

Available online at www.sciencedirect.com



Inorganica Chimica Acta 347 (2003) 41-48



www.elsevier.com/locate/ica

# Reactivity of the dimer $[{Ru(\eta^3:\eta^3-C_{10}H_{16})(\mu-Cl)Cl}_2]$ towards diphosphines and diphosphine-monoxides: synthesis and characterization of novel (2,7-dimethylocta-2,6-diene-1,8-diyl)ruthenium(IV) complexes

Victorio Cadierno, Sergio E. García-Garrido, José Gimeno\*

Departamento de Química Orgánica e Inorgánica, Facultad de Química, Instituto Universitario de Química Organometálica 'Enrique Moles' (Unidad Asociada al CSIC), Universidad de Oviedo, E-33071 Oviedo, Spain

Received 20 February 2002; accepted 13 May 2002

Dedicated to Professor Rafael Usón with great admiration for his outstanding contributions to modern inorganic chemistry

### Abstract

Treatment of complex  $[\text{Ru}(\eta^3;\eta^3-\text{C}_{10}\text{H}_{16})\text{Cl}_2(\kappa^{1}-P-\text{Ph}_2\text{PCH}_2\text{PPh}_2)]$  (2) with AgBF<sub>4</sub> yields the chelate derivative  $[\text{Ru}(\eta^3;\eta^3-\text{C}_{10}\text{H}_{16})\text{Cl}_2(\kappa^2-P,P-\text{Ph}_2\text{PCH}_2\text{PPh}_2)]$ [BF<sub>4</sub>] (3). Attempts to generate species structurally related to 2 by reaction of the bis(allyl)-ruthenium(IV) dimer [{Ru}(\eta^3;\eta^3-\text{C}\_{10}\text{H}\_{16})(\mu-\text{Cl})\text{Cl}\_2] (1) with diphosphines Ph<sub>2</sub>P(CH<sub>2</sub>)<sub>n</sub> PPh<sub>2</sub> (n = 2, 3, 4) failed, obtaining instead the dinuclear compounds [{Ru}(\eta^3;\eta^3-\text{C}\_{10}\text{H}\_{16})\text{Cl}\_2\{\mu-\text{Ph}\_2\text{P}(\text{CH}\_2)\_n\text{PPh}\_2\}] (n = 2 (4a), 3 (4b), 4 (4c)). In contrast, mononuclear neutral species [Ru( $\eta^3;\eta^3-\text{C}_{10}\text{H}_{16}$ )Cl<sub>2</sub>{ $\kappa^1-P-\text{Ph}_2\text{P}(\text{CH}_2)_n\text{P}(=0)\text{Ph}_2$ }] (n = 1 (5a), 2 (5b), 3 (5c), 4 (5d)) have been easily prepared by reaction of 1 with the corresponding diphosphine-monoxide Ph<sub>2</sub>P(CH<sub>2</sub>)<sub>n</sub>P(=O)Ph<sub>2</sub> (n = 1, 2, 3, 4). Treatment of 5a,b with AgBF<sub>4</sub> allows the formation of cationic derivatives [Ru( $\eta^3;\eta^3-\text{C}_{10}\text{H}_{16}$ )Cl{ $\kappa^2-P,O-\text{Ph}_2\text{P}(\text{CH}_2)_nP(=O)\text{Ph}_2$ }][BF<sub>4</sub>] (n = 1 (6a), 2 (6b)). (© 2002 Elsevier Science B.V. All rights reserved.

Keywords: n<sup>3</sup>:n<sup>3</sup>-Octadienediyl complexes; Bis(allyl) complexes; Diphosphines; Diphosphine-monoxides; Ruthenium(IV) complexes

### 1. Introduction

Although the dimeric chloro-bridged bis(allyl)-ruthenium(IV) complex [{Ru( $\eta^3$ : $\eta^3$ -C<sub>10</sub>H<sub>16</sub>)( $\mu$ -Cl)Cl}<sub>2</sub>] (1) has been known for many years [1], its chemistry has been scarcely developed. This fact is rather surprising given the profusion of studies on the structurally related ruthenium(II) dimers [{Ru( $\eta^6$ -arene)( $\mu$ -Cl)Cl}<sub>2</sub>] [2]. Complex 1 and some of its derivatives possess a number of features which make them particularly appealing. These include: (i) remarkable stability and water solubility [3]; (ii) catalytic activity in ROMP of cycloolefins [3b,4] and butadiene polymerization [5]; (iii) the chirality of the metal coordinated 2,7-dimethylocta-2,6-diene-1,8diyl ligand (in solution complex **1** has been shown to exist in two diasteromeric forms; see Fig. 1) [6]; and (iv) the high reactivity derived from the chloro-bridged structure. The later feature has disclosed wide series of derivatives of the type:  $[Ru(\eta^3:\eta^3-C_{10}H_{16})Cl_2L]$  [6,7],  $[Ru(\eta^3:\eta^3-C_{10}H_{16})Cl_2\}_2(\mu-L-L)]$  [3a,8],  $[{Ru(\eta^3:\eta^3-C_{10}H_{16})Cl_2}_2(\mu-L-L)]$  [7d,9] and  $[{Ru(\eta^3:\eta^3-C_{10}H_{16})Cl-(\mu-L)}_2]$  [7e,10], generated by the bridging cleavage using monodentate and bidentate ligands. In addition, cationic species  $[Ru(\eta^3:\eta^3-C_{10}H_{16})Cl_2]^+$  and  $[Ru(\eta^3:\eta^3-C_{10}H_{16})L_3]^{2+}$  have been also prepared by treatment of **1** with AgBF<sub>4</sub> in the presence of monodentate ligands [4d,7c,d,8f,9b].

In spite of this versatile reactivity, studies focused on the preparation of bis(allyl)-ruthenium(IV) complexes containing chelating diphosphines starting from dimer **1** have been almost neglected. To the best of our knowledge only the complex  $[Ru(\eta^3:\eta^3-C_{10}H_{16})Cl(\kappa^2-P,P-{}^iPr_2PCH_2P{}^iPr_2)][BF_4]$  is known [11]. This prompted

<sup>\*</sup> Corresponding author. Tel.: +34-98-5103-461; fax: +34-98-5103-446.

E-mail address: jgh@sauron.quimica.uniovi.es (J. Gimeno).

<sup>0020-1693/02/\$ -</sup> see front matter © 2002 Elsevier Science B.V. All rights reserved. doi:10.1016/S0020-1693(02)01437-8

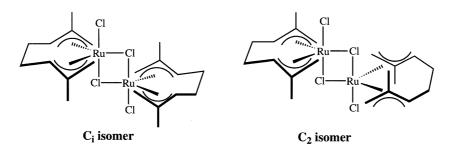
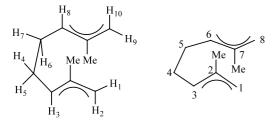



Fig. 1. The two diastereomeric forms of  $[{Ru(\eta^3:\eta^3-C_{10}H_{16})(\mu-Cl)Cl}_2]$  (1).


us to study the reactivity of  $[\{Ru(\eta^3:\eta^3-C_{10}H_{16})(\mu-Cl)Cl\}_2]$  (1) towards the chelating bis(diphenylphosphino)alkane ligands Ph<sub>2</sub>P(CH<sub>2</sub>)<sub>n</sub>PPh<sub>2</sub> (dppm, dppe, dppp and dppb), as well as their hemilabile diphosphine-monoxide counterparts Ph<sub>2</sub>P(CH<sub>2</sub>)<sub>n</sub>P(=O)Ph<sub>2</sub> (dppmO, dppeO, dpppO and dppbO).

