

Accepted Article

Title: Organocatalytic Nitroaldol Reaction Associated with Deuterium-Labeling

Authors: Tsuyoshi Yamada, Marina Kuwata, Ryoya Takakura, Yasunari Monguchi, Hironao Sajiki, and Yoshinari Sawama

This manuscript has been accepted after peer review and appears as an Accepted Article online prior to editing, proofing, and formal publication of the final Version of Record (VoR). This work is currently citable by using the Digital Object Identifier (DOI) given below. The VoR will be published online in Early View as soon as possible and may be different to this Accepted Article as a result of editing. Readers should obtain the VoR from the journal website shown below when it is published to ensure accuracy of information. The authors are responsible for the content of this Accepted Article.

To be cited as: Adv. Synth. Catal. 10.1002/adsc.201701224

Link to VoR: http://dx.doi.org/10.1002/adsc.201701224

Organocatalytic Nitroaldol Reaction Associated with Deuterium-Labeling

Tsuyoshi Yamada,^a Marina Kuwata,^a Ryoya Takakura,^a Yasunari Monguchi,^a Hironao Sajiki,^{a*} and Yoshinari Sawama^{a*}

^a Laboratory of Organic Chemistry, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu 501-1196, Japan E-mail: sawama@gifu-pu.ac.jp, sajiki@gifu-pu.ac.jp

Received: ((will be filled in by the editorial staff))

Supporting information for this article is available on the WWW under http://dx.doi.org/10.1002/adsc.201#######.((Please delete if not appropriate))

Abstract. A deuterium-labeling reaction of nitroalkanes in deuterium oxide and the subsequent nitroaldol reaction have been accomplished under basic and organocatalytic conditions to provide the deuterium-labeled β -nitroalcohols in high yields and high deuterium contents. β -Deuterated β -nitroalcohols could be smoothly obtained from the reaction of nitroalkanes and various electrophiles using the easily-removal basic resin WA30. Furthermore, the asymmetric nitroaldol reaction using nitromethane and α -keto esters as electrophiles in the presence of a quinine-derived organocatalyst in deuterium oxide could provide the desired β -deuterated nitroalcohol derivatives with high enantioselectivities.

Keywords: deuterium-labeling; deuterium oxide; enantioselectivity; organocatalysis; nitroaldol reaction

Deuterium-labeled compounds have been utilized in various fields (e.g., the elucidation of metabolic pathways and reaction mechanisms, surrogate compounds for microanalyses of environmental pollutants)^[1], and heavy drugs (deuterium-labeled medicines) have been recently spotlighted due to their ability to prolong the duration of drug action based on the isotope effect.^[2] Therefore, the novel deuterium incorporation methods into the desired positions of compounds can be powerful tools to provide deuterium-lableled functional materials and their synthetic building blocks. Especially, the use of deuterium oxide (D₂O) as a deuterium source is important from the viewpoint of green sustainable chemistry and cost performance. Catalytic and/or metal-free deuterium-labeling method are also useful as an environmentally friendly method.^[3,4] The nitroaldol reaction (Henry reaction)^[5] has been widely utilized to synthesize various β -nitroalcohol derivatives, which could be transformed into biologically-active compounds,^[6] and deuteriumlabeled nitromethane (CD3NO2) has been used in mechanistic studies to produce the deuterium-incorporated products.^[7] While CD₃NO₂ is commercially available, other deuterium-labeled

nitroalkane derivatives are expensive or cannot be purchased. Since the nitroaldol reaction accompanied by the deuterium-labeling of CH_3NO_2 has never been developed, we herein report a direct deuteration method of nitroalkanes in D₂O and subsequent nitroaldol reaction with various electrophiles to form the corresponding β -deuterated β -nitroalcohol derivatives using a heterogeneous basic resin, WA30, as an easily handled organocatalyst, and a quininederived organocatalyst for the enantioselective synthesis.

Scheme 1. Organocatalytic nitroaldol reactions with deuterium-labeling.

