AGRICULTURAL AND FOOD CHEMISTRY

Article

Identification of a novel esterase from marine environmental genomic DNA libraries and its application in production of free all-trans-astaxanthin

Ping Lu, Xinwei Gao, Hao Dong, Zhen Liu, Francesco Secundo, Changhu Xue, and Xiangzhao Mao J. Agric. Food Chem., Just Accepted Manuscript • DOI: 10.1021/acs.jafc.7b06062 • Publication Date (Web): 22 Feb 2018 Downloaded from http://pubs.acs.org on February 22, 2018

Just Accepted

"Just Accepted" manuscripts have been peer-reviewed and accepted for publication. They are posted online prior to technical editing, formatting for publication and author proofing. The American Chemical Society provides "Just Accepted" as a service to the research community to expedite the dissemination of scientific material as soon as possible after acceptance. "Just Accepted" manuscripts appear in full in PDF format accompanied by an HTML abstract. "Just Accepted" manuscripts have been fully peer reviewed, but should not be considered the official version of record. They are citable by the Digital Object Identifier (DOI®). "Just Accepted" is an optional service offered to authors. Therefore, the "Just Accepted" Web site may not include all articles that will be published in the journal. After a manuscript is technically edited and formatted, it will be removed from the "Just Accepted" Web site and published as an ASAP article. Note that technical editing may introduce minor changes to the manuscript text and/or graphics which could affect content, and all legal disclaimers and ethical guidelines that apply to the journal pertain. ACS cannot be held responsible for errors or consequences arising from the use of information contained in these "Just Accepted" manuscripts.

Journal of Agricultural and Food Chemistry is published by the American Chemical Society. 1155 Sixteenth Street N.W., Washington, DC 20036 Published by American Chemical Society. Copyright © American Chemical Society.

Published by American Chemical Society. Copyright © American Chemical Society. However, no copyright claim is made to original U.S. Government works, or works produced by employees of any Commonwealth realm Crown government in the course of their duties.

1	Identification of a novel esterase from marine environmental genomic DNA
2	libraries and its application in production of free all- <i>trans</i> -astaxanthin
3	Ping Lu ^{1#} , Xinwei Gao ^{1#} , Hao Dong ¹ , Zhen Liu ¹ , Francesco Secundo ³ , Changhu
4	Xue ^{1,2} , Xiangzhao Mao ^{1,2} *
5	1 College of Food Science and Engineering, Ocean University of China, Qingdao
6	266003, China
7	2 Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for
8	Marine Science and Technology, Qingdao 266237, China
9	3 Istituto di Chimica del Riconoscimento Molecolare, CNR, v. Mario Bianco 9, Milan
10	20131, Italy
11	
12	
13	
14	* Corresponding author: Professor Xiangzhao Mao
15	Address: College of Food Science and Engineering, Ocean University of China,
16	Qingdao 266003, China
17	Tel.: +86-532-82032660
18	Fax: +86-532-82032272
19	E-mail: xzhmao@ouc.edu.cn
20	
21	

22 Abstract

23	Astaxanthin is a pigment with various functions. Free astaxanthin is obtained
24	mainly through saponification methods, which could result in many by-products.
25	Enzymatic methods using lipases have been used in few cases, while there are no
26	reports on the use of esterases for the production of free astaxanthin. Herein we
27	present the screening and identification of a novel esterase (Est3-14) from a marine
28	mud metagenomic library. Est3-14 is pH-sensitive and keeps good stability in akaline
29	buffers (residual activity 94%, pH 8.0, 4 °C and 36 h). Meanwhile, Est3-14 keeps a
30	good stability in the medium temperature condition (residual activity 56.7%, pH 8.0,
31	40 °C and 84 h). Est3-14 displayed high hydrolysis activity to prepare free
32	all-trans-astaxanthin in biphasic systems. Furthermore, under optimal conditions (0.5
33	mL ethanol, 6 mL 0.1 M Tris-HCl buffer, pH 8.0, 0.5% (w/v) H. pluvialis oil, 40 °C),
34	the hydrolytic conversion ratio was 99.3% after 36 h.
35	Key words: Metagenomic Library, Alkaline Esterase, Free Ax, Enzymatic Methods,
36	High Hydrolytic Conversion Ratio
37	
38	
39	
40	
41	

42 **INTRODUCTION**

Astaxanthin $(3,3)^{-}$ -dihydroxy- β,β -carotene-4,4)^{-}-dione) (Ax) is a terpenoid with various functions, such as antioxidant activity,¹ antitumor activity,² immune response enhancement,³ anti-nerve injury,⁴ inhibition of *Helicobacter pylori* infection,⁵ and improvement of memory.⁶ Thanks to these properties, it has been widely applied to food, cosmetic, aquaculture and poultry.^{7, 8}

48 Ax is widely distributed in aquatic organisms, such as the shrimp, crab shells and microalgae.^{9,10} In particular, the green alga *Haematococcus pluvialis* (*H. pluvialis*) is 49 50 considered as the most suitable source for natural Ax being the content of this carotenoid about 4% (w/w) in the dry biomass.^{11, 12} However, 95% of Ax in H. 51 *pluvialis* is esterified with long chain (C16-C20) fatty acids.¹³ Ax has several isomers, 52 53 such as three geometrical isomers (9Z-, all-E- and 13Z-) and three optical isomers 54 ((3S,3'S) (all-trans), (3R,3'S) and (3R,3'R)). Under natural conditions, all-trans configuration is the most stable structure (Figure S1, Supporting Information).¹⁴ The 55 56 configuration of Ax in *H. pluvialis* is consistent with the Ax in wild salmon, which is all-trans.^{15, 16} It has been demonstrated that Ax esters may have different chemical 57 58 functionalities that confer them a different physiological role, which may limit the wide application of Ax from *H. pluvial.*^{13, 17} Free all-*trans*-Ax has been served as a 59 standard to compare the different functions of Ax esters.¹⁸ Ax also has wide 60 application in aquaculture field. Choubert et al.¹⁹ found that the inclusion of Ax in the 61 62 diet of rainbow trout had a great influence on the muscle pigmentation of this fish.

63 Therefore, the preparation of free all-*trans*-Ax from its esters produced in *H. pluvialis*

64 is a biotechnological field of major interest.²⁰⁻²³

65 Numerous attempts have been made to hydrolyze Ax esters for obtaining free Ax. 66 Saponification is an efficient method to cleave esters, however, alkaline conditions 67 can cause the formation of by-products (astacene) that may have biological functions different from Ax.²⁴⁻²⁷ Enzyme-catalyzed hydrolysis is expected to be an 68 69 environmentally friendly promising alternative to saponification, thanks to the mild 70 hydrolysis conditions, especially if carried out under a nitrogen atmosphere to inhibit the formation of by-products.^{13, 23, 28} In particular, lipases (EC 3.1.1.3) and esterases 71 72 (EC 3.1.1.1) are a family of hydrolases that catalyze the cleavage of ester bonds and are widespread in nature.^{29, 30} Up to now, some studies about preparing the free Ax are 73 mainly focused on lipase-mediated catalysis.^{13, 23, 28} Zhao et al. found five lipases 74 75 could hydrolyze Ax esters from H. pluvialis oil, which could hydrolyze 63.2% Ax esters.¹³ Nagao et al. attempted to obtain purified Ax by two-step process, they got 76 63.9% Ax of the initial content in the cell extract finally.²⁸ However, this group never 77 78 used this enzyme for the recovery of free Ax from a natural source. Lipases are 79 important industrial biocatalysts and have been widely used for the preparation of free 80 Ax, however, the shortcomings of above researches are the long reaction time and the 81 low conversion efficiency. Indeed, a long reaction time is not suitable for storing Ax, 82 which could cause the degradation of Ax. Besides lipases also esterases could be 83 suitable to improve the catalytic efficiency. It is well known that esterases (EC3.1.1.1)

