.9, 125.8, 125.3, 125.2, 123.1, 122.7, 86.9, 77.7, 

58.7, 58.7, 54.5, 41.7, 41.4, 32.2, 32.1, 27.7, 27.6, 27.6, 20.3, 20.1; 
31

P NMR (162 MHz, CDCl3) δ -

22.33; IR (film): γ = 2951, 2852, 1646, 1605, 1454, 1384, 1260, 1130 cm
-1

; HRMS (GC-TOF, EI) m/z 

calcd for C50H48NOP [M
+
] 709.3474, found 709.3467. 

General Procedure for Asymmetric Arylation. A Schlenk tube was charged with Ni(ClO4)2·6H2O 

(1.8 mg, 0.005 mmol), (Ra,S,S)-1d (5.3 mg, 0.0075 mmol), and TFE (0.5 mL) under a nitrogen 

atmosphere. The mixture was stirred at 60 
o
C for 30 minutes. Then the substrate 2 (0.1 mmol) and aryl 

boronic acid 3 (0.15 mmol) were added and the wall of the tube was rinsed with additional 0.5 mL of 

TFE. The reaction mixture was stirred at 60 
o
C for 48 hours monitored by TLC. After cooling to room 

temperature, the solution was concentrated under reduced pressure, and the residue was purified by flash 

chromatography on silica gel (ethyl acetate/petroleum ether = 1/6) to obtain the corresponding product 4. 

(R)-4-phenyl-3,4-dihydrobenzo[e][1,2,3]oxathiazine-2,2-dioxide (4a)
21

: 23 mg, 88% yield; white solid; 

m.p. 131-132°C; 99% ee; HPLC analysis: Chiralpak IC-3 (hexane/i-PrOH = 90/10, 220 nm,1.0 

mL/min), tR (major) 10.2 min, tR (minor) 11.7 min; [α]D
20

 = +28.2 (c 0.10, CH2Cl2); 
1
H NMR (400 

MHz, CDCl3) δ 7.44 (dd, J = 6.5, 3.7 Hz, 3H), 7.39 – 7.29 (m, 3H), 7.10 (t, J = 7.7 Hz, 2H), 6.83 (d, J = 

7.6 Hz, 1H), 5.91 (s, 1H), 4.70 (s, 1H); 
13

C NMR (100 MHz, CDCl3) δ 150.4, 136.8, 128.7, 128.5, 

128.4, 127.8, 127.5, 124.2, 120.9, 117.8, 60.9; IR (film): γ = 3282, 1580, 1423, 1203, 1171, 1101, 846 

cm
-1

; HRMS (ESI-TOF) m/z calcd for C13H10NO3S
-
 [M-H]

-
 260.0381, found 260.0397. 

(R)-4-(4-chlorophenyl)-3,4-dihydrobenzo[e][1,2,3]oxathiazine-2,2-dioxide (4b)
19

: 28 mg, 93% yield; 

white solid; m.p. 139-140°C; 99% ee; HPLC analysis: Chiralpak IC-3 (hexane/i-PrOH = 90/10, 220 

nm,1.0 mL/min), tR (major) 7.3 min, tR (minor) 9.8 min; [α]D
20

 = +8.5 (c 0.20, CH2Cl2);
 1

H NMR (400 

MHz, CDCl3) δ 7.45 – 7.27 (m, 5H), 7.15 – 7.03 (m, 2H), 6.80 (d, J = 7.8 Hz, 1H), 5.88 (d, J = 8.4 Hz, 

1H), 4.86 (d, J = 8.3 Hz, 1H); 
13

C NMR (100 MHz, CDCl3) δ 151.4, 136.29, 135.6, 130.2, 130.0, 129.7, 
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20

128.4, 125.4, 121.4, 119.0, 61.2; IR (film): γ = 3274, 1581, 1425, 1202, 1170, 1092, 849 cm
-1

; HRMS 

(ESI-TOF) m/z calcd for C13H9ClNO3S
-
 [M-H]

-
 293.9992, found 293.9997. 