While the nitroaldol reaction is generally carried out under basic conditions in organic solvents, water (H₂O) has also been used as a solvent in a few reports related to the metal-free nitroaldol reactions.^[8] We first investigated the nitroaldol reaction between 0.25 mmol of benzaldehyde (1a) and 2.5 mmol of CH₃NO₂ in D₂O (1 mL) under relatively mild basic condi tions (Table 1). After stirring CH₃NO₂ and K_2CO_3 (40 mol%) in D_2O for 2 h at room temperature, **1a** was added to the mixture. After further stirring for 12 h at room temperature, the desired β -bisdeuterated β -nitroalcohol (2a-d₂) was obtained in 88% yield with 90% D content. Et₃N was also effective to produce $2a-d_2$ with a high D efficiency (entry 2), while the use of quinoline led to the decrease in both the D content and yield (entry 3). On the other hand, the basic resin WA30 (10 mg, 38 wt% toward 1a, Mitsubishi Chemical Corp.), which is a polystyrene polymer possessing tertiary amine residues on the fundamental skeleton, effectively catalyzed the

present nitroaldol reaction in association with deuterium-labeling to form $2a-d_2$ with a 96% D content (entry 4), and the increased use of D_2O (2) mL) further improved the reaction efficiency to provide $2a-d_2$ with a nearly quantitative D content (entry 5). A 20-times scale-up test could also be allowed with a high D content and yield (entry 6). It is an important feature that WA30 is easilyeliminated from the reaction media by a simple filtration. Additional investigation results using other bases are detailed in the Supporting Information. WA30 could be reused to give $2a - d_2$ with good deuterium contents, although the slight reduction in the isolated yield was observed (entry 7; the results of the repeated uses (five times) are described in Supporting Information). During the first stirring in the presence of WA30 without 1a, CH₃NO₂ was effectively deuterated into CD₃NO₂ within 2 h with a quite satisfactory D content (eq. 1).

 Table 1. Nitroaldol reactions associated with deuteriumlabeling.

CH ₃ (2.5 m	$\frac{\text{base}}{\text{D}_2 \text{O} (1 \text{ mL})} \begin{bmatrix} \text{CD}_3 \text{NO}_2 \end{bmatrix}$ rt, 2 h	Ph ^{CHO} (1a : 0.25 mmo rt, 12 h	$\stackrel{\text{(I)}}{\rightarrow} Ph \xrightarrow{\text{(V)}} Ph $
entry	base	D content (%)	yield (%)
1	K ₂ CO ₃ (40 mol%)	90	88
2	Et ₃ N (40 mol%)	86	100
3	quinoline (40 mol%)	32	22
4	WA30 (10 mg)	96	88
5 ^[a]	WA30 (10 mg)	99	75
6 ^[b]	WA30	96	84
7	Reused WA30	93	78

^[a] 2 mL of D_2O was used.

 $^{[b]}5$ mmol of $1a,\,200$ mg of WA30 and 20 mL of D_2O were used.

Various electrophiles and nitroalkane derivatives were next investigated (Table 2). 4-Bromo-, 4methoxycarbonyl-, 4-methoxy-, 4-nitro-, 3-nitro- and 2-nitro-benzaldehyde derivatives (**1b–1g**) were all smoothly transformed into the corresponding β bisdeuterated β -nitroalcohols (**2b-d_2-2g-d_2**) based on the coupling of the *in situ*-generated CD₃NO₂ with excellent D efficiencies and good to high yields. Naphthylaldehyde (**1h**) and heteroaromatic aldehydes (**1i** and **1j**) were also good substrates. Decanal was converted to the tetradeuterated nitroalcohol (**2k-d_4**) via the initial WA30-catalyzed α -deuteration of

decanal and the following nitroaldol reaction between CD_3NO_2 and the partially α -deuterated decanal. Nitroethane (EtNO₂) and nitropropane $(n-PrNO_2)$ were also available for the present reaction, and the corresponding mono-deuterated products $(3-d_1 \text{ and } 4$ d_1) obtained diastereomixtures. were as Trifluoromethylacetophenone (5) and ethvl benzoylformate (7) were also effectively reacted with the *in situ*-generated CD₃NO₂ to give the β bisdeuterated β -nitroalcohols (**6**- d_2 and **8**- d_2) with good D efficiencies. The β -bisdeuterated β nitroamine derivative $(10-d_2)$ could be obtained from (E)-N-benzylideneaniline (9) in a moderate yield along with generation of the β -bisdeuterated β nitroalcohol $(2a-d_2)$ via the hydrolyzed benzaldehyde (1a).

