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The utility and applicability of polyethylene-g-polyacrylic acid-

immobilized dimethylaminopyridine (g-DMAP) as a catalyst in
a continuous-flow system were investigated for decarboxyla-

tive esterification. High catalytic activity toward acylation was
provided by g-DMAP containing a flexible grafted-polymer

structure. During decarboxylation, carboxylic acids and alco-

hols were converted cleanly using di-tert-butyl dicarbonate
(Boc2O) as a coupling reagent, which reduced by-products. In

addition, the use of Boc2O resulted in the formation of tert-
butyl esters. These esterifications dramatically reduced the re-

action time under continuous-flow conditions, with a residence
time of approximately 2 min. This highly efficient esterification

procedure will provide more practical industrial applications.

Polymer-immobilized reagents and catalysts have promoted
environmentally friendly and sustainable chemistry.[1, 2] A variety

of catalysts for these syntheses were developed by introducing
functional groups into polystyrene supports.[3] However, the

ability of reagents to access the catalytic site can be difficult

owing to the closed framework of the cross-linked polystyr-
ene.[4] Therefore, attention focused on the use of graft poly-

mers to accumulate highly reactive side chains on the surface
of the trunk polymer. For example, polyethylene-g-polyacrylic

acid (PE-g-PAA) has flexible grafted chains on the chemostable
polyethylene trunk that can be functionalized.

A previous study reported PE-g-

PAA-supported dimethylaminopyri-
dine (g-DMAP) as a heterogeneous
organocatalyst for continuous-flow
acylation systems (Figure 1).[5] The
g-DMAP possessed highly accessi-
ble reactive sites and chemical sta-

bility, owing to the structure of PE-
g-PAA. Acylation using g-DMAP
with acid anhydride produced the
desired products in good yields.
The present study describes the

application of g-DMAP in continu-

ous esterification reactions using a wide variety of carboxylic

acids and alcohols. As an extension of dimethylaminopyridine
(DMAP)-mediated esterification,[6] the esterification was report-

ed to proceed via an acylpyridinium salt after generation of
the mixed anhydride.[7] However, by-products of the coupling

reagents, such as dicyclohexylcarbodiimide/DMAP, hindered

esterification in a continuous-flow system.[8] Decarboxylative
esterification using the effective di-tert-butyl dicarbonate

(Boc2O)/DMAP system had the advantage of volatile by-prod-
ucts (Scheme 1).[9, 10] Thus, herein a continuous-flow system

using g-DMAP for decarboxylative esterification in the Boc2O/
DMAP system was developed.

Initially, decarboxylative esterification as a batch method

was investigated using 0.1 m 1-phenylethyl alcohol, 1.5 equiva-
lents of 3-phenylpropanoic acid, 1.65 equivalents of Boc2O
and triethylamine (NEt3), and 3.3 mol % g-DMAP in toluene at
room temperature. Good activity was obtained (see the Sup-

porting Information for optimized conditions).
After the initial experiments, a continuous-flow system with

Boc2O/g-DMAP was investigated using several different alco-

hols and carboxylic acids. Batch and flow conditions were com-
pared using the same substrate ratio and solvent (Table 1).

Continuous-flow reaction conditions were based on previously
optimized values; sufficient time (ca. 60 min) was required to

replace the reaction solution, as the reactor was filled with sol-

vent before operation. The extent of conversion in the product
was determined periodically by HPLC using an internal stan-

dard. Esterification within the Boc2O/g-DMAP system under
both conditions was effective, demonstrating that g-DMAP can

be applied to continuous-flow systems and reused with differ-
ent substrates and solvents. Although the rate of product for-

Figure 1. Structure of g-DMAP.

Scheme 1. Decarboxylative esterification with Boc2O/g-DMAP.
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mation was reduced under a lower flow rate (20 mL min¢1), the
conversion efficiency improved (Table 1, entry 7). However, the

batch reaction required 24 h, whereas the residence time in

the catalyst tube using the continuous-flow system was only
2 min at a flow rate of 40 mL min¢1, demonstrating the advan-

tages of continuous-flow systems.[5] This suggests that Boc2O/
g-DMAP can be a beneficial coupling reagent for various sub-

strates if individual reaction conditions are optimized.

The reaction was then performed under auxiliary-base-free

conditions. The auxiliary-base effect of NEt3 was determined

for esterification of N-(carbobenzyloxy)-d-proline (Z-Pro) with
allyl alcohol in a batch process (Scheme 2; Figure 2). In this

esterification with DMAP, NEt3 was important owing to the de-
protonation step in enhancing the nucleophilicity of carboxylic

acids for catalytic activity of DMAP.[11] As a result, in the ab-
sence of NEt3, the reaction proceeded more gradually than the

reaction under auxiliary-base conditions. However, this draw-

back was improved by employing the continuous-flow system,
which decreased the reaction time significantly. Several esterifi-

cation reactions between N-protected amino acids and alco-
hols without auxiliary base were investigated and compared

under batch and flow conditions at room temperature
(Table 2). In the continuous-flow

system using an HPLC pump, all

reagents were placed together
in a flask. Catalytic activity for

the esterification of Z-Pro with
unsaturated and secondary alco-

hols in the batch process was
improved dramatically through

the use of this continuous-flow
system (Table 2, entries 1–3).