84	could hydrolyze esters with short-chain fatty acids (less than 10 carbon atoms).
85	Instead, lipases (EC3.1.1.3) prefer hydrolyzing esters with long chain fatty acids
86	(\geq 10). Nevertheless, only in a few cases lipases have been used for the cleavage of Ax
87	esters. ¹³ This lack is due to the absence of known esterases active on these substrates.
88	Screening of novel biocatalysts is the subject of investigation of many scientists.
89	These studies have facilitated the progress of new methods to separate novel genes.
90	Nevertheless, though the biocatalysts obtained from new isolated genes are abundant,
91	most of the microorganisms from where the isolated genes originated are not
92	cultivable. It is estimated that less than 1% of microorganisms in nature have ever
93	been cultured by traditional methods in lab. ³¹ Thanks to the development of
94	metagenomics, the loss of diverse biocatalysts can be avoided. Isolation of
95	metagenomic DNA from the environmental samples and cloning it into a special
96	vector can be constructed a metagenomic library. The desired genes can be isolated
97	through functional screening from this metagenomic library. Up to now, this approach
98	is one of the most powerful methods to screen novel biocatalysts without the need for
99	culturing. ³²

Within this work, we constructed a fosmid metagenomic library and screened the lipolytic genes on large scale. A novel esterase (Est3-14) was identified and purified for further characterization. The Est3-14 also displayed high hydrolytic activity in aqueous biphasic systems to prepare the free all-*trans*-Ax from Ax esters.

104

105 **MATERIALS AND METHODS**

106 Materials. DNA amplification used the DNA polymerase from Vazyme (Nanjing, 107 China). Restriction enzymes (Notl, BamHI, HindIII, Sau3AI and Calf-intestinal 108 alkaline phosphatase (CIP)) were bought from NEB (New England Biolabs) (MA, 109 USA). The *p*-Nitrophenol (*p*NP) and its esters were bought from Sigma (MO, USA). 110 H. pluvialis oil (0.5% (w/w) Ax esters) was bought from Yunnan Alphy Biotech 111 (Yunnan, China). Pre-prepared plates of silica (GF254) were supplied by Qingdao 112 Shenghai silica Chemical Co. Ltd. (Qingdao, China). Methanol, Methyl 113 tert-butylether (MTBE) was purchased from EMD Millipore Corporation (Billerica, 114 MA) and other chemicals and organic solvents were analytical reagents. 115 The construction of fosmid library and screening. The metagenomic DNA was 116 extracted from marine mud. DNA fragments from 15 to 45 kb were gained by partial 117 digestion with the restriction enzyme NotI and used to build a fosmid library by 118 protocol of CopyControl pCC1FOS Fosmid Library Production Kit (Epicentre 119 Biotechnologies). Transformants, with recombinant fosmids, were cultured on

120 Luria-Bertani (LB) agar (containing chloramphenicol (Chl)) at 37 °C for 20 h. To

identify the effectiveness of library, 5 clones were stochastically chosen and digestedwith the restriction enzyme *Not*I. The method of construction of metagenomic library

123 is similar to that reported by Gao et al.³⁸

124 Construction of sub-cloning genomic library and sequence analysis of 125 lipolytic genes. For screening the colonies exhibiting lipolytic genes, the positive

126	pools from fosmid library were diluted with sterile saline solution and cultivated at
127	37 °C for 48-72 hours on LB agar (containing Chl and emulsified tributyrin). The
128	positive pools from above LB agar were partially digested with restriction enzyme
129	Sau3AI to gather 3-9 kb DNA fragments. Prepared DNA fragments were ligated into
130	pBluescript II SK (+) vector. The products of ligation were introduced into E. coli
131	DH5 α cells. The transformants were cultivated on LB agar plates (containing
132	ampicillin and tributyrin) at 37 °C for 48 h. Then, positive colonies with clear halos
133	were cultured in LB medium and sent to be sequenced.
134	NCBI open reading frame (ORF) finder (https://www.ncbi.nlm.nih.gov/orffinder/)

was used to identify the ORFs in the nucleotide sequences. The functions of ORFs
were predicted using BLASTP search (https://blast.ncbi.nlm.nih.gov/Blast.cgi).
Multiple sequence alignments were analyzed by Clustal X and ESPript 3.0
(http://espript.ibcp.fr/ESPript/ESPript/). The neighbor-joining phylogenetic tree
among hydrolases was analyzed by MAGA 6.0 software.

Heterologous expression and purification of esterase Est3-14. According to the one positive clone with predicted lipolytic gene (*est3-14*), the gene was ligated to pET-28a (+) vector and introduced into the expression host *E. coli* BL21 (DE3). Correct recombinant strain was cultivated at 37 °C until the value of OD₆₀₀ reached 0.6-0.8. Then, after adding isopropyl-β-D-1-thiogalactopyranoside (IPTG), it was further cultivated at 20 °C for 20 h. Centrifugation was used to collect cells and the cells were washed with sterile NaCl solution. The collected cells were ruptured by

147	sonication in 0.1 M, Tris-HCl buffer, pH 8.0 (Buffer A). After centrifugation (10,000
148	\times g) for 30 min at 4 °C, the supernatant of Est3-14 was loaded onto a Ni-NTA column
149	(1 mL, Qiagen, Hilden, Germany). The target protein was purified by elution with 0.2
150	M imidazole in Buffer A and dialyzed against the same buffer to remove imidazole. ³³
151	Finally, the expression level and the purity of Est3-14 was measured by SDS-PAGE.
152	The esterase activity was determined by using p -nitro phenyl butyrate ($pNPB$) (0.02
153	M dissolved in buffer of isopropanol and dimethyl sulfoxide) as substrate and
154	following the formation of pNP at 405 nm according to the method reported by
155	Margesin with minor modification. ³⁴ One unit of esterase activity was defined as the
156	amount of esterase needed to form 1 μ mol pNP per minute. Soluble protein content
157	was estimated by the method of Coomassie brilliant blue.

Enzyme characterization of esterase Est3-14. Esterase activity and soluble
protein content were estimated as described in the section heterologous expression
and purification of esterase Est3-14.

161 Substrate specificity of Est3-14 was tested by the same method as described 162 above but adopting *p*NP esters with variable chain length: *p*NP acetate (C2), *p*NP 163 butyrate (C4), *p*NP caprylate (C6), *p*NP decanoate (C8), *p*NP caprate (C10), *p*NP 164 laurate (C12), *p*NP myristate (C14), and *p*NP palmitate (C16).

To identify the optimal pH of hydrolysis, the esterase activity of Est3-14 was determined at pH values from 4.0 to 10.0 in four different buffers. In particular sodium citrate, sodium phosphate, Tris-HCl and Na₂CO₃-NaHCO₃ were used (0.1 M) 168 for the pH range of 4.0-6.0, 6.0-8.0, 8.0-9.0 and 9.0-10.0, respectively.