 $^{[a]}$ The reaction was carried out using CH_3NO_2 and an aldehyde (1) unless otherwise noted.

- ^[b] 1 mL of D₂O was used.
- [c] K₂CO₃ (20 mol%) was added.
- ^[d] At 50 °C for the second step.
- ^[e] 20 mg of WA30 was used.
- ^[f] EtNO₂ was used instead of CH₃NO₂.

 $^{[g]}$ *n*-PrNO₂ was used instead of CH₃NO₂. The first step was for 24 h.

^[h] The product was obtained as a diastereomixture.

^[i] **5** was used as the substrate.

^[j] **7** was used as the substrate.

^[k] **9** was used as the substrate.

stepwise addition of CH₃NO₂ The and benzaldehvde (1a) shown in Table 1 was not essential. and the β -bisdeuterated β -nitroalcohol (**2a-d**₂) could be obtained with satisfactory 92% D contents by the mixed use of CH₃NO₂ and 1a in D₂O from the outset of the reaction (eq. 2). Furthermore, the WA30catalyzed direct deuteration of unlabeled β nitroalcohols (2a or 2c) produce the only a 31% yield of $2\mathbf{a} \cdot d_2$ or only a 19% D efficiency of $2\mathbf{c} \cdot d_2$ (eq. 3). 2a preferentially underwent the retroaldol reaction to give benzaldehyde, which resulted in low yield of 2a d_2 . Meanwhile, the reason for the lower deuterium efficiency of 2c was unclear. Three equilibrium reactions in the nitoroaldol reaction associated with deuterium labeling, such as the deuteration (H-D exchange reaction) of CH₃NO₂ vs. the reverse D-H exchange reaction (path A), nitroaldol vs. retroaldol reactions between 1 and 2 (path B and B') and the direct H-D exchange vs. D-H exchange reactions of 2 (path C) can be proposed (Scheme 2). The excess use of D₂O toward CH₃NO₂ facilitates the generation of CD₃NO₂ which is also sufficiently generated to promote the subsequent nitroaldol reaction of 1 into the deuterium-labeled nitroalcohol product $(2-d_2)$. Additionally, $2-d_2$ can be directly obtained from the non-labeled 2. The stability of the C-D bonds based on the isotope effect also contributes to preferentially generate the deuteration processes (paths A and C). Consequently, the deuterium-labeled nitroalcohol product $(2-d_2)$ with high deuterium contents is available.

 $\begin{array}{c} \mathsf{Ph}^{\mathsf{CHO}} + \mathsf{CH}_{3}\mathsf{NO}_{2} & \overset{\mathsf{WA30}\ (10\ \mathsf{mg})}{\mathsf{D}_{2}\mathsf{O}\ (1\ \mathsf{mL})} & \mathsf{Ph}^{\mathsf{NO}_{2}} \\ \mathsf{(1a:\ 0.25\ \mathsf{mmol})} & (2.5\ \mathsf{mmol}) & \overset{\mathsf{D}_{2}\mathsf{O}\ (1\ \mathsf{mL})}{\mathsf{rt},\ 12\ \mathsf{h}} & \overset{\mathsf{OH}}{\overset{\mathsf{92}}{\overset{\mathsf{92}}{\mathsf{2a-d_{2}}:\ 90\%}}} \\ & \mathsf{OH} & & \mathsf{OH} \end{array}$ (2)

Scheme 2. Proposed reaction mechanism of WA30catalyzed deuteration of CH_3NO_2 and subsequent nitroaldol reaction.

The generated deuterium-labeled product $2a-d_2$ could undergo a further transformation by elimination

of the hydroxy group using the combination of mesyl chloride (MsCl) and Et₃N into the corresponding β -nitrostyrene (**11-***d*₁) and the Pd/C-catalyzed hydrogen transfer reaction using ammonium formate as a hydrogen source into the β -aminoalcohol (**12-***d*₂) with retention of the D contents (eq. 4).