### 2. Experimental

### 2.1. General information

The manipulations were performed under an atmosphere of dry nitrogen using vacuum-line and standard Schlenk techniques. Solvents were dried by standard methods and distilled under nitrogen before use. All reagents were obtained from commercial suppliers and used without further purification with the exception of compounds  $[\{Ru(\eta^3:\eta^3-C_{10}H_{16})(\mu-Cl)Cl\}_2]$  (1) [5],  $[Ru(\eta^{3}:\eta^{3}-C_{10}H_{16})Cl_{2}(\kappa^{1}-P-Ph_{2}PCH_{2}PPh_{2})]$  (2) [9a], dppmO [12], dppeO [12], dpppO [12] and dppbO [12] which were prepared by following the methods reported in the literature. Infrared spectra were recorded on a Perkin-Elmer 1720-XFT spectrometer. The C and H analyses were carried out with a Perkin-Elmer 2400 microanalyzer. NMR spectra were recorded on a Bruker DPX-300 instrument at 300 MHz (<sup>1</sup>H), 121.44 MHz  $^{(31}P)$  or 75.47 MHz ( $^{13}C$ ) using SiMe<sub>4</sub> or 85% H<sub>3</sub>PO<sub>4</sub> as standards. DEPT experiments have been carried out for all the compounds reported.

The numbering for protons and carbons of the octadienediyl skeleton is as follows:



### 2.2. Preparations

# 2.2.1. $[Ru(\eta^3:\eta^3-C_{10}H_{16})Cl(\kappa^2-P,P-Ph_2PCH_2PPh_2)][BF_4](3)$

Method A: a suspension of 0.200 g (0.289 mmol) of  $[Ru(\eta^{3}:\eta^{3}-C_{10}H_{16})Cl_{2}(\kappa^{1}-P-Ph_{2}PCH_{2}PPh_{2})]$  (2) and 0.058 g (0.298 mmol) of AgBF<sub>4</sub> in 10 ml of dichloromethane was stirred in the dark, at room temperature (r.t.), for 30 min. The reaction mixture was then filtered through Kieselguhr and the filtrate evaporated to dryness. The resulting yellow solid residue was washed with diethyl ether  $(3 \times 20 \text{ ml})$  and dried in vacuo. Yield 0.187 g (87%). Anal. Calc. for  $RuC_{35}H_{38}F_4P_2BCl$ (744.12 g mol<sup>-1</sup>): C, 56.51; H, 5.15. Found: C, 56.26; H, 4.89%. IR (KBr, cm<sup>-1</sup>): v = 3055 (m), 2915 (m), 1628 (m), 1484 (m), 1435 (s), 1385 (w), 1060 (vs), 998 (m), 741 (s), 696 (s), 532 (m), 510 (m), 483 (s);  ${}^{31}P{}^{1}H{}$  NMR  $((CD_3)_2CO) \delta = -33.70 \text{ and } -15.84 \text{ (d, } J(P,P) = 58.2$ Hz) ppm; <sup>1</sup>H NMR ((CD<sub>3</sub>)<sub>2</sub>CO)  $\delta = 1.87$  (dd, 3H, J(H,P) = 1.7 Hz, J(H,P) = 1.7 Hz,  $CH_3$ , 2.40 (dd, 1H,  $J(H,P) = 15.0 \text{ Hz}, J(H,P) = 4.5 \text{ Hz}, H_2 \text{ or } H_{10}), 2.51 \text{ (d,}$ 3H, J(H,P) = 2.0 Hz, CH<sub>3</sub>), 2.61 (dd, 1H, J(H,P) = 9.1Hz, J(H,P) = 4.5 Hz, H<sub>2</sub> or H<sub>10</sub>), 2.75, 3.03, 3.24 and 3.40 (m, 1H each, H<sub>4</sub>, H<sub>5</sub>, H<sub>6</sub> and H<sub>7</sub>), 3.51 (dd, 1H, J(H,P) = 3.9 Hz, J(H,P) = 3.9 Hz,  $H_1$  or  $H_9$ ), 3.85 and 4.92 (m, 1H each, H<sub>3</sub> and H<sub>8</sub>), 4.14 (dd, 1H, J(H,P) =4.3 Hz, J(H,P) = 4.3 Hz,  $H_1$  or  $H_9$ ), 5.34 (m, 2H, PCH<sub>2</sub>P), 6.50–8.30 (m, 20H, Ph) ppm; <sup>13</sup>C{<sup>1</sup>H} NMR  $((CD_3)_2CO) \delta = 19.24 \text{ (dd, } J(C,P) = 3.8 \text{ Hz, } J(C,P) =$ 1.3 Hz, CH<sub>3</sub>), 19.74 (d, J(C,P) = 1.3 Hz, CH<sub>3</sub>), 31.06 and 37.84 (s,  $C_4$  and  $C_5$ ), 38.82 (dd, J(C,P) = 28.0 Hz, J(C,P) = 28.0 Hz, PCH<sub>2</sub>P), 67.99 (dd, J(C,P) = 5.7 Hz, J(C,P) = 2.5 Hz,  $C_1$  or  $C_8$ ), 69.05 (d, J(C,P) = 5.7 Hz,  $C_1$  or  $C_8$ ), 98.18 (dd, J(C,P) = 3.5 Hz, J(C,P) = 1.6 Hz,  $C_3$  and  $C_6$ ), 113.46 (dd, J(C,P) = 2.5 Hz, J(C,P) = 2.5Hz, C<sub>2</sub> or C<sub>7</sub>), 116.56 (s, C<sub>2</sub> or C<sub>7</sub>), 117.00-133.00 (m, Ph) ppm.

Method B: a suspension of 0.200 g (0.324 mmol) of  $[{Ru(\eta^3:\eta^3-C_{10}H_{16})(\mu-Cl)Cl}_2]$  (1), 0.250 g (0.650 mmol) of dppm and 0.126 g (0.650 mmol) of AgBF<sub>4</sub> in 10 ml of dichloromethane was stirred in the dark, at r.t. for 30 min. The reaction mixture was then filtered through Kieselguhr and the filtrate evaporated to dryness. The resulting yellow solid residue was washed with diethyl

ether  $(3 \times 20 \text{ ml})$  and dried in vacuo. Yield 0.410 g (85%).