169	To identify the pH stability of Est3-14, the purified enzyme was incubated in
170	different buffers with pH ranging from 5.0 to 10.0 for 36 h. The residual activity of
171	Est3-14 was determined by the method mentioned above.
172	The determination of the optimal temperature was conducted at temperatures
173	from 30 °C to 80 °C using the pNP butyrate as substrate. Meanwhile, the thermal
174	stability of Est3-14 was detected by putting the purified enzyme into different
175	temperature conditions (40 °C, 45 °C, 50 °C, 55 °C, 60 °C) for up to 84 h, and then
176	the remaining activity was measured.
177	Effects of surfactants, metal ions and organic solvents on Est3-14 activity.
177 178	Effects of surfactants, metal ions and organic solvents on Est3-14 activity. The influence of surfactants on the esterase activity was determined in Buffer A
177 178 179	Effects of surfactants, metal ions and organic solvents on Est3-14 activity. The influence of surfactants on the esterase activity was determined in Buffer A including 0.5% (w/v) variable surfactants (Triton X-100, Tween 80, Tween 60, SDS,
177 178 179 180	Effects of surfactants, metal ions and organic solvents on Est3-14 activity. The influence of surfactants on the esterase activity was determined in Buffer A including 0.5% (w/v) variable surfactants (Triton X-100, Tween 80, Tween 60, SDS, Tween 20). The activity measured without adding surfactants was used as the
177 178 179 180 181	Effects of surfactants, metal ions and organic solvents on Est3-14 activity. The influence of surfactants on the esterase activity was determined in Buffer A including 0.5% (w/v) variable surfactants (Triton X-100, Tween 80, Tween 60, SDS, Tween 20). The activity measured without adding surfactants was used as the negative control. The effect of metal ions (CoCl ₂ , KCl, LiCl, FeSO ₄ , FeCl ₃ , MnCl ₂ ,
177 178 179 180 181 182	Effects of surfactants, metal ions and organic solvents on Est3-14 activity. The influence of surfactants on the esterase activity was determined in Buffer A including 0.5% (w/v) variable surfactants (Triton X-100, Tween 80, Tween 60, SDS, Tween 20). The activity measured without adding surfactants was used as the negative control. The effect of metal ions (CoCl ₂ , KCl, LiCl, FeSO ₄ , FeCl ₃ , MnCl ₂ , CaCl ₂ , MgCl ₂ , ZnCl ₂ and NiCl ₂) and chelating agent Na ₂ -EDTA on Est3-14 activity
177 178 179 180 181 182 183	Effects of surfactants, metal ions and organic solvents on Est3-14 activity. The influence of surfactants on the esterase activity was determined in Buffer A including 0.5% (w/v) variable surfactants (Triton X-100, Tween 80, Tween 60, SDS, Tween 20). The activity measured without adding surfactants was used as the negative control. The effect of metal ions (CoCl ₂ , KCl, LiCl, FeSO ₄ , FeCl ₃ , MnCl ₂ , CaCl ₂ , MgCl ₂ , ZnCl ₂ and NiCl ₂) and chelating agent Na ₂ -EDTA on Est3-14 activity were analyzed at the concentration of 1 mM and 10 mM in Buffer A.

185 acetonitrile, n-hexane, chloroform, dimethylsulfoxide (DMSO), acetone, n-propanol,

- 186 isopropanol, isooctane, cyclohexane), the catalytic activity of Est3-14 was determined
- 187 after placing the enzyme solution at 30 °C for 3 h in organic solvent/water mixture
- 188 (25%, 50% (v/v), respectively).³³ To reduce the influence of the organic solvents

during the activity assay, the hydrophobic organic solvents were removed bycentrifugation or, in the case of hydrophilic organic solvents, diluted to 5%.

The identification of pure organic solvents effect on Est3-14 was tested according to the method described by Li et al.⁴¹ Est3-14 powder was added to organic solvents and placed at 30 °C while shaking for 3 h. Centrifugation was taken to remove organic solvents. The remaining esterase activity was measured under standard conditions.

196 Hydrolysis of Ax esters from *H. pluvialis* oil. In order to test the hydrolysis 197 ability of Est3-14 towards Ax esters, the supernatants of E. coli cell lysate of Est3-14 198 was lyophilized by vacuum freezing, and the dried crude powder was used to catalyze 199 the hydrolysis reaction. Esterase activity per milligram of dried cell powder was 200 determined as above. The hydrolysis reaction was carried out adding the supernatant 201 of Est3-14 lysate to a biphasic system (0.5 mL ethanol; 6 mL Buffer A; 0.5% (w/v) H. 202 pluvialis oil) at 40 °C and shaking for 48 h in a thermostatic bath. Free all-trans-Ax 203 was extracted from the reaction medium by 1/1 (v/v) isopropanol/dichloromethane 204 mixture for several times until the aqueous phase was colorless. After extraction, the 205 method of TLC was used to analyze whether Est3-14 could hydrolyze Ax esters. The 206 mobile phase was the mixture of n-hexane and acetone and the ratio was 4:1 (v/v). 207 The standard of Ax was used as a positive control.

Identification of free all-*trans*-Ax in the hydrolysis medium. The reaction
samples were analyzed by using a high-performance liquid chromatograph (HPLC)

210	(Agilent) equipped with C-30 column (YMC, 250 \times 4.6 mm; 5 μm). The detector
211	wavelength was set to 476 nm and the temperature of column was kept at 35 $^{\circ}C.^{23}$
212	The elution conditions were as follows: 0-15 min, isocratic conditions 90% A and 10%
213	B, then gradient to 40% A and 60% B until t = 25 min, 25-35 min, the gradients came
214	to initial concentration. Eluent A consisted of methanol, Eluent B consisted of MTBE.
215	Analysis was conducted in triplicate.
216	The standard curve of the standard of free all-trans-Ax was used to quantify the
217	production of free all-trans-Ax. (Figure S5, Supporting Information) The Ax ester
218	hydrolysis rate was equal to decrease rate of Ax esters. The equation was as follows:
219	Conversion=Area of residual Ax esters after hydrolysis/ Area of initial Ax esters in
220	the reaction medium
221	HPLC-MS/APCI was adopted to analyze free all-trans-Ax in the hydrolysis
222	medium. The gradient elution program used in HPLC-MS/APCI was consistent with
223	the method mentioned in HPLC determination. The MS instrument was Bruker maXis
224	II (Bruker, Germany) equipped with a quadrupole mass spectrometer system
225	Navigator. The instrument was fitted with APCI with the positive ionization mode.
226	The voltage of the fragmentation was set to 35 eV and the flow rate of nitrogen was 5
227	L/min. The range of scanning was set from 200 to 650 (m/z) with the scan time of 0.5
228	S.
229	The reaction curve of preparing free all-trans-Ax under different reaction

times and enzyme loading. Under the initial reaction conditions, the hydrolysis curve

was drawn by sampling the reaction mixture at different times (12 h, 24 h, 36 h, 48 h,

232 72 h and 84 h) and enzyme loading (180 U, 300 U, 900 U, 1800 U, 2700 U, 3600 U)

- to identify the efficiency of hydrolysis.
- 234
- **235 RESULTS AND DISCUSSION**

236 The construction of fosmid library and functional screening. According to the 237 results of identification of the marine mud metagenomic library (average insert size 238 40 kb, 40,000 clones), it was observed that the constructed fosmid metagenomic 239 library is various. The results of digestion with NotI of 5 randomly chosen clones 240 suggested that 90% of clones included different DNA fragments. It is suggested that 241 this metagenomic library is of high efficiency. The functional screening was based on 242 the ability of producing transparent circle on the plates of LB agar (containing 243 tributyrin and Chl). After incubation at 37 °C for 48 h, the positive fosmids (40 kb) 244 (Figure S2, Supporting Information) were extracted and used for the construction of 245 sub-clones.