(R)-4-(3-chlorophenyl)-3,4-dihydrobenzo[e][1,2,3]oxathiazine-2,2-dioxide (4c)
21

: 27 mg, 91% yield; 

white solid; m.p. 104-105°C; 99% ee; HPLC analysis: Chiralpak IC-3 (hexane/i-PrOH = 95/5, 220 

nm,1.0 mL/min), tR (minor) 8.8 min, tR (major) 11.5 min; [α]D
20

 = +16.6 (c 0.28, CH2Cl2); 
1
H NMR 

(400 MHz, CDCl3) δ 7.45 – 7.32 (m, 4H), 7.28 – 7.23 (m, 1H), 7.11 (ddd, J = 23.4, 11.7, 4.6 Hz, 2H), 

6.83 (d, J = 7.8 Hz, 1H), 5.87 (s, 1H), 4.79 (s, 1H); 
13

C NMR (100 MHz, CDCl3) δ 151.4, 139.6, 135.3, 

130.8, 130.0, 129.8, 129.0, 128.4, 127.1, 125.4, 121.2, 119.0, 61.4; IR (film): γ = 3276, 1581, 1425, 

1203, 1172, 1101, 857cm
-1

; HRMS (ESI-TOF) m/z calcd for C13H9ClNO3S
-
 [M-H]

-
 293.9992, found 

293.9997. 

(S)-4-(2-chlorophenyl)-3,4-dihydrobenzo[e][1,2,3]oxathiazine-2,2-dioxide (4d)
21

: 15 mg, 51% yield; 

light yellow solid; m.p. 114-115°C; 93% ee; HPLC analysis: Chiralpak IF-3 (hexane/i-PrOH = 90/10, 

220 nm,1.0 mL/min), tR (major) 6.2 min, tR (minor) 7.6 min; [α]D
20

 = +29.8 (c 0.08, CH2Cl2);
 1

H NMR 

(400 MHz, CDCl3) δ 7.51 – 7.45 (m, 1H), 7.44 – 7.29 (m, 4H), 7.15 – 7.05 (m, 2H), 6.78 (d, J = 7.7 Hz, 

1H), 6.30 (s, 1H), 5.09 (s, 1H); 
13

C NMR (100 MHz, CDCl3) δ 151.4, 134.9, 134.0, 131.3, 130.9, 130.8, 

129.8, 127.8, 127.6, 125.4, 121.1, 118.9, 59.6; IR (film): γ = 3280, 1581, 1427, 1374, 1203, 1172, 1101, 

847cm
-1

; HRMS (ESI-TOF) m/z calcd for C13H9ClNO3S
-
 [M-H]

-
 293.9992, found 293.9999. 

(R)-4-(4-bromophenyl)-3,4-dihydrobenzo[e][1,2,3]oxathiazine-2,2-dioxide (4e)
19

: 31 mg, 91% yield; 

white solid; m.p. 126-127°C; 99% ee; HPLC analysis: Chiralpak IC-3 (hexane/i-PrOH = 90/10, 220 

nm,1.0 mL/min), tR (major) 7.6 min, tR (minor) 10.2 min; [α]D
20

 = +10.2 (c 0.23, CH2Cl2);
 1

H NMR 

(400 MHz, CDCl3) δ 7.61 – 7.55 (m, 2H), 7.35 (td, J = 7.9, 0.8 Hz, 1H), 7.25 – 7.20 (m, 2H), 7.11 (ddd, 

J = 9.1, 6.8, 1.0 Hz, 2H), 6.81 (d, J = 7.8 Hz, 1H), 5.88 (s, 1H), 4.70 (s, 1H); 
13

C NMR (100 MHz, 

CDCl3) δ 150.4, 135.8, 131.6, 129.5, 128.9, 127.4, 124.3, 122.8, 120.3, 117.9, 60.3; IR (film): γ= 3276, 

1581, 1426, 1371, 1203, 1170, 1099, 849 cm
-1

; HRMS (ESI-TOF) m/z calcd for C13H9BrNO3S
-
 [M-H]

-
 

337.9487, found 337.9493. 
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(R)-4-(4-(trifluoromethyl)phenyl)-3,4-dihydrobenzo[e][1,2,3]oxathiazine-2,2-dioxide (4f)
19

: 25 mg, 76% 

yield; light yellow solid; m.p. 119-120°C; 98% ee; HPLC analysis: Chiralpak IF-3 (hexane/i-PrOH = 

90/10, 220 nm,0.8 mL/min), tR (minor) 5.9 min, tR (major) 6.8 min; [α]D
20

 = +34.3 (c 0.07, CH2Cl2);
 1

H 

NMR (400 MHz, CDCl3) δ 7.64 (d, J = 8.2 Hz, 2H), 7.43 (d, J = 8.1 Hz, 2H), 7.30 (dd, J = 11.5, 4.2 Hz, 

1H), 7.12 – 7.00 (m, 2H), 6.73 (d, J = 7.7 Hz, 1H), 5.91 (s, 1H), 4.72 (s, 1H); 
13