The asymmetric nitroaldol reaction accompanied by the deuterium-labeling using a chiral basic organocatalyst in D₂O was also investigated (Table 3). The enantioselective nitroaldol reactions without the deuterium-labeling step in aqueous media have been accomplished using transition metal-based chiral catalysts.^[9] Although the organocatalytic nitroaldol reactions using cinchona alkaloid derivatives were also reported in the literature, organic solvents (CH₂Cl₂ and THF) were always required.^[10] We chose quinine and quinidine derivatives bearing tertiary amine and quinoline moieties within the molecule, which facilitates the desirable asymmetric nitroaldol reaction associated with the deuteriumlabeling process in D₂O as shown in Table 3. While quinine (cat. 1a) and its derivatives (cat. 1b and cat 1c) were inefficient (entries 1-3), the cat. 1d $[R^1 = H,$ R^2 = benzovl (Bz)]-catalyzed nitroaldol reaction of CH_3NO_2 and ethyl benzoylformate (7) in D_2O could efficiently proceed to form the desired product (R)-8 $d_2^{[11]}$ in high yield, D content and ee (entry 4).^[12] The use of the benzoyl quinidine derivative (cat. 2) also effectively provided (S)-8- d_2 (entry 5). The tertiarybutyl benzoylformate (13a) was a more suitable substrate to improve the enantioselectivity to produce **14a-***d*₂ in 94% ee (entry 6).

Table 3. Application to asymmetric reaction usingbenzoylformate (7 or 13a).

6	cat. 1d	<i>t</i> Bu	93	93	94
5	cat. 2	Et	91	94	90 ^[a]
4	cat. 1d	Et	94	98	90
3	cat. 1c	Et	93	7	35
2	cat. 1b	Et	84	93	66

[a] (S)-8-d₂ was obtained as the principal product.

tertiary-Butyl benzoylformate derivatives (13b-**13i**) bearing various functionalities, such as methoxy. siloxy, fluoro, ethoxycarbonyl and nitrile groups, on the aromatic ring were efficiently and enantioselectively reacted with the in situ-generated CD_3NO_2 in the presence of cat. 1d to give the corresponding chiral β -bisdeuterated β -nitroalcohol products $(14b-d_2-14i-d_2)$ with high D contents and excellent ee values (Table 4). 13j and 13k bearing naphthalene- (13j) and thiophene- (13k) rings also underwent the asymmetric nitroaldol reaction with deuterium labeling to provide the desired products $(14j-d_2 \text{ and } 14k-d_2)$ in good to excellent enantioselectivities. Although the reaction of the cyclohexyl (13l) and phenylalkynyl (13m) derivatives proceeded, also stereoselectively their decreased.^[13] enantioselectivities slightly were Because the cat. 1d-catalyzed reaction of 13a in H₂O instead of D_2O gave the non-labeled chiral β nitroalcohol product (14a) with an excellent ee (eq. 5), the present metal-free methodology is also useful as a simple asymmetric reaction without the deuteriumlabeling process from view point of green sustainable chemistry. Furhtermore, cat. 1d recovered after the reaction could be reused without decreasing the catalytic activity (eq. 6).

Table 4. Organocatalytic and asymmetric nitroaldol reaction associated with deuterium labeling.

^[a] The second step was for 48 h.

^[b]19% of the substrate was recovered.

In conclusion, we have developed the efficient synthetic method to construct β -deuterated β nitroalcohols by the base-catalyzed deuteration of nitroalkanes in D₂O and the consecutive nitroaldol reaction in a one-pot manner. The present reaction could be heterogeneously catalyzed by the easilyeliminable WA30 to give the corresponding β deuterated β -nitroalcohol derivatives (2–4, 6, 8). Furthermore, a quinine-derived organocatalyst (cat. **1d**) allowed the highly enantioselective reaction of α . keto ester derivatives (7 and 13) to efficiently provide the desired chiral deuterium-labeled products (8 and 14). The present unprecedented methodology can easily provide various β -deuterated β -nitroalcohol products, as deuterium-labeled synthetic building blocks.

Experimental Section

Experimental Details WA30-catalyzed reaction: A solution of a nitroalkane (2.5 mmol, 134 μ L) and WA30 (10 mg) in D₂O (1 mL) was stirred at rt for 2 h. An aldehyde (1: 0.25

mmol) was added to the reaction mixture and stirred for 12 h. The reaction mixture was filtered and the filtrate was extracted with Et₂O (5 mL x 2). The combined organic layers were dried over Na₂SO₄, and concentrated in vacuo. The crude residue was purified by silica-gel column chromatography to give the β -deuterated β -nitroalcohol 2- d_x .