To identify the effective fragments among the positive fosmids, the fosmids were digested by restriction enzyme *Sau*3AI to gather 3.0-9.0 kb fragments (Figure S3, Supporting Inforamtion). Then, the fragments were ligated to pBluescript II SK (+) vector and introduced into *E. coli*. The sub-clones that showed lipolytic activity were sent to be sequenced. After sequenced by Sangon Biotech (Shanghai, China) and on the basis of the ORF finder and BLASTP search, the inserted DNA fragment was 252

identified.

253	The sequence analysis and phylogenetic tree construction of esterase gene
254	est3-14. The putative lipolytic gene was named est3-14 and had sequence identities of
255	51% with the esterase gene (KRO42937.1) from Acidimicrobium sp., which has not
256	been expressed and characterized. The low similarity with other esterase genes shows
257	that est3-14 is a new esterase gene. The nucleotide sequence of esterase Est3-14 was
258	uploaded to Genebank database with the accession number MF568505.
259	Phylogenetic analysis of est3-14 was carried out according to the classification
260	reported by Arpigny and Jaeger. ³⁵ On the basis of this classification and on the amino
261	acid sequences of different esterase genes belonging to the Families I-VIII, esterase
262	Est3-14 belongs to family V (Figure 1a). Furthermore, the multiple sequence
263	alignment (Figure 1b) revealed that Est3-14 has the typical catalytic triad (Ser, 115;
264	Asp, 237; His, 266), confirming, Est3-14 was a novel esterase.
265	Heterologous expression and purification of Est3-14. The est3-14 gene
266	(BamHI/HindIII restriction site) was ligated to pET-28a (+) and transformed into
267	BL21 (DE3) to express active protein. The Est3-14 was expressed successfully in E.
268	coli and the expression level was estimated by SDS-PAGE (Figure S4, Supporting
269	Inforamtion). The esterase activity determination showed that this vector could be
270	used to express active esterase. Based on the existence of the terminal 6×His affinity
271	tag, esterase Est3-14 was purified successfully. The purified Est3-14 was separated as

a single protein and consistent with the predicted molecular weight (32.8 kDa), which

was shown in Figure 2.

274	Enzyme characterization of purified esterase Est3-14. The catalytic activity of
275	Est3-14, measured by using pNP esters with different acyl chain lengths, showed that
276	this enzyme preferentially hydrolyzed short chain fatty acids (C<10) and showed the
277	highest activity towards pNP butyrate (292 U/mg, at pH 8.0 and 37 °C), and the
278	lowest towards pNP palmitate (20.9% of the pNP butyrate) (pH 8.0 and 37 $^{\circ}$ C)
279	(Figure 3a). These results indicated that Est3-14 is a "true" esterase that preferentially
280	hydrolyzed the substrate with short acyl chain length. ^{36, 37}
281	The effects of pH on Est3-14 activity were tested using $pNPB$ as substrate.
282	Est3-14 was very pH-sensitive and showed relatively higher activities at alkaline
283	conditions, with optimal pH at 9.0 in phosphate buffer and inactivation at $pH < 6.0$
284	(<10% maximum activity in optimal pH) (Figure 3b). The pH stability of Est3-14 was
285	analyzed by testing the residual activity at different time intervals after pretreatment
286	(4 °C, up to 36 h) in different pH value buffers (pH 5.0-10.0). Data in Figure 3c
287	showed that at pH 8.0 even after 36 h, the residual activity of Est3-14 only slightly
288	decreased (residual activity was 94%). Instead, after incubation for 6 hours at pH 6.0
289	the enzyme kept about 62% of the original activity. However, the residual activity of
290	Est3-14 decreased sharply at $pH < 6.0$ buffer, and it plunged to 23.7% of the original
291	activity at pH 5.0. According to these results, Est3-14 displayed high activity in
292	alkaline buffers. Therefore, we can conclude that Est3-14 is a member of alkaline
293	esterases.

294	The influence of temperature on Est3-14 catalytic activity was tested in the
295	30-80 °C range, and it was found that it increased quickly with the temperature to
296	60 °C and then declined at 70 °C and 80 °C (Figure 3d). In a recent report, EstK1
297	displayed highest activity at 50 °C (Est3-14, 60 °C), ²⁹ which indicated that Est3-14
298	has a promising application in the high temperature condition. Thermal stability of
299	Est3-14 was identified by measuring the remaining activity at various time intervals
300	after pretreatment of the purified enzyme for 84 h at different temperatures (40 °C,
301	45 °C, 50 °C, 55 °C, 60 °C). Est3-14 preserved over 60% of its original activity after
302	incubation at 40 °C for 78 h. At 55 °C, when the enzyme was pretreated for 24 h, the
303	residual activity of Est3-14 decreased to 50%. However, at 60 °C, the residual activity
304	decreased to 35% of original activity within 6 h (Figure 4e). Based on these data,
305	Est3-14 appeared stable at medium temperature (e.g., 40 °C), which was consistent
306	with esterase EST4 (40 °C) reported by Gao et al. ³⁸ It is a beneficial feature in the
307	perspective of applying this enzyme in the hydrolysis of Ax esters.
308	The various surfactants (0.5%) could cause different effects on esterase activity.

As shown in Figure 4f, the activity of Est3-14 was slightly stimulated by Tween 20, Tween 60, Tween 80, Triton X-100. SDS, an anionic surfactant, had a strong inhibitory effect on Est3-14 activity, which is similar to that observed with the esterase Est_p6 reported by Peng et al.⁴³ and with the esterase Est4 reported by Gao et al.³⁸

314 Concerning the influences of the metal ions and Na₂-EDTA on the esterase

315	activity, Est3-14 was slightly stimulated by adding Co^{2+} , K ⁺ at the low concentration
316	(1 mM) (Table 1). While when the addition of metal ions and Na ₂ -EDTA was
317	increased to 10 mM, Ca^{2+} , Mn^{2+} , Mg^{2+} , Co^{2+} , Ni^{2+} , Fe^{3+} , Zn^{2+} and Na_2 -EDTA caused a
318	decrease of Est3-14 activity by 20-80%, and the Zn^{2+} displayed highest inhibiting
319	effect to activity of Est 3-14 (decreased by 77%).

320 The effect of organic solvents on Est3-14 was studied at various concentrations of 321 different organic solvents (Table 2) with different Log P values from -1.3 to 4.5. Log 322 P is an indicator of solvent polarity, and the log P value of hydrophobic organic solvents was > 2.39 Detailed assay method was carried out according to previous 323 report.⁴⁰ Methanol, chloroform, acetonitrile and isopropanol had slight inhibitory 324 325 effects on Est3-14 activity at a concentration of 25% (v/v). However, high organic 326 solvent concentration (50% v/v) decreased the activity sharply by 25.7-81.5%. 327 Furthermore, the purified enzyme was highly denatured by the hydrophilic organic 328 solvents (log P < 2). Generally, Est3-14 was more stable in hydrophobic organic solvents, which was similar to lipase SML reported by Li et al.⁴¹ For example, the 329 330 residual activity of Est3-14 in absolute n-hexane was 88.2% of original activity, which 331 indicates that Est3-14 is stable in organic solvents. Compared with other reports, Est3-14 was much more stable than rEstSL3⁴⁴ and Lip_{BA}^{45} in organic solvents. It was 332 333 worth pointing out that Est3-14 displayed high enzyme activity (91.2%) in low 334 concentration of ethanol (25% v/v), which could guarantee the hydrolysis reaction of 335 Ax esters in the biphasic system.