These results suggest that g-DMAP plays an important role in
esterification, not only as a highly nucleophilic base catalyst,
but also through enhancement of the nucleophilicity of the

carboxylic acids as an auxiliary base.
Finally, the efficacy of the Boc2O/g-DMAP system for tert-

butyl esterification of various carboxylic acids was investigated

(Table 3).[9, 12] As indicated in Scheme 1 (b), Boc2O reacted with
carboxylic acids to afford mixed carbonic–carboxylic anhy-

drides (3) with one equivalent of tert-butyl alcohol (tBuOH).
The mixed carbonic–carboxylic anhydrides (3) then underwent

nucleophilic attack by g-DMAP, resulting in formation of the
acylpyridinium salt and its corresponding tert-butyl ester, ac-

Table 2. Continuous esterification with N-protected amino acids and vari-
ous alcohols using a Boc2O/g-DMAP system under auxiliary base-free con-
ditions, and comparison to corresponding reactions under batch condi-
tions.[a]

Entry R1¢COOH R2¢OH Batch yield[b] [%] Flow conv.[c] [%]

1[d] Z-Pro l-menthol 62 79
2[d] Z-Pro allyl 41 90
3[e] Z-Pro cinnamyl 48 82
4[e] Boc-Pro[f] benzyl 89 95
5[g] Z-Phe allyl 95 95

[a] g-DMAP (Lot No. 02,f = 2.51 mmol g¢1) with 0.12 mmol functionality
loaded in the reactor and used repeatedly. [b] R1¢COOH (0.1 m), molar
ratios are same with flow conditions, g-DMAP (Lot No. 02, 3.3 mol %), RT,
24 h, isolated yield. [c] R1¢COOH (0.2 m), determined by HPLC of crude
product. [d] X = 1.3, Y = 1.3. [e] X = 1.5, Y = 1.5. [f] N-(tert-butoxycarbonyl)-
d-proline [g] X = 1.7, Y = 1.7.

Table 1. Continuous esterification process using various alcohols and car-
boxylic acids in the Boc2O/g-DMAP system, and comparison to corre-
sponding reactions conducted using a batch process.[a]

Entry R1¢OH R2¢COOH Batch
yield[b] [%]

Flow
conv.[c] [%]

1 1-phenylethyl 3-phenylpropanoic 99 92
2 1-phenylethyl cinnamic 81 87
3 3-phenylpropyl 3-phenylpropanoic 89 92
4[d] 3-phenylpropyl cinnamic 85 99[e]

5[d] benzyl 3-phenylpropanoic 79 84[e]

6 benzyl cinnamic 93 95
7 l-menthol 3-phenylpropanoic 64[f] 79[f,g,h]

[a] g-DMAP (Lot No. 01, f = 2.54 mmol g¢1) with 0.25 mmol functionality
was loaded and used repeatedly. [b] Alcohol (0.1 m), molar ratios are
same with flow conditions, fresh g-DMAP (Lot No. 02, f = 2.51 mmol g¢1,
3.3 mol %) was used, RT, 24 h, isolated yield. [c] Alcohol (0.6 m), deter-
mined by HPLC of crude product. [d] Different Lot number catalyst was
used. [e] g-DMAP (Lot No. 02, f = 2.51 mmol g¢1) with 0.15 mmol function-
ality. [f] Solvent: ethyl acetate. [g] Flow rate: 20 mL min¢1. [h] g-DMAP (Lot
No. 02, f = 2.51 mmol g¢1) with 0.11 mmol functionality.

Figure 2. Effect of NEt3 on esterification of Z-Pro with allyl alcohol using the
Boc2O/g-DMAP system in a batch process.

Scheme 2. The esterification of Z-Pro with allyl alcohol using the Boc2O/g-DMAP system.
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companied by CO2 evolution. High conversion of N-(carboben-

zyloxy)-d-phenylalanine (Z-Phe) occurred using tBuOH (Table 3,
entry 2) indicating that tBuOH functions as solvent and nucleo-

philic reagent. In abietic acid, which is a sterically hindered car-

boxylic acid, a tert-butyl carbonic abietic anhydride intermedi-
ate was formed without formation of the tert-butyl ester.

In conclusion, a useful continuous-flow system was devel-
oped using coupling reactions involving Boc2O/g-DMAP for de-

carboxylative esterification with carboxylic acids and alcohols.
This continuous-flow system not only reduced the production

of by-products, but also dramatically decreased the reaction

time because of the graft-polymer-supported catalyst. Howev-
er, further optimization is needed for the reactions. These re-

sults suggest a broad scope for graft-polymer-supported cata-
lysts in flow systems.
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Table 3. Continuous tert-butyl esterification of various carboxylic acids in
the Boc2O/g-DMAP system.[a]

Entry R1-COOH Boc2O [equiv.] Solvent Flow Conv.[b] [%]

1 Z-Pro 1.5 Toluene (a) 88[c]

2 Z-Phe 2.0 tBuOH (a) 79
3[d] 2-Phenylbutyric acid 2.0 THF (a) 81[d]

4[d] Abietic acid 2.0 THF (a) nd[d,e]

(b)>99[d]

[a] g-DMAP (Lot No. 02,f = 2.51 mmol g¢1) with 0.25 mmol functionality
loaded in the reactor and used repeatedly. [b] R1¢COOH (0.2 m), deter-
mined by HPLC of crude product. [c] 76 h. [d] g-DMAP (Lot No. 02,f =

2.51 mmol g¢1) with 0.22 mmol functionality loaded in the reactor and
used repeatedly. [e] Not determined.
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