Asymmetric reaction: A solution of CH₃NO₂ (2.5 mmol, 134 μ L) and **cat. 1d** (5 mol%) in D₂O (1 mL) was stirred at rt for 24 h. An acylformate (**7** or **13**) (0.25 mmol) was added to the reaction mixture at 0 °C and stirred for 24 h. The reaction mixture was directly purified by silica-gel column chromatography to produce **14-***d*₂.

Acknowledgements

We thank the Mitsubishi Chemical Corporation for the kind gift of WA30. This work was partially supported by Grant-in-Aid for Scientific Research (C) from the Japan Society for the Promotion of Science (JSPS: 16K08169 for Y.S.) and a Grant-in-Aid from JSPS (15J01556 to T.Y.).

References

- For reviews on deuteration, see: a) J. Atzrodt, V. Derdau, T. Fey, J. Zimmermann, Angew. Chem. Int. Ed. 2007, 46, 7744–7765; b) J. M. Herbert, J. Label Compd. Radiopharm. 2010, 53, 658–661; c) Y. Sawama, Y. Monguchi, H. Sajiki, Synlett 2012, 23, 959–972; d) Y. Sawama, K. Park, T. Yamada, H. Sajiki, Chem. Pharm. Bull. in press
- [2] a) F. Schneider, M. Hillgenberg, R. Koytchev, R.-G. Alken, Arzneim. Forsch. Drug Res. 2006, 56, 295–300;
 b) F. Maltais, Y. C. Jung, M. Chen, J. Tanoury, R. B. Perni, N. Mani, L. Laitinen, H. Huang, S. Liao, H. Gao, H. Tsao, E. Block, C. Ma, R. S. Shawgo, C. Town, C. L. Brummel, D. Howe, S. Pazhanisamy, S. Raybuck, M. Namchuk, Y. L. Bennani, J. Med. Chem. 2009, 52, 7993–8001; c) K. Sanderson, Nature 2009, 458, 269; d) N. A. Meanwell, J. Med. Chem. 2011, 54, 2529–2591;
 e) A. Katsnelson, Nature Med. 2013, 19, 656; f) T. G. Gant, J. Med. Chem. 2014, 57, 3595–3611; g) B. Halford, Chem. Eng. News 2016, 94, 32–36; h) A. Mullard, Nat. Rev. Drug Discov. 2016, 15, 219–222.
- [3] a) W. D. Jones, Science 2000, 287, 1942–1943; b) J.
 H. Lee, K. S. Yoo, C. P. Park, J. M. Olsen, S. Sakaguchi, G. K. Surya Prakash, T. Mathew, K. W. Jung, Adv. Synth. Catal. 2009, 351, 563–568; c) Y. Sawama, Y. Yabe, H. Iwata, Y. Fujiwara, Y. Monguchi, H. Sajiki, Chem. Eur. J. 2012, 18, 16436–16442; d) Y. Sawama, T. Yamada, Y. Yabe, K. Morita, K. Shibata, M. Shigetsura, Y. Monguchi, H. Sajiki, Adv. Synth. Catal. 2013, 355, 1529–1534; e) T. Yamada, Y. Sawama, K. Shibata, K. Morita, Y. Monguchi, H. Sajiki, RSC Adv. 2015, 5, 13727–13732; f) T. Yamada, K. Park, N. Yasukawa, K. Morita, Y. Monguchi, Y. Sawama, H. Sajiki, Adv. Synth. Catal. 2016, 357, 3277–3282.
- [4] a) S. P. Bew, G. D. Hiatt-Gipson, J. A. Lovell, C. Poullain, Org. Lett. 2012, 14, 456-459; b) Y. Yabe, Y. Sawama, Y. Monguchi, H. Sajiki, Chem. Eur. J. 2013,

19, 484–488; c) T. Yamada, K. Park, Y. Monguchi, Y. Sawama, H. Sajiki, *RSC Adv.* **2015**, *5*, 92954–92957.