2.2.2. 
$$[\{Ru(\eta^3:\eta^3-C_{10}H_{16})Cl_2\}_2\{\mu-Ph_2P(CH_2)_nPPh_2\}]$$
  
 $(n=2 \ (4a), \ 3 \ (4b), \ 4 \ (4c))$ 

A solution of 0.200 g (0.324 mmol) of [{Ru( $\eta^3$ : $\eta^3$ - $C_{10}H_{16}(\mu$ -Cl)Cl}<sub>2</sub> (1) in 10 ml of dichloromethane was treated at r.t. with the corresponding diphosphine (0.325 mmol). After stirring for 5 min, the solvent was removed under vacuum and the resulting solid residue washed with hexanes  $(3 \times 20 \text{ ml})$  and dried in vacuo. 4a: yellow solid; yield 0.319 g (97%). Anal. Calc. for Ru<sub>2</sub>C<sub>46</sub>H<sub>56</sub>-Cl<sub>4</sub>P<sub>2</sub> (1014.85 g mol<sup>-1</sup>): C, 54.44; H, 5.53. Found: C, 53.96; H, 5.25%. IR (KBr,  $cm^{-1}$ ): v = 3052 (m), 2853 (m), 1587 (w), 1432 (s), 1383 (s), 1311 (w), 1185 (m), 1087 (m), 1023 (m), 969 (m), 861 (m), 749 (m), 694 (vs), 529 (s), 519 (s), 491 (m);  ${}^{31}P{}^{1}H{}$  NMR (CD<sub>2</sub>Cl<sub>2</sub>)  $\delta =$ 24.97 and 25.30 (s) ppm; <sup>1</sup>H NMR (CD<sub>2</sub>Cl<sub>2</sub>)  $\delta$  = 2.06 (s, 12H, CH<sub>3</sub>), 2.34 and 2.70 (m, 2H each, P(CH<sub>2</sub>)<sub>2</sub>P), 2.59 (m, 4H, H<sub>4</sub> and H<sub>6</sub>), 2.97 and 3.01 (br, 2H each, H<sub>2</sub> and  $H_{10}$ , 3.37 (m, 4H,  $H_5$  and  $H_7$ ), 3.96 and 4.03 (d, 2H each, J(H,P) = 7.7 Hz, H<sub>1</sub> and H<sub>9</sub>), 5.05 (m, 4H, H<sub>3</sub> and H<sub>8</sub>), 7.30–7.65 (m, 20H, Ph) ppm;  ${}^{13}C{}^{1}H$  NMR  $(CD_2Cl_2)$   $\delta = 20.87$  (s, CH<sub>3</sub>), 22.84 (m, P(CH<sub>2</sub>)<sub>2</sub>P), 36.95 and 36.99 (s, C<sub>4</sub> and C<sub>5</sub>), 66.77 (s, C<sub>1</sub> and C<sub>8</sub>), 108.23 and 108.37 (d, J(C,P) = 5.4 Hz, C<sub>3</sub> and C<sub>6</sub>), 124.90 (d, J(C,P) = 7.0 Hz,  $C_2$  and  $C_7$ ), 127.00–136.00 (m, Ph) ppm. 4b: orange solid; yield 0.313 g (94%). Anal. Calc. for  $Ru_2C_{47}H_{58}Cl_4P_2$  (1028.87 g mol<sup>-1</sup>): C, 54.87; H, 5.68. Found: C, 54.81; H, 5.64%. IR (KBr, cm<sup>-1</sup>): v = 3054 (m), 2908 (m), 1672 (m), 1433 (s), 1382 (s), 1186 (m), 1087 (m), 1019 (m), 959 (s), 857 (m), 789 (w), 742 (s), 695 (vs), 525 (s), 493 (s);  ${}^{31}P{}^{1}H{}$  NMR (CD<sub>2</sub>Cl<sub>2</sub>)  $\delta = 16.05$  and 16.69 (s) ppm; <sup>1</sup>H NMR (CD<sub>2</sub>Cl<sub>2</sub>)  $\delta =$ 1.30 (m, 2H, CH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>), 2.11 and 2.13 (s, 6H each, CH<sub>3</sub>), 2.63 (m, 4H, H<sub>4</sub> and H<sub>6</sub>), 2.81 (m, 4H, PCH<sub>2</sub>), 2.94 and 3.03 (d, J(H,P) = 2.9 Hz, H<sub>2</sub> and H<sub>10</sub>), 3.41 (m, 4H, H<sub>5</sub> and H<sub>7</sub>), 4.03 and 4.05 (d, 2H each, J(H,P) = 9.2Hz, H<sub>1</sub> and H<sub>9</sub>), 5.09 (m, 4H, H<sub>3</sub> and H<sub>8</sub>), 7.25–7.75 (m, 20H, Ph) ppm; <sup>13</sup>C{<sup>1</sup>H} NMR (CD<sub>2</sub>Cl<sub>2</sub>)  $\delta = 20.06$  (s,  $CH_2CH_2CH_2$ ), 20.87 (s,  $CH_3$ ), 27.72 (dd, J(C,P) = 26.5Hz, J(C,P) = 12.2 Hz, PCH<sub>2</sub>), 37.01 (s, C<sub>4</sub> and C<sub>5</sub>), 66.74 (s, C<sub>1</sub> and C<sub>8</sub>), 108.09 and 108.21 (d, *J*(C,P) = 9.8 Hz, C<sub>3</sub> and C<sub>6</sub>), 124.90 (s, C<sub>2</sub> and C<sub>7</sub>), 127.00-137.00 (m, Ph) ppm. 4c: yellow solid; yield 0.321 g (95%). Anal. Calc. for  $Ru_2C_{48}H_{60}Cl_4P_2$  (1042.91 g mol<sup>-1</sup>): C, 55.28; H, 5.79. Found: C, 54.99; H, 5.73%. IR (KBr, cm<sup>-1</sup>): v = 3055 (m), 2902 (m), 2853 (m), 1573 (w), 1462 (m), 1434 (s), 1381 (s), 1183 (w), 1159 (w), 1096 (m), 1047 (w), 1022 (m), 962 (w), 859 (m), 846 (m), 748 (s), 696 (vs), 523 (s), 495 (s); <sup>31</sup>P{<sup>1</sup>H} NMR (CD<sub>2</sub>Cl<sub>2</sub>)  $\delta$  = 17.73 and 17.83 (s) ppm; <sup>1</sup>H NMR (CD<sub>2</sub>Cl<sub>2</sub>)  $\delta = 1.00-1.40$  and 2.49 (m, 4H each, P(CH<sub>2</sub>)<sub>4</sub>P), 2.11 (s, 12H, CH<sub>3</sub>), 2.61 (m, 4H,  $H_4$  and  $H_6$ ), 3.05 (d, 4H, J(H,P) = 3.2 Hz,  $H_2$  and  $H_{10}$ ), 3.40 (m, 4H, H<sub>5</sub> and H<sub>7</sub>), 4.09 (d, 4H, J(H,P) = 9.4 Hz, H<sub>1</sub> and H<sub>9</sub>), 5.09 (m, 4H, H<sub>3</sub> and H<sub>8</sub>), 7.30–7.70 (m, 20H, Ph) ppm;  ${}^{13}C{}^{1}H{}$  NMR (CD<sub>2</sub>Cl<sub>2</sub>)  $\delta = 20.92$  (s, CH<sub>3</sub>), 26.45 (d, *J*(C,P) = 27.3 Hz, PCH<sub>2</sub>), 26.46 (d, *J*(C,P) = 5.7 Hz, PCH<sub>2</sub>CH<sub>2</sub>), 37.04 (s, C<sub>4</sub> and C<sub>5</sub>), 66.77 (d, *J*(C,P) = 5.7 Hz, C<sub>1</sub> and C<sub>8</sub>), 108.17 (d, *J*(C,P) = 9.5 Hz, C<sub>3</sub> and C<sub>6</sub>), 124.93 (s, C<sub>2</sub> and C<sub>7</sub>), 127.50–137.00 (m, Ph) ppm.