336	Application of Est3-14 in hydrolysis of Ax esters from <i>H. pluvialis</i> oil and the
337	identification of free all-trans-Ax. In order to test the ability of Est3-14 of
338	hydrolyzing Ax esters (Scheme 1), 1200 U crude powder was added to start the
339	reaction (0.5 mL ethanol; 6 mL Buffer A; 0.5% (w/v) <i>H. pluvialis</i> oil). The TLC result
340	of the hydrolysis of Ax esters was shown in Figure 4. It was observed that Est3-14
341	can be used to remove the ester bonds of Ax esters to prepare free all-trans-Ax. After
342	analyzing by HPLC, the result is consistent with result of TLC. We can see from the
343	Figure 6, the peak of retention time of 7.7 min was the free all-trans-Ax. In order to
344	identify the product, we used MS/MS to do further verification. In Figure 5a, the
345	retention time of free all- <i>trans</i> -Ax (retention time 7.7 min) in the mixture is consistent
346	with the standard. The MS result of peak (7.7 min) from Figure 5a was expressed in
347	Figure 5c, a strong protonated quasimolecule ion was seen at m/z 597.3934, which
348	corresponded to the [M+H] ⁺ of free all- <i>trans</i> -Ax reported by Zhao et al. ¹³ In the
349	Figure 5d, the peaks at m/z 147.1484 and 173.1588 were characteristic fragments of
350	free all-trans-Ax, which were consistent with the standard of free all-trans-Ax (Figure
351	5b). The characteristic fragments of free all-trans-Ax corresponded to the results
352	reported by Dong et al. ²³ Therefore, the peak (retention time 7.7 min) was eventually
353	identified as all-trans-Ax.

The reaction curve of preparing all-*trans*-Ax under different reaction times and enzyme loading. At industrial level, reaction time and enzyme loading play important roles on the final cost of the product. Thus, the time of reaction and the

Journal of Agricultural and Food Chemistry

enzyme loading to complete conversion of substrate and the space-yield are crucialparameters to be evaluated.

We studied the relationship among reaction time, conversion ratio of Ax esters hydrolysis and space-time-yield. As shown in Figure 6a, with the loading of 1200 U Est3-14 crude powder and the reaction time changing, the tendency of hydrolysis could be detected by HPLC; the conversion of Ax esters reached (88.9%) at 36 h and 96.7% at 48 h (Figure 6b); the space-time-yield was shown in Figure 6c, at last we got 200 μ g•mL⁻¹ free all-*trans*-Ax.

Under the optimal reaction time, we also studied the relationship between enzyme loading and conversion ratio, in Figure 7a, we could find that the content of free all-*trans*-Ax with different enzyme loading and at 1800 U (all-*trans*-Ax: 195 μ g•mL⁻¹, the reaction came to balance and the final conversion reached 99.3% (Figure 7b).

370 It is important to emphasize that the conversion obtained in the present study is 371 higher than that reported in previous studies. After the reaction, 99.3% Ax esters were hydrolyzed and the production was about 195 µg•mL⁻¹. According to previous studies, 372 373 the conversion is higher than them. In a recent study, the hydrolysis of Ax esters was 374 carried out using an alkaline lipase from *Penicillium cyclopium* and the final recovery is about 63.2%.¹³ In another report, they used two steps to get the free Ax, first step 375 376 was used to remove FFA, the second step was used to get free Ax. It is worth pointing 377 that the second hydrolysis step needed 68 h and the total reaction time was 110 h

378	(final recovery, 63.9%). ²⁸ However, our reaction time is less than 110 h, which is
379	benefit to application. Fermentation also was used to prepare Ax, the conversion of
380	Ax esters was 98.08% at 60 h. ²³ Saponification is a traditional method to prepare the
381	free Ax, ^{24, 42} low temperature (5 °C) was chosen to minimize the degradation of Ax
382	during saponification, and 94.4% Ax esters was transformed into free Ax after
383	saponification for 12 h.42 However, the low temperature control needs more cost and
384	the hydrolysis of astaxanthin esters by chemical methods from both H. pluvialis rarely
385	produced Ax but always astacene and was therefore not considered applicable for
386	industrial use. Therefore, Est3-14 is a promising alternative biocatalyst in preparation
387	of free all- <i>trans</i> -Ax.

388 This is the first report to describe the esterase to prepare the all-trans-Ax. In this 389 study, we identified a novel esterase (est3-14) gene (51% similarity) from a marine 390 mud metagenomic library. Est3-14 is pH-sensitive and keeps good stability in alkaline 391 buffers, especially in Buffer A (residual activity 94%, 36 h, 4 °C). At the same time, 392 Est3-14 keeps a good stability in the medium temperature condition (residual activity 393 56.7%, Buffer A, 40 °C, 84 h). Under optimal conditions, the final hydrolysis rate was 99.3% and the yield of free all-trans-Ax was 200 µg•mL⁻¹. According to these results, 394 395 we found that the hydrolysis rate was high and the by-products of enzymatic method were less than using saponification,²⁴ which is a pre-requisite for the development of a 396 green chemistry process. The whole reaction system is mild (moderate temperature 397 and less chemical solvents) and the less by-products.²³ Thus, it can be concluded that 398

399 Est3-14 is an efficient biocatalyst exploitable for the development of a competitive 400 industrial process for obtaining free all-trans-Ax. Certainly, the reaction system needs 401 further optimization to improve the volume of production of prepared free 402 all-trans-Ax. Furthermore, by the means of enzyme engineering for improving the 403 enzymatic properties, including substrate specificity, new applications for Est3-14 can 404 also be envisaged. 405 406 ■ ABBREVIATIONS 407 Ax: astaxanthin; LB: Luria-Bertani; CIP: alkaline phosphatase calf intestinal; 408 pNP: p-nitrophenol; pNP acetate (C2): p-nitrophenyl acetate; pNP butyrate (C4 409 pNPB): p-nitrophenyl butyrate; pNP caprylate (C6): p-nitrophenyl caprylate; pNP 410 decanoate (C8): pNP decanoate, pNP caprate (C10): p-nitrophenyl caprate; pNP 411 laurate (C12): p-nitrophenyl laurate; pNP myristate (C14): p-nitrophenyl myristate;

413 methyl tert-butyl ether; HPLC: high-performance liquid chromatography; IPTG:

pNP palmitate (C16): p-nitrophenyl palmitate; ORF: open reading frame; MTBE:

414 isopropyl-β-D-1-thiogalactopyranoside; TLC: thin layer Chromatography; LB:

415 Luria-Bertani; EDTA: ethylene diamine tetraacetic; SDS: sodium dodecyl sulfate;

416 PAGE: polyacrylamide gel electrophoresis;

417

412

418 **FUNDING**

419 This work was supported by the China Agriculture Research System (CARS-48),

20

ACS Paragon Plus Environment

420	Major Special Science and Technology Projects in Shandong Province
421	(2016YYSP016), Applied Basic Research Program of Qingdao (16-5-1-18-jch),
422	Natural Science Foundation of ShandongProvince(ZR2017MC024),
423	China Postdoctoral Science Foundation (2017M612354) and the Laboratory for
424	Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science
425	and Technology (LMDBKF201705).

- 426 Notes
- 427 The authors declare that they have no competing interests.