C NMR (100 MHz, 

CDCl3) δ 150.5, 140.6, 130.8 (d, J = 32.8 Hz), 129.1, 128.3, 127.3, 125.4 (d, J = 3.7 Hz), 124.4, 122.6 

(d, J = 272.4 Hz), 120.0, 118.1, 60.3; 
19

F NMR (376 MHz, CDCl3) δ -62.80 (s, 3F); IR (film): γ = 3274, 

1582, 1427, 1326, 1205, 1171, 853 cm
-1

; HRMS (ESI-TOF) m/z calcd for C14H9F3NO3S
- 

[M-H]
-
 

328.0255, found 328.0268. 

(R)-4-(p-tolyl)-3,4-dihydrobenzo[e][1,2,3]oxathiazine-2,2-dioxide (4g)
21

: 24 mg, 87% yield; white solid; 

m.p. 120-121°C; 93% ee; HPLC analysis: Chiralpak IC-3 (hexane/i-PrOH = 95/5, 220 nm,1.0 mL/min), 

tR (major) 16.0 min, tR (minor) 17.4 min; [α]D
20

 = +18.7 (c 0.12, CH2Cl2);
 1

H NMR (400 MHz, CDCl3) 

δ 7.31 (t, J = 7.7 Hz, 1H), 7.27 – 7.17 (m, 4H), 7.07 (dd, J = 15.6, 8.0 Hz, 2H), 6.82 (d, J = 7.8 Hz, 1H), 

5.86 (s, 1H), 4.73 (s, 1H), 2.38 (s, 3H); 
13

C NMR (100 MHz, CDCl3) δ 150.4, 138.6, 133.9, 129.1, 

128.6, 127.64, 127.5, 124.1, 121.2, 117.7, 60.7, 20.2; IR (film): γ = 3276, 1580, 1424, 1370, 1203, 1170, 

1100, 850 cm
-1

; HRMS (ESI-TOF) m/z calcd for C14H12NO3S
-
 [M-H]

-
 274.0538, found 274.0540. 

(R)-4-(m-tolyl)-3,4-dihydrobenzo[e][1,2,3]oxathiazine-2,2-dioxide (4h)
21

: 25 mg, 91% yield; white 

solid; m.p. 83-84°C; 99% ee; HPLC analysis: Chiralpak IC-3 (hexane/i-PrOH = 95/5, 220 nm,1.0 

mL/min), tR (major) 15.0 min, tR (minor) 17.4 min; [α]D
20

 = +12.1 (c 0.31, CH2Cl2);
 1

H NMR (400 

MHz, CDCl3) δ 7.32 (dd, J = 12.2, 4.8 Hz, 2H), 7.27 – 7.20 (m, 1H), 7.09 (ddd, J = 15.0, 10.9, 2.6 Hz, 

4H), 6.82 (d, J = 7.8 Hz, 1H), 5.85 (s, 1H), 4.72 (s, 1H), 2.37 (s, 3H); 
13

C NMR (100 MHz, CDCl3) δ 

151.5, 139.4, 137.8, 130.3, 129.7, 129.4, 129.3, 128.6, 125.8, 125.2, 122.1, 118.8, 62.0, 21.4; IR (film): 

γ = 3277, 1581, 1421, 1370, 1198, 1170, 1101, 879 cm
-1

; HRMS (ESI-TOF) m/z calcd for C14H12NO3S
-
 

[M-H]
-
 274.0538, found 274.0541. 
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(R)-4-(benzo[d][1,3]dioxol-5-yl)-3,4-dihydrobenzo[e][1,2,3]oxathiazine-2,2-dioxide (4i)
19

: 27 mg, 88% 

yield; white solid; m.p. 127-128°C; 95% ee; HPLC analysis: Chiralpak IC-3 (hexane/i-PrOH = 90/10, 

220 nm,1.0 mL/min), tR (minor) 17.3 min, tR (major) 18.1 min; [α]D
20

 = +21.0 (c 0.10, CH2Cl2);
 1

H 

NMR (400 MHz, CDCl3) δ 7.32 (t, J = 7.7 Hz, 1H), 7.17 – 6.98 (m, 2H), 6.92 – 6.79 (m, 3H), 6.73 (s, 

1H), 6.00 (s, 2H), 5.80 (t, J = 8.2 Hz, 1H), 4.73 (d, J = 8.3 Hz, 1H); 
13

C NMR (100 MHz, CDCl3) δ 

151.4, 148.6, 148.5, 131.5, 129.7, 128.6, 125.2 , 122.9 , 122.0, 118.8, 108.8, 108.7, 101.6, 61.8; IR 

(film): γ = 3277, 1580, 1423, 1370, 1202, 1170, 1096, 836 cm
-1

; HRMS (ESI-TOF) m/z calcd for 

C14H10NO5S
-
 [M-H]

-
 304.0280, found 304.0286. 