2.2.3. 
$$[Ru(\eta^3:\eta^3-C_{10}H_{16})Cl_2\{\kappa^1-P-Ph_2P(CH_2)_nP(=O)Ph_2\}]$$
  $(n=1$  (5a), 2 (5b), 3 (5c), 4 (5d))

A solution of 0.400 g (0.648 mmol) of [{Ru( $\eta^3$ : $\eta^3$ - $C_{10}H_{16}(\mu$ -Cl)Cl $_{2}$  (1) in 10 ml of dichloromethane was treated at r.t. with the corresponding diphosphinemonoxide (1.298 mmol). After stirring for 5 min, the solvent was removed under vacuum and the resulting solid residue washed with diethyl ether  $(3 \times 20 \text{ ml})$  and dried in vacuo. 5a: orange solid; yield 0.883 g (96%). Anal. Calc. for  $RuC_{35}H_{38}Cl_2P_2O$  (708.61 g mol<sup>-1</sup>): C, 59.32; H, 5.40. Found: C, 59.15; H, 5.41%. IR (KBr,  $cm^{-1}$ ): v = 3050 (w), 2854 (w), 1587 (w), 1483 (m), 1434 (s), 1383 (m), 1310 (m), 1202 (vs), 1173 (s), 1115 (vs), 1024 (m), 996 (w), 920 (w), 851 (w), 802 (s), 736 (vs), 691 (vs), 615 (w), 552 (m), 506 (s), 487 (s);  ${}^{31}P{}^{1}H{}$  NMR  $(CD_2Cl_2) \delta = 18.61 \text{ (d, } J(P,P) = 29.5 \text{ Hz, } Ph_2P), 22.80$  $(d, J(P,P) = 29.5 \text{ Hz}, Ph_2P=O) \text{ ppm}; {}^{1}\text{H NMR} (CD_2Cl_2)$  $\delta = 2.14$  (s, 6H, CH<sub>3</sub>), 2.64 (m, 2H, H<sub>4</sub> and H<sub>6</sub>), 3.29 (d,  $2H, J(H,P) = 3.1 Hz, H_2 and H_{10}, 3.47 (m, 2H, H_5 and H_5)$  $H_7$ ), 3.79 and 4.15 (m, 1H each, PCH<sub>2</sub>P=O), 4.24 (d, 2H, J(H,P) = 9.6 Hz, H<sub>1</sub> and H<sub>9</sub>), 5.20 (m, 2H, H<sub>3</sub> and H<sub>8</sub>), 7.00–7.80 (m, 20H, Ph) ppm;  ${}^{13}C{}^{1}H{}$  NMR (CD<sub>2</sub>Cl<sub>2</sub>)  $\delta = 20.86$  (s, CH<sub>3</sub>), 26.13 (dd, J(C,P) = 61.8 Hz, J(C,P) = 18.5 Hz, PCH<sub>2</sub>P=O), 36.89 (s, C<sub>4</sub> and C<sub>5</sub>), 68.45 (d, J(C,P) = 4.9 Hz,  $C_1$  and  $C_8$ ), 107.85 (d, J(C,P) = 10.3 Hz, C<sub>3</sub> and C<sub>6</sub>), 125.73 (d, J(C,P) = 1.2Hz, C<sub>2</sub> and C<sub>7</sub>), 127.10–136.40 (m, Ph) ppm. **5b**: orange solid; yield 0.853 g (91%). Anal. Calc. for  $RuC_{36}H_{40}Cl_2P_2O$  (722.64 g mol<sup>-1</sup>): C, 59.83; H, 5.58. Found: C, 59.56; H, 5.80%. IR (KBr, cm<sup>-1</sup>): v = 3057(m), 2855 (m), 1590 (w), 1483 (m), 1434 (s), 1381 (m), 1278 (w), 1198 (s), 1174 (vs), 1121 (s), 1085 (s), 1026 (m), 967 (m), 881 (m), 860 (m), 788 (m), 733 (vs), 692 (vs), 545 (s), 517 (s), 501 (s), 482 (s);  ${}^{31}P{}^{1}H{}$  NMR (CD<sub>2</sub>Cl<sub>2</sub>)  $\delta = 20.19$  (d, J(P,P) = 39.1 Hz,  $Ph_2P$ ), 31.79 (d, J(P,P) = 39.1 Hz, Ph<sub>2</sub>P=O) ppm; <sup>1</sup>H NMR (CD<sub>2</sub>Cl<sub>2</sub>)  $\delta = 2.14$  (s, 6H, CH<sub>3</sub>), 2.21 and 3.44 (m, 2H each,  $P(CH_2)_2P=O$ , 2.64 (m, 2H, H<sub>4</sub> and H<sub>6</sub>), 2.99 (m, 2H, H<sub>5</sub>) and  $H_7$ ), 3.07 (d, 2H, J(H,P) = 3.5 Hz,  $H_2$  and  $H_{10}$ ), 4.17 (d, 2H, J(H,P) = 9.4 Hz, H<sub>1</sub> and H<sub>9</sub>), 5.13 (m, 2H, H<sub>3</sub> and H<sub>8</sub>), 7.36–7.77 (m, 20H, Ph) ppm;  ${}^{13}C{}^{1}H$ NMR (CD<sub>2</sub>Cl<sub>2</sub>)  $\delta = 19.49$  (dd, J(C,P) = 25.4 Hz, J(C,P) = 3.1 Hz, PCH<sub>2</sub>), 20.86 (s, CH<sub>3</sub>), 24.90 (dd, J(C,P) = 68.0 Hz, J(C,P) = 4.5 Hz,  $CH_2P=O)$ , 37.04 (s, C<sub>4</sub> and C<sub>5</sub>), 66.56 (d, J(C,P) = 5.4 Hz, C<sub>1</sub> and  $C_8$ ), 108.74 (d, J(C,P) = 9.9 Hz,  $C_3$  and  $C_6$ ), 125.14 (d, J(C,P) = 1.2 Hz,  $C_2$  and  $C_7$ ), 128.00–137.00 (m, yellow solid; yield 0.937 Ph) ppm. 5c:

g (98%). Anal. Calc. for RuC37H42Cl2P2O (736.66 g mol<sup>-1</sup>): C, 60.33; H, 5.75. Found: C, 60.34; H, 5.20%. IR (KBr, cm<sup>-1</sup>): v = 3052 (m), 2914 (m), 1586 (w), 1483 (m), 1435 (s), 1382 (m), 1310 (w), 1243 (w), 1187 (vs), 1160 (s), 1118 (s), 1101 (m), 1021 (m), 951 (m), 859 (m), 791 (w), 743 (s), 716 (vs), 697 (vs), 522 (s), 521 (s), 482 (s);  ${}^{31}P{}^{1}H{}$  NMR  $(CD_2Cl_2)$   $\delta = 17.53$  (d, J(P,P) = 1.9 Hz,  $Ph_2P$ ), 31.04 (d, J(P,P) = 1.9 Hz,  $Ph_2P=O$ ) ppm; <sup>1</sup>H NMR  $(CD_2Cl_2) \delta = 1.39$  and 1.58 (m, 1H each,  $CH_2CH_2CH_2$ ), 2.10 (s, 6H, CH<sub>3</sub>), 2.25 and 2.84 (m, 2H each, PCH<sub>2</sub>) and CH<sub>2</sub>P=O), 2.61 (m, 2H, H<sub>4</sub> and H<sub>6</sub>), 3.01 (d, 2H, J(H,P) = 3.1 Hz, H<sub>2</sub> and H<sub>10</sub>), 3.40 (m, 2H, H<sub>5</sub> and  $H_7$ ), 4.08 (d, 2H, J(H,P) = 9.4 Hz,  $H_1$  and  $H_9$ ), 5.09 (m, 2H, H<sub>3</sub> and H<sub>8</sub>), 7.20-7.80 (m, 20H, Ph) ppm;  ${}^{13}C{}^{1}H$  NMR (CD<sub>2</sub>Cl<sub>2</sub>)  $\delta = 17.72$  (dd, J(C,P) = 3.8 Hz, J(C,P) = 3.8 Hz,  $CH_2CH_2CH_2)$ , 20.89 (s, CH<sub>3</sub>), 27.72 (dd, J(C,P) = 26.1 Hz, J(C,P) =12.7 Hz, PCH<sub>2</sub>), 30.89 (dd, J(C,P) = 70.6 Hz, J(C,P) =12.1 Hz, CH<sub>2</sub>P=O), 37.03 (s, C<sub>4</sub> and C<sub>5</sub>), 66.78 (d, J(C,P) = 5.7 Hz,  $C_1$  and  $C_8$ ), 108.19 (d, J(C,P) = 9.5 Hz,  $C_3$  and  $C_6$ , 125.04 (s,  $C_2$  and  $C_7$ ), 128.00–136.00 (m, Ph) ppm. 5d: orange solid; yield 0.935 g (96%). Anal. Calc. for  $RuC_{38}H_{44}Cl_2P_2O$  (750.69 g mol<sup>-1</sup>): C, 60.80; H, 5.91. Found: C, 60.65; H, 6.00%. IR (KBr, cm<sup>-1</sup>): v = 3054 (w), 2902 (w), 1591 (w), 1482 (m), 1451 (w), 1436 (m), 1379 (m), 1311 (w), 1291 (w), 1242 (w), 1197 (s), 1117 (s), 1087 (s), 1071 (m), 1024 (m), 995 (m), 965 (m), 921 (w), 886 (w), 857 (m), 839 (m), 789 (m), 781 (m), 745 (s), 720 (s), 714 (s), 699 (s), 551 (s), 517 (s), 488 (s);  ${}^{31}P{}^{1}H$  NMR (CD<sub>2</sub>Cl<sub>2</sub>)  $\delta = 17.42$  (s, Ph<sub>2</sub>P), 30.78 (s, Ph<sub>2</sub>P=O) ppm; <sup>1</sup>H NMR (CD<sub>2</sub>Cl<sub>2</sub>)  $\delta = 0.87$ -1.65 (m, 6H, P(CH<sub>2</sub>)<sub>4</sub>P=O), 2.15 (s, 6H, CH<sub>3</sub>), 2.63 (m, 2H, H<sub>4</sub> and H<sub>6</sub>), 2.80 (m, 2H, P(CH<sub>2</sub>)<sub>4</sub>P=O), 3.14 (br, 2H, H<sub>2</sub> and H<sub>10</sub>), 3.44 (m, 2H, H<sub>5</sub> and H<sub>7</sub>), 4.13 (d, 2H, J(H,P) = 9.3 Hz, H<sub>1</sub> and H<sub>9</sub>), 5.16 (m, 2H, H<sub>3</sub>) and  $H_8$ , 7.30–7.70 (m, 20H, Ph) ppm; <sup>13</sup>C{<sup>1</sup>H} NMR (CD<sub>2</sub>Cl<sub>2</sub>)  $\delta = 20.96$  (s, CH<sub>3</sub>), 23.39 (dd, J(C,P) = 12.8 Hz, J(C,P) = 2.4 Hz,  $CH_2CH_2P=O)$ , 26.05 (dd, J(C,P) = 15.9 Hz, J(C,P) = 4.9 Hz, PCH<sub>2</sub>CH<sub>2</sub>), 26.56 (d, J(C,P) = 26.9 Hz, PCH<sub>2</sub>), 29.60 (d, J(C,P) = 70.8 Hz,  $CH_2P=O$ ), 37.06 (s,  $C_4$  and  $C_5$ ), 66.75 (d, J(C,P) = 4.9 Hz,  $C_1$  and  $C_8$ ), 108.21 (d, J(C,P) = 9.8 Hz, C<sub>3</sub> and C<sub>6</sub>), 124.95 (s, C<sub>2</sub> and C<sub>7</sub>), 128.00–137.00 (m, Ph) ppm.

# 2.2.4. $[Ru(\eta^3:\eta^3-C_{10}H_{16})Cl\{\kappa^2-P, O-Ph_2P(CH_2)_nP(=O)Ph_2\}][BF_4] (n=1 (6a), 2 (6b))$

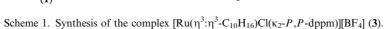
Method A: a suspension of complexes 5a,b (1.141 mmol) and 0.224 g (1.150 mmol) of AgBF<sub>4</sub> in 10 ml of dichloromethane was stirred in the dark at r.t. for 30 min. The reaction mixture was then filtered through Kieselguhr and the filtrate concentrated to dryness. The resulting solid residue was washed with diethyl ether (3 × 20 ml) and dried in vacuo. **6a**: orange solid; yield