428

429 Supporting Information

430	Figure S1 The structures of Ax. all-trans-Ax, 9-cis-Ax, 13-cis-Ax, respectively.
431	Figure S2 The functional screening of positive strains from marine mud metagenomic
432	library. M1, M2: with the clear hydrolysis halos on the LB agar with
433	tributyrin (0.5%, v/v).
434	Figure S3 Partial digestion of positive strains with Sau3AI. The digestion time was:
435	lane 1, M1-5 min; lane 2, M1-10 min; lane 3, M2-5 min; lane 4, M2-10
436	min.
437	Figure S4 Analysis of the expression level and purification of Est3-14 by SDS-PAGE.
438	lane1, supernatant of pET-28a (+) cell lysate; lane 2, supernatant of
439	est3-14-pET-28a (+) cell lysate; lane3, precipitation of est3-14-pET-28a
440	(+) cell lysate; lane 4, 0.02 M imidazole with buffer A; lane 5, 0.05 M
441	imidazole with buffer A; lane 6, 0.1 M imidazole with buffer A; lane 7,
442	0.2 M imidazole with buffer A; lane 8, 0.5 M imidazole with buffer A;
443	Lane M, marker.
444	
445	
446	
447	
448	
449	

450 **REFERENCES**

- 451 (1) Naguib, Y. M. A., Antioxidant activities of astaxanthin and related carotenoids. J.
- 452 *Agric. Food Chem.* **2000**, *48*, 1150-1154.
- 453 (2) Jyonouchi, H.; Sun, S.; Iijima, K.; Gross, M. D., Antitumor activity of astaxanthin
- 454 and its mode of action. *Nutr Cancer.* **2000**, *36*, 59-65.
- 455 (3) Lockwood, S. F.; Penn, M. S.; Hazen, S. L.; Bikadi, Z.; Zsila, F., The effects of
- 456 oral Cardax (disodium disuccinate astaxanthin) on multiple independent
- 457 oxidative stress markers in a mouse peritoneal inflammation model: influence on
- 458 5-lipoxygenase in vitro and in vivo. *Life Sci.* **2006**, *79*, 162-174.
- 459 (4) Zhang, Y.; Wang, W.; Hao, C.; Mao, X.; Zhang, L., Astaxanthin protects PC12
- 460 cells from glutamate-induced neurotoxicity through multiple signaling pathways.
- 461 *J. Funct. Foods.* **2015**, *16*, 137-151.
- 462 (5) Wang, X.; Willén, R.; Wadström, T., Astaxanthin-rich algal meal and vitamin C
- 463 inhibit Helicobacter pylori infection in BALB/cA mice. Antimicrob. Agents
- 464 *Chemother.* **2000**, *44*, 2452-2457.
- 465 (6) Xue, Y.; Qu, Z.; Fu, J.; Zhen, J.; Wang, W.; Cai, Y.; Wang, P., The protective effect
- 466 of astaxanthin on learning and memory deficits and oxidative stress in a mouse
- 467 model of repeated cerebral ischemia/reperfusion. Brain. Res. Bull.2017, 131,
- 468 221-228.
- 469 (7) Ambati, R. R.; Phang, S. M.; Ravi, S.; Aswathanarayana, R. G., Astaxanthin:
 470 sources, extraction, stability, biological activities and its commercial

471	applicationsa review. Mar. drugs. 2014, 12, 128-152.
472	(8) Higuera-Ciapara, I.; Felix-Valenzuela, L.; Goycoolea, F. M., Astaxanthin: a review
473	of its chemistry and applications. Crit. Rev. Food Sci. 2006, 46, 185-196.
474	(9) Fan, L.; Vonshak, A.; Gabbay, R.; Hirshberg, J.; Cohen, Z.; Boussiba, S., The
475	Biosynthetic Pathway of Astaxanthin in a Green Alga Haematococcus pluvialis
476	as Indicated by Inhibition with Diphenylamine. Plant. Cell Physiol. 1995, 36,
477	1519-1524.
478	(10) Shahidi, F.; Synowiecki, J., Isolation and characterization of nutrients and
479	value-added products from snow crab (Chinoecetes opilio) and shrimp
480	(Pandalus borealis) processing discards. J. Agric. Food. Chem. 1991, 39,
481	1527-1532.
482	(11) Guerin, M.; Huntley, M. E.; Olaizola, M., Haematococcus astaxanthin:
483	applications for human health and nutrition. Trends Biotechnol. 2003, 21,
484	210-216.
485	(12) Lorenz, R. T.; Cysewski, G. R., Commercial potential for Haematococcus
486	microalgae as a natural source of astaxanthin. Trends Biotechnol. 2000, 18, 160.
487	(13) Zhao, Y.; Guan, F.; Wang, G.; Miao, L.; Ding, J.; Guan, G.; Li, Y.; Hui, B.,
488	Astaxanthin preparation by lipase-catalyzed hydrolysis of its esters from
489	Haematococcus pluvialis algal extracts. J. Food Sci. 2011, 76, 643-650.

- 490 (14) Osterlie, M.; Bjerkeng, B.; Liaaen-Jensen, S., Accumulation of astaxanthin all-E,
- 491 9Z and 13Z geometrical isomers and 3 and 3' RS optical isomers in rainbow trout

24

- 492 (Oncorhynchus mykiss) is selective. J. Nutr. **1999**, *129*, 391-398.
- 493 (15) Turujman, S. A.; Wamer, W. G.; Wei, R. R.; Albert, R. H., Rapid liquid
- 494 chromatographic method to distinguish wild salmon from aquacultured salmon
- 495 fed synthetic astaxanthin. J. AOAC Int. **1997**, 80, 622-632.
- 496 (16) Abu-Lafi, S.; Turujman, S. A., Reproducibility of the separation of astaxanthin
- 497 stereoisomers on Pirkle covalent L-leucine and D-phenylglycine columns. J.
 498 *Chromatogr A.* 1999, 855, 157-170.
- 499 (17) Yuan, J. P.; Gong, X. D.; Chen, F., Separation and identification of astaxanthin
- 500 esters and chlorophylls in *Haematococcus lacustris* by HPLC. *Biotechnol. Tech.*
- **1996**, *10*, 655-660.
- 502 (18) Cerón, M. C.; García-Malea, M. C.; Rivas, J.; Acien, F. G.; Fernandez, J. M.; Del
- 503 Río, E.; Guerrero, M. G.; Molina, E., Antioxidant activity of *Haematococcus*
- *pluvialis* cells grown in continuous culture as a function of their carotenoid and
 fatty acid content. *Appl. Microbiol. Biotechnol.* 2006, 74, 1112.
- 506 (19) Choubert, G.; Cravedi, J.-P.; Laurentie, M., Effect of alternate distribution of
- astaxanthin on rainbow trout (Oncorhynchus mykiss) muscle pigmentation. *Aquaculture*. 2009, 286, 100-104.
- 509 (20) Beutner, S.; Bloedorn, B.; Frixel, S.; Blanco, I. H.; Hoffmann, T.; Martin, H. D.;
- 510 Mayer, B.; Noack, P.; Ruck, C.; Schmidt, M.; Schulke, I.; Sell, S.; Ernst, H.;
- 511 Haremza, S.; Seybold, G.; Sies, H.; Stahl, W.; Walsh, R., Quantitative assessment
- 512 of antioxidant properties of natural colorants and phytochemicals: carotenoids,

- 513 flavonoids, phenols and indigoids. The role of beta-carotene in antioxidant
- 514 functions. J. Sci. Food Agric. 2001, 81, 559-568.
- 515 (21) Mortensen, A.; Skibsted, L. H.; Sampson, J.; Rice-Evans, C.; Everett, S. A.,
- Comparative mechanisms and rates of free radical scavenging by carotenoid 516
- 517 antioxidants. FEBS Lett. 1997, 418, 91-97.
- 518 (22) Zhou, X. Y.; Zhang, F.; Hu, X. T.; Chen, J.; Tang, R. X.; Zheng, K. Y.; Song, Y. J.,
- 519 Depression can be prevented by astaxanthin through inhibition of hippocampal 520

inflammation in diabetic mice. Brain Res. 2017, 1657, 262-268.