(R)-4-([1,1'-biphenyl]-4-yl)-3,4-dihydrobenzo[e][1,2,3]oxathiazine-2,2-dioxide (4j)
19

: 31 mg, 92% 

yield; white solid; m.p. 167-168°C; 99% ee; HPLC analysis: Chiralpak IC-3 (hexane/i-PrOH = 90/10, 

220 nm,1.0 mL/min), tR (major) 12.5 min, tR (minor) 14.4 min; [α]D
20

 = +17.0 (c 0.10, CH2Cl2);
 1

H 

NMR (400 MHz, CDCl3) δ 7.64 (d, J = 8.2 Hz, 2H), 7.62 – 7.54 (m, 2H), 7.46 (dd, J = 10.3, 4.7 Hz, 

2H), 7.38 (ddd, J = 24.0, 11.4, 6.0 Hz, 4H), 7.10 (dd, J = 14.8, 7.9 Hz, 2H), 6.89 (d, J = 7.7 Hz, 1H), 

5.95 (d, J = 8.5 Hz, 1H), 4.77 (d, J = 8.4 Hz, 1H); 
13

C NMR (100 MHz, CDCl3) δ 151.5, 142.5, 140.0, 

136.7, 129.82, 129.2, 128.9, 128.6, 128.1, 127.9, 127.1, 125.3, 121.9, 118.9, 61.7; IR (film): γ = 3278, 

1580, 1423, 1371, 1204, 1170, 1100, 851 cm
-1

; HRMS (ESI-TOF) m/z calcd forC19H14NO3S
-
 [M-H]

-
 

336.0694, found 336.0705 

(R)-4-(naphthalen-2-yl)-3,4-dihydrobenzo[e][1,2,3]oxathiazine-2,2-dioxide (4k)
21

: 28 mg, 90% yield; 

white solid; m.p. 138-139°C; 98% ee; HPLC analysis: Chiralpak IC-3 (hexane/i-PrOH = 90/10, 220 

nm,1.0 mL/min), tR (major) 11.4 min, tR (minor) 18.3 min; [α]D
20

 = -48.3 (c 0.10, CH2Cl2);
 1

H NMR 

(400 MHz, CDCl3) δ 7.94 – 7.81 (m, 4H), 7.61 – 7.50 (m, 2H), 7.40 – 7.30 (m, 2H), 7.17 – 7.03 (m, 

2H), 6.85 (d, J = 7.8 Hz, 1H), 6.09 (d, J = 11.3 Hz, 1H), 4.79 (s, 1H); 
13

C NMR (100 MHz, CDCl3) δ 

151.5, 134.9, 133.5, 133.1, 129.8, 129.7, 128.8, 128.6, 128.1, 127.9, 127.2, 127.0, 125.3, 125.2, 122.0, 

118.9, 62.2; IR (film): γ = 3276, 1580, 1421, 1365, 1204, 1171, 1099, 865 cm
-1

; HRMS (ESI-TOF) m/z 

calcd for C17H12NO3S
-
 [M-H]

-
 310.0538, found 310.0544. 
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(S)-4-(thiophen-3-yl)-3,4-dihydrobenzo[e][1,2,3]oxathiazine-2,2-dioxide (4l)
19

: 22 mg, 82% yield; white 

solid; m.p. 130-131°C; 95% ee; HPLC analysis: Chiralpak IF-3 (hexane/i-PrOH = 90/10, 220 nm,0.8 

mL/min), tR (minor) 9.9 min, tR (major) 12.9 min; [α]D
20

 = +59.2 (c 0.07, CH2Cl2);
 1

H NMR (400 MHz, 

CDCl3) δ 7.40 (ddd, J = 4.3, 3.9, 2.3 Hz, 2H), 7.37 – 7.30 (m, 1H), 7.12 (td, J = 7.7, 1.0 Hz, 1H), 7.05 

(dd, J = 8.3, 0.8 Hz, 1H), 7.01 (dd, J = 4.9, 1.4 Hz, 1H), 6.94 (d, J = 7.8 Hz, 1H), 6.04 (d, J = 8.7 Hz, 

1H), 4.79 (d, J = 8.6 Hz, 1H); 
13

C NMR (100 MHz, CDCl3) δ 151.1, 138.0, 129.8, 128.2, 127.9, 126.6, 

125.9 , 125.2, 121.6, 118.8, 56.9; IR (film): γ = 3275, 1580, 1423, 1368, 1195, 1170, 1100, 863 cm
-1

; 

HRMS (ESI-TOF) m/z calcd for C11H8NO3S2
-
 [M-H]

-
 265.9946, found 265.9943. 