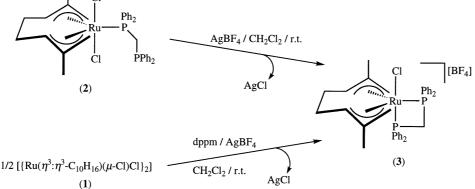
0.720 g (83%). Anal. Calc. for RuC35H38F4P2BClO (759.96 g mol<sup>-1</sup>): C, 55.31; H, 5.04. Found: C, 55.05; H, 4.85%. IR (KBr, cm<sup>-1</sup>): v = 3054 (w), 2859 (m), 1623 (w), 1485 (d), 1438 (s), 1388 (w), 1134 (vs), 1058 (vs), 859 (w), 786 (m), 742 (s), 699 (s), 547 (s), 514 (s), 465 (m); <sup>31</sup>P{<sup>1</sup>H} NMR (CD<sub>2</sub>Cl<sub>2</sub>)  $\delta$  = 26.19 (d, *J*(P,P) = 28.3 Hz, Ph<sub>2</sub>P), 72.08 (d, J(P,P) = 28.3 Hz, Ph<sub>2</sub>P=O) ppm; <sup>1</sup>H NMR (CD<sub>2</sub>Cl<sub>2</sub>)  $\delta = 1.70$  and 2.18 (s, 3H each, CH<sub>3</sub>), 2.57 (d, 1H, J(H,P) = 5.4 Hz, H<sub>2</sub> or H<sub>10</sub>), 3.02 (m, 2H,  $H_4$  and  $H_6$ ), 3.31 (d, 1H, J(H,P) = 2.8 Hz,  $H_2$  or  $H_{10}$ ), 3.73 (m, 2H, H<sub>5</sub> and H<sub>7</sub>), 3.95 (d, 2H, J(H,P) = 9.4 Hz, H<sub>1</sub> and H<sub>9</sub>), 4.29 (m, 2H, PCH<sub>2</sub>P=O), 5.01 and 5.31 (m, 1H each,  $H_3$  and  $H_8$ ), 7.30–8.05 (m, 20H, Ph) ppm; <sup>13</sup>C{<sup>1</sup>H} NMR (CD<sub>2</sub>Cl<sub>2</sub>)  $\delta = 20.52$  and 20.78 (s, CH<sub>3</sub>), 28.08 (dd, J(C,P) = 67.1 Hz, J(C,P) = 15.9 Hz,  $PCH_2P =$ O), 36.96 and 37.77 (s,  $C_4$  and  $C_5$ ), 68.25 (d, J(C,P) =3.2 Hz,  $C_1$  or  $C_8$ ), 68.32 (d, J(C,P) = 3.0 Hz,  $C_1$  or  $C_8$ ), 109.59 (dd, J(C,P) = 7.9 Hz, J(C,P) = 2.5 Hz,  $C_3$  or  $C_6$ ), 118.04 (d, J(C,P) = 10.8 Hz,  $C_3$  or  $C_6$ ), 125.99 (d, J(C,P) = 1.9 Hz, C<sub>2</sub> or C<sub>7</sub>), 126.35 (d, J(C,P) = 1.3Hz, C<sub>2</sub> or C<sub>7</sub>), 129.00–136.00 (m, Ph) ppm. **6b**: yellow solid; yield 0.750 g (85%). Anal. Calc. for  $RuC_{36}H_{40}F_4P_2BClO$  (773.99 g mol<sup>-1</sup>): C, 55.86; H, 5.21. Found: C, 55.64; H, 5.38%. IR (KBr, cm<sup>-1</sup>): v =3054 (m), 2859 (m), 1589 (w), 1486 (m), 1437 (s), 1383 (m), 1280 (w), 1128 (s), 1062 (vs), 978 (s), 860 (w), 742 (s), 724 (s), 693 (s), 551 (s), 509 (s), 485 (m);  ${}^{31}P{}^{1}H{}$ NMR (CD<sub>2</sub>Cl<sub>2</sub>)  $\delta = 9.33$  (d, J(P,P) = 2.3 Hz, Ph<sub>2</sub>P), 52.53 (d, J(P,P) = 2.3 Hz,  $Ph_2P=O$ ) ppm; <sup>1</sup>H NMR  $(CD_2Cl_2) \delta = 1.59$  and 2.19 (s, 3H each, CH<sub>3</sub>), 2.78 (m, 2H, H<sub>4</sub> and H<sub>6</sub>), 2.83 (d, 1H, J(H,P) = 3.7 Hz, H<sub>2</sub> or  $H_{10}$ ), 2.93 (d, 1H, J(H,P) = 3.1 Hz,  $H_2$  or  $H_{10}$ ), 3.12 (m, 2H, H<sub>5</sub> and H<sub>7</sub>), 3.33 and 3.74 (m, 2H each,  $P(CH_2)_2P =$ O), 4.25 (d, 1H, J(H,P) = 9.9 Hz,  $H_1$  or  $H_9$ ), 4.49 (d, 1H, J(H,P) = 11.1 Hz, H<sub>1</sub> or H<sub>9</sub>), 5.04 and 5.32 (m, 1H each,  $H_3$  and  $H_8$ ), 7.20–8.10 (m, 20H, Ph) ppm; {}^{13}C{}^{1}H{} NMR (CD<sub>2</sub>Cl<sub>2</sub>)  $\delta = 16.42$  (dd, J(C,P) = 28.0 Hz, J(C,P) = 5.7 Hz, PCH<sub>2</sub>), 18.93 (d, J(C,P) = 66.7 Hz,  $CH_2P=O$ , 20.45 (s,  $CH_3$ ), 21.92 (d, J(C,P) = 0.6 Hz,  $CH_3$ ), 36.98 and 38.17 (s,  $C_4$  and  $C_5$ ), 67.96 (d, J(C,P) =3.8 Hz,  $C_1$  or  $C_8$ ), 68.03 (d, J(C,P) = 3.2 Hz,  $C_1$  or  $C_8$ ), 111.33 (d, J(C,P) = 7.0 Hz,  $C_3$  or  $C_6$ ), 118.17 (d, J(C,P) = 10.2 Hz, C<sub>3</sub> or C<sub>6</sub>), 127.06 (d, J(C,P) = 1.3Hz,  $C_2$  or  $C_7$ ), 127.99 (d, J(C,P) = 1.9 Hz,  $C_2$  or  $C_7$ ), 128.50-134.50 (m, Ph) ppm.

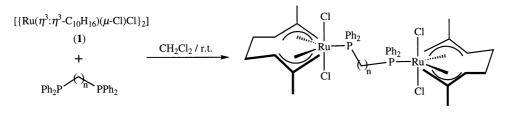
Method B: a suspension of 0.200 g (0.324 mmol) of  $[{Ru(\eta^3:\eta^3-C_{10}H_{16})(\mu-Cl)Cl}_2]$  (1), the corresponding diphosphine-monoxide (0.650 mmol) and 0.126 g (0.650 mmol) of AgBF<sub>4</sub> in 10 ml of dichloromethane was stirred in the dark at r.t. for 30 min. The reaction mixture was then filtered through Kieselguhr and the filtrate evaporated to dryness. The resulting solid residue was washed with diethyl ether (3 × 20 ml) and dried in vacuo. **6a**: yield 0.394 g (80%). **6b**: yield 0.411 g (82%).