- [5] For reviews and highlight on Henry reaction, see: a) C. Palomo, M. Oiarbide, A. Mielgo, *Angew. Chem. Int. Ed.* 2004, *43*, 5442–5444; b) J. Boruwa, N. Gogoi, P. P. Saikia, N. C. Barua, *Tetrahedron: Asymmetry* 2006, *17*, 3315–3326; c); Y. Alvarez-Casao, E. Marques-Lopez, R. P. Herrera, *Symmetry* 2011, *3*, 220–245.
- [6] a) J. C. Borah, S. Gogoi, J. Boruwa, B. Kalita, N. C. Barua, *Tetrahedron Lett.* 2004, 45, 3689–3691; b) N. Gogoi, J. Boruwa, N. C. Barua, *Tetrahedron Lett.* 2005, 46, 7581–7582; c) A. Cochi, T.-X. Metro, D. G. Padro, J. Cossy, *Org. Lett.* 2010, 12, 3693–3595.
- [7] a) X. Wang, F. Fang, C. Zhao, S.-K. Tian, *Tetrahedron Lett.* 2008, 49, 6442–6444; b) T. Nitabaru, A. Nojiri, M. Kobayashi, N. Kumagai, M. Shibasaki, J. Am. Chem. Soc. 2009, 131, 13860–13869.
- [8] a) R. Ballini, G. Bosica, J. Org. Chem. 1997, 62, 425–427; b) Y. Ren, C. Cai, Catal. Lett. 2007, 118, 134–138; c) J. Fan, G. Sun, C. Wan, Y. Li, Chem. Commun. 2008, 3792–3794; d) Y. Sohtome, K. Nagasawa, Chem. Commun. 2012, 48, 7777–7789; e) P. P. Bore, G. Bez, Eur. J. Org. Chem. 2013, 2922–2929; f) P. B. Thorat. S. V. Goswami, W. N. Jadhav, S. R. Bhusare, Aust. J. Chem. 2013, 66, 661–666; g) M. Häring, M. M. Pérez-Madrigel, D. Kühbeck, A. Pettignano, F. Quignard, D. D. Díaz, Molecules 2015, 20, 4136–4147.
- [9] For selected recent paper, see: a) G. Lai, F. Guo, Y. Zheng, Y. Fang, H. Song, K. Xu, S. Wang, Z. Zha, Z. Wnag, *Chem. Eur. J.* 2011, *17*, 1114–1117; c) K. Xu, G. Lai, Z. Zha, S. Pan, H. Chen, Z. Wang, *Chem. Eur. J* 2012, *18*, 12357–12362.
- [10] a) H. Li, Y. Wang, L. Deng, J. Am. Chem. Soc. 2004 126, 9906–9907; b) H. Li, J. Song, X. Liu, L. Deng, J. Am. Chem. Soc. 2005, 127, 8948–8949; c) T. Marcelli, R. N. S. v. d. Haas, J. H. v. Maarseveen, H. Hiemstra, Angew. Chem. Int. Ed. 2006, 45, 929–931; d) H. Li, B. Wang, L. Deng, J. Am. Chem. Soc. 2006, 128, 732– 733; e) T. Mandal, S. Samanta, C.-G. Zhao, Org. Lett. 2007, 9, 943–945.
- [11] The absolute configuration of (R)- or (S)-8-d₂ was determined according to the chiral HPLC data of the unlabeled compounds (R)- and (S)-8 shown in reference 10d.
- [12] The results using various substrates [e.g., benzaldehyde (1a), α, α, α -trifluoromethylacetophenone 5 and acylformates (13)], and various organocatalysts are described in the Supporting Information.
- [13] There are few reports for the aymmetic nitroaldol reaction of phenylethynyl-carbonyl derivatives, see: a D. Uraguchi, S. Nakamura, T. Ooi, *Angew. Chem. Int. Ed.* 2010, 49, 7562–7565; b) H. Mei, X. Xiao, X. Zhao, B. Fang, X. Liu, L. Lin, X. Feng, J. Org. Chem. 2015, 80, 2272–2280.

COMMUNICATION

Organocatalytic Nitroaldol Reaction Associated with Deuterium-Labeling

Adv. Synth. Catal. Year, Volume, Page – Page

Tsuyoshi Yamada, Marina Kuwata, Ryoya Takakura, Yasunari Monguchi, Hironao Sajiki*, and Yoshinari Sawama*