- 521 (23) Dong, H.; Li, X.; Xue, C.; Mao, X., Astaxanthin preparation by fermentation of
- 522 esters from Haematococcus pluvialis algal extracts with Stenotrophomonas 523 species. Biotechnol. Progr. 2016, 32, 649-656.
- 524 (24) Yuan, J. P.; Chen, F., Hydrolysis kinetics of astaxanthin esters and stability of
- 525 astaxanthin of Haematococcus pluvialis during saponification. J. Agric. Food
- 526 Chem. 1999, 47, 31-35.
- 527 (25) Danielli, J. F.; Fox, D. L., Surface chemistry of carotenoids. 1. Astacene. 528 Biochem. J. 1941, 35, 1388-1395.
- 529 (26) Ma, R. Y.-N.; Chen, F., Enhanced production of free trans-astaxanthin by
- 530 oxidative stress in the cultures of the green microalga Chlorococcum sp. Process
- 531 Biochem. 2001, 36, 1175-1179.
- 532 (27) Yuan, J. P.; Chen, F., Chromatographic Separation and Purification of
- 533 trans-Astaxanthin from the Extracts of Haematococcus pluvialis. J. Agric. Food

534	Chem. 1998, 46, 3371-3375.							
535	(28) Nagao, T.; Fukami, T.; Horita, Y.; Komemushi, S.; Sugihara, A.; Shimada, Y.,							
536	Enzymatic enrichment of astaxanthin from Haematococcus pluvialis cell extracts.							
537	J. Am. Oil Chem. Soc. 2003, 80, 975-981.							
538	(29) Dong, H.; Secundo, F.; Xue, C.; Mao, X., Whole-Cell Biocatalytic Synthesis of							
539	Cinnamyl Acetate with a Novel Esterase from the DNA Library of Acinetobacter							
540	hemolyticus. J. Agric. Food. Chem. 2017, 65, 2120-2128.							
541	(30) Kim, Y. O.; Park, I. S.; Kim, H. K.; Nam, B. H.; Kong, H. J.; Kim, W. J.; Kim, D.							
542	G.; Kim, B. S.; Jee, Y. J.; Song, J. H.; Lee, S. J., Shewanella sp. Ke75 esterase							
543	with specificity for p-nitorphenyl butyrate: Gene cloning and characterization. J.							
544	Korean. Soc. Appl. Bi. 2013, 56, 55-62.							
545	(31) Amann, R. I.; Ludwig, W.; Schleifer, K. H., Phylogenetic identification and in							
546	situ detection of individual microbial cells without cultivation. Microbiol. Rev.							
547	1995 , <i>59</i> , 143-169.							
548	(32) Lorenz, P.; Eck, J., Metagenomics and industrial applications. Nat. Rev Micro.							
549	2005, <i>3</i> , 510-516.							
550	(33) Wang, H.; Sun, H.; Wei, D., Discovery and characterization of a highly efficient							
551	enantioselective mandelonitrile hydrolase from Burkholderia cenocepacia J2315							
552	by phylogeny-based enzymatic substrate specificity prediction. BMC.							
553	Biotechnology. 2013, 13, 1-11.							

554 (34) Margesin, R., A colorimetric method for the determination of lipase activity in

- soil. *Biotechnol. Lett.* **2002**, *24*, 27-33.
- (35) Arpigny, J. L.; Jaeger, K.-E., Bacterial lipolytic enzymes: classification and
 properties. *Biochem. J.* 1999, *343*, 177.
- 558 (36) Bornscheuer, U., Microbial carboxyl esterases: classification, properties and

application in biocatalysis. *FEMS Microbiol. Rev.* **2002**, *26*, 73-81.

- 560 (37) Fu, C.; Hu, Y.; Xie, F.; Guo, H.; Ashforth, E. J.; Polyak, S. W.; Zhu, B.; Zhang, L.,
- 561 Molecular cloning and characterization of a new cold-active esterase from a
- 562 deep-sea metagenomic library. *Appl. Microbiol. Biotechnol.* **2011**, *90*, 961-970.
- 563 (38) Gao, W.; Wu, K.; Chen, L.; Fan, H.; Zhao, Z.; Gao, B.; Wang, H.; Wei, D., A
- 564 novel esterase from a marine mud metagenomic library for biocatalytic synthesis
- 565 of short-chain flavor esters. *Microb. Cell. Fac.* **2016**, *15*, 41.
- 566 (39) Colja Laane, S. B., Kees Vos, and Cees Veeger, Rules for optimization of
- 567 biocatalysis in organic solvents. *Biotechnol. Bioeng.* **2010**, *30*, 81-87.
- 568 (40) Torres, S.; Castro, G. R., Non-aqueous biocatalysis in homogeneous solvent
- 569 systems. Food Technol. . Biotech. 2004, 42, 271-277.
- 570 (41) Li, M.; Yang, L. R.; Xu, G.; Wu, J. P., Screening, purification and 571 characterization of a novel cold-active and organic solvent-tolerant lipase from
- 572 Stenotrophomonas maltophilia CGMCC 4254. Bioresour. Technol. 2013, 148,
- 573 114-120.
- 574 (42) Yuan, J. P.; Chen, F., Purification of trans-astaxanthin from a high yielding
 575 astaxanthin ester-producing strain of the microalga *Haematococcus pluvialis*.

576	Food Chem.	2000,	68,	443-448	•
-----	------------	-------	-----	---------	---

577	(43) Peng, Q.; Wang, X.; Meng, S.; Huang, J. J.; Guan, G. H.; Li, Y.; Shi, B. Iso	lation
578	of a novel alkaline-stable lipase from a metagenomic library and its sp	ecific

of a novel alkaline-stable lipase from a metagenomic library and its specific

- 579 application for milkfat flavor production. Microb. Cell Fact. 2014, 13, 1-9.
- (44) Wang, G.; Wang, Q.; Lin, X.; Ng, T. B.; Yan, R.; Lin, J.; Ye, X. A novel 580
- 581 cold-adapted and highly salt-tolerant esterase from Alkalibacterium sp. SL3 from 582 the sediment of a soda lake. Sci. Rep-UK. 2016, 6.
- 583 (45) Cai, X. H.; Jing, M.; Wei, D. Z.; Lin, J. P.; Wei, W. Functional expression of a
- 584 novel alkaline-adapted lipase of Bacillus amyloliquefaciens from stinky tofu
- 585 brine and development of immobilized enzyme for biodiesel production. Antonie
- 586 van Leeuwenhoek 2014, 106, 1049-1060.
- 587
- 588