### 3. Results and discussion

## 3.1. Reactivity of $[\{Ru(\eta^3:\eta^3-C_{10}H_{16})(\mu-Cl)Cl\}_2]$ (1) towards diphosphines $Ph_2P(CH_2)_nPPh_2$ (n = 1-4)


A preliminary account on the reactivity of the dimeric bis(allyl)-ruthenium(IV) complex [{Ru( $\eta^3:\eta^3-C_{10}H_{16}$ )-( $\mu$ -Cl)Cl}<sub>2</sub>] (1) towards bis(diphenylphosphino)methane (dppm) was reported by Toerien and van Rooyen in 1991 [9a]. They reported that the dinuclear derivative [{Ru( $\eta^3:\eta^3-C_{10}H_{16}$ )Cl<sub>2</sub>}<sub>2</sub>( $\mu$ -Ph\_2PCH\_2PPh\_2)], bearing a bridging dppm unit, or the mononuclear adduct [Ru( $\eta^3:\eta^3-C_{10}H_{16}$ )Cl<sub>2</sub>( $\kappa^1$ -*P*-Ph\_2PCH\_2PPh\_2)], in which dppm is acting as a monodentate ligand, can be selectively obtained depending exclusively on the molar ratio used.


We have found that  $[Ru(\eta^3:\eta^3-C_{10}H_{16})Cl_2(\kappa^1-P-Ph_2PCH_2PPh_2)]$  (2) reacts with an stoichiometric amount of AgBF<sub>4</sub>, in dichloromethane at room temperature, to afford the cationic chelate complex  $[Ru(\eta^3:\eta^3-C_{10}H_{16})Cl(\kappa^2-P,P-Ph_2PCH_2PPh_2)][BF_4]$  (3) which is isolated from the reaction mixture after filtration of the AgCl formed (87% yield; Scheme 1). Alternatively, **3** can be also prepared directly from  $[{Ru(\eta^3:\eta^3-C_{10}H_{16})(\mu-Cl)Cl}_2]$  (1) by treatment with 2 equiv. of dppm and AgBF<sub>4</sub> in dichloromethane.


Characterization of **3** was achieved unequivocally by means of standard spectroscopic techniques (IR and <sup>31</sup>P{<sup>1</sup>H}, <sup>1</sup>H, and <sup>13</sup>C{<sup>1</sup>H} NMR) as well as elemental analyses (see Section 2). Thus, the <sup>31</sup>P{<sup>1</sup>H} NMR spectrum exhibits resonances consistent with an AB spin system ( $\delta$  -33.70 and -15.84 ppm ( $J_{PP}$  = 58.2 Hz)), the highly shielded chemical shifts observed being comparable to those recently reported for the related complex [Ru( $\eta^3:\eta^3-C_{10}H_{16}$ )Cl( $\kappa^2-P, P^{-i}Pr_2PCH_2P^iPr_2$ )]-[BF<sub>4</sub>] [11]. The <sup>1</sup>H NMR spectrum displays a characteristic four-line pattern for the terminal allylic protons ( $\delta$ 2.40, 2.61, 3.51 and 4.14 ppm) and two separated signals for the methyl substituents ( $\delta$  1.87 and 2.51 ppm) of the bis(allyl) unit indicative of inequivalent axial sites on the trigonal-bipyramidal ruthenium atom. <sup>13</sup>C{<sup>1</sup>H} NMR spectrum also shows clearly that the two halves of the octadienediyl ligand are in inequivalent environments since nine different signals are observed (see Section 2).

To extend the scope of this reactivity we decided to use the commercially available related diphosphines 1,2bis(diphenylphosphino)ethane (dppe), 1,3-bis(diphenylphosphino)propane (dppp) and 1,4-bis(diphenylphosphino)butane (dppb). However, the treatment of 1 with 2 equiv. of these ligands, in dichloromethane at room temperature, does not afford the desired mononuclear derivatives [Ru( $\eta^3$ : $\eta^3$ -C<sub>10</sub>H<sub>16</sub>)Cl<sub>2</sub>{ $\kappa^1$ -P-Ph<sub>2</sub>P- $(CH_2)_n PPh_2$  (n = 2, 3, 4) obtaining instead reaction mixtures containing the dinuclear species [{ $Ru(\eta^3:\eta^3 C_{10}H_{16}Cl_{2}^{2}[\mu-Ph_{2}P(CH_{2})_{n}PPh_{2}] (n = 2 (4a), 3 (4b), 4$ (4c)) and the corresponding unreacted diphosphine. Similar results were also observed when a large excess (ca. 10 equiv.) of the ligands was used. As expected, complexes 4a-c can be properly prepared working under stoichiometric conditions (94-97% yield; Scheme 2).

Compounds 4a-c are air stable in the solid state and soluble in polar solvents (e.g. dichloromethane or acetone). They have been characterized by elemental analyses and IR and NMR  $({}^{31}P{}^{1}H{}^{1}$ ,  ${}^{1}H$  and  ${}^{13}C{}^{1}H{}^{1}$ ) spectroscopy (for details see Section 2) being their dimeric nature confirmed by the relative intensities of the octadienediyl and diphosphine resonances (2:1) in the <sup>1</sup>H NMR spectra. Significantly, a closer examination of the NMR data of 4a-c reveals the presence of two different isomers in solution. This fact is clearly evidenced from: (a) the <sup>31</sup>P{<sup>1</sup>H} NMR spectra which show in all the cases the presence of two singlet signals in ca. 1:1 ratio (4a: 24.97 and 25.30 ppm; 4b: 16.05 and 16.69 ppm; **4c**: 17.73 and 17.83 ppm); and (b) the  $^{1}$ H and  $^{13}C{^{1}H}$  NMR spectra in which a doubling of some proton and carbon resonances is observed for the octadienediyl ligand (see Section 2). We note that similar results have been previously reported for the analogous complexes  $[{Ru(\eta^{3}:\eta^{3}-C_{10}H_{16})Cl_{2}}_{2}(\mu-dppm)]$  [9a] and







n = 2 (4a), 3 (4b), 4 (4c)

Scheme 2. Synthesis of the dinuclear complexes  $[\{Ru(\eta^3;\eta^3-C_{10}H_{16})Cl_2\}_2\{\mu-Ph_2P(CH_2)_nPPh_2\}]$  (4a-c).

[{Ru( $\eta^3$ : $\eta^3$ -C<sub>10</sub>H<sub>16</sub>)Cl<sub>2</sub>}<sub>2</sub>( $\mu$ -dppf)] (dppf = 1,1'-bis(diphenylphosphino)ferrocene) [9c] which has been attributed, on the basis of variable-temperature NMR experiments, to the presence of two conformational isomers in solution.