(R)-6-methyl-4-phenyl-3,4-dihydrobenzo[e][1,2,3]oxathiazine-2,2-dioxide (4m)
21

: 26 mg, 94% yield; 

white solid; m.p. 125-126°C; 99% ee; HPLC analysis: Chiralpak IC-3 (hexane/i-PrOH = 95/5, 220 

nm,1.0 mL/min), tR (major) 20.1 min, tR (minor) 21.9 min; [α]D
20

 = +57.0 (c 0.10, CH2Cl2);
 1

H NMR 

(400 MHz, CDCl3) δ 7.49 – 7.42 (m, 1H), 7.39 – 7.31 (m, 1H), 7.12 (dd, J = 8.4, 1.9 Hz, 1H), 6.97 (d, J 

= 8.4 Hz, 1H), 6.60 (s, 1H), 5.86 (s, 1H), 4.65 (s, 1H), 2.21 (s, 1H); 
13

C NMR (100 MHz, CDCl3) δ 

148.4, 137.0, 134.0, 129.3, 128.5, 128.4, 127.8, 127.5, 120.4, 117.5, 60.9, 19.7; IR (film): γ = 3276, 

1488, 1422, 1370, 1176, 1109, 856 cm
-1

; HRMS (ESI-TOF) m/z calcd for C14H12NO3S
-
 [M-H]

-
 

274.0538, found 274.0530. 

(R)-6-chloro-4-phenyl-3,4-dihydrobenzo[e][1,2,3]oxathiazine-2,2-dioxide (4n)
21

: 26 mg, 88% yield; 

white solid; m.p. 137-138°C; 99% ee; HPLC analysis: Chiralpak IC-3 (hexane/i-PrOH = 98/2, 220 

nm,0.8 mL/min), tR (major) 34.6 min, tR (minor) 40.7 min; [α]D
20

 = +33.9 (c 0.22, CH2Cl2);
 1

H NMR 

(400 MHz, CDCl3) δ 7.46 (d, J = 2.9 Hz, 3H), 7.38 – 7.28 (m, 3H), 7.04 (d, J = 8.8 Hz, 1H), 6.81 (d, J = 

1.3 Hz, 1H), 5.86 (s, 1H), 4.71 (s, 1H); 
13

C NMR (100 MHz, CDCl3) δ 148.9, 135.9, 129.5, 128.9 (d, J = 

1.5 Hz), 128.6, 127.7, 127.2, 122.5, 119.2, 60.7; IR (film): γ = 3279, 1473, 1426, 1371, 1204, 1169, 

1111, 847 cm
-1

; HRMS (ESI-TOF) m/z calcd for C13H9ClNO3S
-
 [M-H]

-
 293.9992, found 293.9994. 

(R)-6-bromo-4-phenyl-3,4-dihydrobenzo[e][1,2,3]oxathiazine-2,2-dioxide (4o)
19

: 29 mg, 85% yield; 

white solid; m.p. 154-155°C; 99% ee; HPLC analysis: Chiralpak IC-3 (hexane/i-PrOH = 98/2, 220 
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nm,0.8 mL/min), tR (major) 40.3 min, tR (minor) 45.3 min; [α]D
20

 = +37.8 (c 0.23, CH2Cl2);
 1

H NMR 

(400 MHz, CDCl3) δ 7.52 – 7.41 (m, 4H), 7.33 (dd, J = 6.3, 3.2 Hz, 2H), 6.96 (dd, J = 11.0, 5.4 Hz, 2H), 

5.87 (s, 1H), 4.75 (s, 1H); 
13

C NMR (100 MHz, CDCl3) δ 150.5, 137.0, 132.8, 131.2, 129.9, 129.7, 

128.7, 124.0, 120.7, 118.0, 61.7; IR (film): γ = 3266, 1471, 1417, 1368, 1200, 1167, 1111, 845 cm
-1

; 

HRMS (ESI-TOF) m/z calcd for C13H9BrNO3S
-
 [M-H]

-
 337.9487, found 337.9486. 
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