589

590 Figure legends

591	Figure 1 Bioinformatic analysis of Est3-14. (a) Neighbor-joining phylogenetic tree.
592	Phylogenetic analysis was obtained by MEGA 6.0 software, and Est3-14 is
593	shown as red triangles. (b) Multiple sequence alignments of Est3-14 and other
594	lipolytic enzymes belonging to family V. The typical motif is indicated using
595	blue circles, and the catalytic triad (Ser, Asp, His) is emphasized with pink
596	triangles.
597	Figure 2 SDS-PAGE analysis of Est3-14. Lanes:0, protein marker;1, supernant of
598	Est3-14 cell lysate; 2, precipitation of Est3-14 cell lysate; 3, purified Est3-14.
599	Figure 3 Characterization of Est3-14. a Substrate specificity of Est3-14 using pNP
600	esters with different acyl chain lengths; b Effect of pH on Est3-14 activity, used
601	p-NP butyrate as the substrate. The buffers used were citrate (solid square),
602	phosphate (solid circle), Tris-HCl (solid triangle), and Na ₂ CO ₃ -NaHCO ₃ (solid
603	inverted triangle); c Effect of pH on Est3-14 stability, measured at different pHs
604	for 36 h in 0.1 M different pH buffer for various durations; d Effect of
605	temperature on Est3-14 activity ranging from 20 °C to 80 °C; e Est3-14 was
606	incubated in 0.1 M Tris-HCl buffer, pH 8.0, at 40, 45, 50, 55, or 60 °C for
607	various durations; f Effects of surfactants (0.5%) on Est3-14 activity, the reaction
608	without surfactant addition (control) was defined as 100%.
609	Figure 4 TLC result of the hydrolysis of Ax esters with esterases Est3-14 from
610	metagenomic libraries. Lane 0, free all -trans-Ax; Lane 1, the hydrolysis results

611	of Est3-14; Lane 2, the substrate of Ax-esters.
-----	---

612	Figure 5	The result	of ider	ntification	of free	all-trans	-Ax f	rom	hydro	lysis	medium.	(a)
-----	----------	------------	---------	-------------	---------	-----------	-------	-----	-------	-------	---------	-----

- 613 Peak 1: free all-*trans*-Ax; (b) The MS/MS result of free all-*trans*-Ax standard; (c)
- 614 The MS result of free all-*trans*-Ax; (d) The MS/MS result of free all-*trans*-Ax.
- 615 Figure 6 The result of effect of reaction time on hydrolysis of Ax esters. (a) HPLC of
- 616 hydrolysis of Ax esters at the different reaction time; (b) The conversion of Ax
- 617 esters under different reaction time; (c) The content of free all-*trans*-Ax under
- 618 different reaction time.
- 619 Figure 7 The result of effect of enzyme loading on hydrolysis of Ax esters. (a)
- 620 Results of content of free all-*trans*-Ax at the different enzyme loading; (b) The
- 621 conversion of Ax esters under different enzyme loading.
- 622 **Scheme 1** Est3-14 catalyzed hydrolysis of Ax esters.

Tables

Ion	Ion ——	Relative activity (%) ^a			
101		1 mM	10 mM		
Co	ntrol	100±2.6	100±4.0		
Co	2+	107.91±1.1	75.2±1.6		
K^+		105.6±0.6	96.0±0.4		
Li ⁺		96.8±1.3	84.2±0.2		
ED	ТА	94.0±1.5	79.9±1.8		
Fe ³	+	84.3±1.8	44.7±2.4		
Mn	2+	97.3±0.3	79.6±1.3		
Ca	!+	95.4±0.2	78.9±2.4		
Mg	2+	96.1±3.5	81.0±1.0		
Zn ²	!+	73.1±3.2	23.2±5.9		
Ni ²	+	98.3±0.1	69.4±2.4		

Tabale 1. Effect of metal ions and Na₂-EDTA on Est3-14 activity

^a The activity toward pNP butyrate measured in the absence of metal ions was defined as 100 %. All measurements were conducted in triplicate.

	$\mathbf{L} = D^{\mathbf{a}}$	Residual activity (%) ^b at concentration (%, v/v) of				
Organic solvents	logP	25 ^a	50 ^a	100 ^a		
Control	-	100±2.4	100±0.9	100±1.9		
DMSO	-1.3	75.9±3.2	69.5±2.4	17.1±1.6		
Methanol	-0.76	63.7±2.3	22.5±2.4	20.0±1.4		
Ethanol	-0.24	91.2±1.2	18.5±2.7	24.3±2.5		
Acetone	-0.23	98.3±2.5	51.2±1.6	33.9±1.6		
Acetonitrile	-0.15	73.1±1.9	20.0±0.5	90.2±1.3		
Isopropanol	0.1	78.9±1.3	20.1±1.3	52.0±1.8		
n-Propanol	0.28	20.7±1.5	19.5±1.7	32.4±1.7		
Chloroform	2.0	62.6±1.5	74.3±1.3	26.1±1.2		
Cyclohexane	3.2	84.8±1.8	72.9±2.3	41.7±2.4		
n-hexane	3.5	54.8±2.3	68.9±4.3	88.2±2.1		
Isooctane	4.5	52.3±2.3	64.6±3.7	43.7±0.6		

Table 2.	Effects of organic solvents on Est3-14 activity
1 4010 21	Effects of of game soft enes on Este 11 activity

^a log P value is the partition coefficient of an organic solvent between water and n-octanol phases

^b After pretreating Est 3-14 for 3 h in different organic solvents, the remanent activity was measured in Buffer A by using *p*-NP butyrate as the substrate. The 100% activity was defined as the enzyme without adding any organic solvents.

Figures

Figure 1 Bioinformatic analysis of Est3-14.

Figure 2 SDS-PAGE analysis of Est3-14.

Figure 3 Characterization of Est3-14.

Figure 4 TLC result of the hydrolysis of Ax esters

Figure 5 The result of identification of free all-*trans*-Ax from hydrolysis medium.

Figure 6 The result of influence of reaction times on hydrolysis of Ax esters.

Figure 7 The result of the effect of enzyme loading on hydrolysis of Ax esters.

Scheme 1 Est3-14 catalyzed hydrolysis of Ax esters.

TOC Graphic

Figure 1 Bioinformatic analysis of Est3-14. (a) Neighbor-joining phylogenetic tree. Phylogenetic analysis was obtained by MEGA 6.0 software, and Est3-14 is shown as red triangles. (b) Multiple sequence alignments of Est3-14 and other lipolytic enzymes belonging to family V. The typical motif is indicated using blue circles, and the catalytic triad (Ser, Asp, His) is emphasized with pink triangles.

140x115mm (300 x 300 DPI)

Figure 2 SDS-PAGE analysis of Est3-14. Lanes:0, protein marker;1, supernant of Est3-14 cell lysate; 2, precipitation of Est3-14 cell lysate; 3, purified Est3-14.

150x154mm (300 x 300 DPI)

128x150mm (300 x 300 DPI)

Figure 4 TLC result of the hydrolysis of Ax esters with esterases Est3-14 from metagenomic libraries. Lane 0, free all -trans-Ax; Lane 1, the hydrolysis results of Est3-14; Lane 2, the substrate of Ax-esters.

99x183mm (300 x 300 DPI)

Figure 6 The result of effect of reaction time on hydrolysis of Ax esters.

150x94mm (300 x 300 DPI)

Figure 7 The result of effect of enzyme loading on hydrolysis of Ax esters. (a) Results of content of free alltrans-Ax at the different enzyme loading; (b) The conversion of Ax esters under different enzyme loading.

150x60mm (300 x 300 DPI)

Scheme 1 Est3-14 catalyzed hydrolysis of Ax ester.

391x43mm (300 x 300 DPI)

TOC Graphic

150x90mm (300 x 300 DPI)