It is apparent that the selective formation of the  $[Ru(\eta^{3}:\eta^{3}-C_{10}H_{16})Cl_{2}(\kappa^{1}-P-Ph_{2}PCH_{2}PPh_{2})]$ complex (2) versus the dinuclear species  $[{Ru(\eta^3:\eta^3-C_{10}H_{16})} Cl_{2}_{2}[\mu-Ph_{2}P(CH_{2})_{n}PPh_{2}]$  (*n* = 2 (4a), 3 (4b), 4 (4c)) indicates a different coordination ability of the diphosphines, probably due to the steric requirements of the bulky  $\eta^{\bar{3}}:\eta^{3}$ -octadienediyl-Ru(IV) fragment. It seems that the relatively close proximity of both metallic fragments for dppm does not facilitate the formation of dinuclear species, i.e.  $[{Ru(\eta^3:\eta^3-C_{10}H_{16})Cl_2}_2(\mu$ dppm)] [9a], which however can be readily formed for the longer chain diphosphines dppe, dppp and dppb. In accordance with this hypothesis we have found that, while 4a-c are unreactive towards PPh<sub>3</sub>, [{Ru( $\eta^3$ : $\eta^3$ - $C_{10}H_{16}$   $Cl_2$   $(\mu$ -dppm)] readily reacts with 1 equiv. of PPh<sub>3</sub>, in dichloromethane at room temperature, to afford an equimolar mixture containing complex  $[Ru(\eta^{3}:\eta^{3}-C_{10}H_{16})Cl_{2}(\kappa^{1}-P-Ph_{2}PCH_{2}PPh_{2})]$  (2) and  $[Ru(\eta^3:\eta^3-C_{10}H_{16})Cl_2(PPh_3)]$  [7a] via partial dissociation of the dppm ligand in  $[{Ru(\eta^3:\eta^3-C_{10}H_{16})Cl_2}_2(\mu$ dppm)].

Finally, we note that all attempts to prepare cationic species  $[Ru(\eta^3:\eta^3-C_{10}H_{16})Cl\{\kappa^2-P,P-Ph_2P(CH_2)_n-PPh_2\}][BF_4]$  (n = 2, 3, 4) by treatment of dimer 1 with 2 equiv. of the appropriate diphosphine and AgBF<sub>4</sub> in dichloromethane, acetone or acetonitrile have been unsuccessful obtaining instead complicated mixtures of uncharacterized products. Apparently, the tendency of dppe, dppp and dppb to act as bridging ligands prevents the formation of the desired chelate complexes.

3.2. Reactivity of  $[ \{Ru(\eta^3:\eta^3-C_{10}H_{16})(\mu-Cl)Cl\}_2 ]$  (1) towards diphosphine-monoxides  $Ph_2P(CH_2)_nP(=O)Ph_2$ (n = 1-4)

Taking into account the lower ability of diphosphinemonoxides to act as intermetallic bridging ligands when compared to the corresponding diphosphines, we became interested in studying the reactivity of dimer **1** towards the monoxides derived from dppm, dppe, dppp and dppb. Moreover, the presence in these ligands of both a soft (P) and a hard (O) donor center confers hemilabile properties to their metal complexes of interest in homogeneous catalysis [13].

As expected, complex 1 reacts with a twofold excess of  $Ph_2P(CH_2)_nP(=O)Ph_2$  (dppmO (n = 1), dppeO (n = 2), dpppO (n = 3) and dppbO (n = 4)), in dichloromethane at room temperature, to generate the neutral mononuclear adducts  $[Ru(\eta^3:\eta^3-C_{10}H_{16})Cl_2\{\kappa^1-P-Ph_2P-(CH_2)_nP(=O)Ph_2\}]$  (n = 1 (5a), 2 (5b), 3 (5c), 4 (5d)) as the result of the selective coordination of the diphenyl-phosphino group on the Ru(IV) center (91–98% yield; Scheme 3). It is worth mentioning that no dinuclear bridged products were detected even when the reactions were carried out with only 1 equiv. of the diphosphine-monoxides obtaining instead equimolar mixtures of 5a-d and the precursor complex 1.

Complexes 5a-d have been isolated as yellow-orange air-stable solids and are soluble in chlorinated solvents and tetrahydrofuran. They have been characterized by elemental analyses and IR and NMR  $({}^{31}P{}^{1}H{}^{1}$ ,  ${}^{1}H$  and  $^{13}C{^{1}H}$  spectroscopy being all the data fully consistent with the proposed formulations (see Section 2). Significant features are: (i)  $({}^{31}P{}^{1}H{} NMR)$  the expected doublet  $(J_{PP} = 1.9 - 39.1 \text{ Hz}; 5a-c)$  or singlet (5d) resonances for the Ph<sub>2</sub>P and Ph<sub>2</sub>P=O groups in the ranges  $\delta$  17.42–20.19 and 22.80–31.79 ppm, respectively, and (ii) (<sup>1</sup>H and <sup>13</sup>C{<sup>1</sup>H} NMR) the presence of a single set of signals for the two allylic moieties of the 2,7dimethylocta-2,6-diene-1,8-divl ligand (i.e. only five resonances are observed in  ${}^{13}C{}^{1}H$  NMR spectra) indicative of the formation of a simple equatorial adduct  $[Ru(\eta^3:\eta^3-C_{10}H_{16})Cl_2L]$  with a local C<sub>2</sub>-symmetry for the octadienediyl chain [6].

Treatment of dichloromethane solutions of complexes **5a,b** with 1 equiv. of AgBF<sub>4</sub> results in the formation of cationic derivatives [Ru( $\eta^3$ : $\eta^3$ -C<sub>10</sub>H<sub>16</sub>)Cl{ $\kappa^{\frac{1}{2}}$ -*P*,*O*-Ph<sub>2</sub>P(CH<sub>2</sub>)<sub>*n*</sub>P(=O)Ph<sub>2</sub>}][BF<sub>4</sub>] (*n* = 1 (**6a**; 83% yield), 2 (**6b**; 85% yield); Scheme 3). These complexes can be also prepared in similar yields from 1 by reaction with 2 equiv. of the diphosphine-monoxide and AgBF<sub>4</sub> in dichloromethane at room temperature. NMR spectroscopic data (see Section 2 for details) provide significant structural information. Thus, in the <sup>31</sup>P{<sup>1</sup>H} NMR spectra the chelating coordination of the diphosphine-



Scheme 3. Synthesis of the complexes  $[\operatorname{Ru}(\eta^3:\eta^3-\operatorname{C}_{10}\operatorname{H}_{16})\operatorname{Cl}\{\kappa^2-P,O-\operatorname{Ph}_2\operatorname{P}(\operatorname{CH}_2)_n\operatorname{P}(=O)\operatorname{Ph}_2\}][\operatorname{BF}_4]$  (6a,b).

monoxide ligands is marked by a large downfield shift in the phosphoryl group resonances from the parent compounds **5a,b** (**6a**: 72.08 ppm ( $J_{PP} = 28.3$  Hz); **6b**: 52.53 ppm ( $J_{PP} = 2.3$  Hz)) in spite of the fact that this phosphorus is not directly bound to the metal. This behaviour, which has been previously observed in other metallic fragments [13c-h], can be attributed to delocalization of electron density in the -P=O-Ru- framework. In contrast, the <sup>31</sup>P NMR chemical shifts for the directly bound Ph<sub>2</sub>P phosphorus atoms are less affected by the ring closure appearing at  $\delta$  26.19 (6a) and 9.33 (6b) ppm. <sup>1</sup>H NMR spectra of 6a,b indicate that the two halves of the 2,7-dimethylocta-2,6-diene-1,8-diyl ligand are inequivalent, as expected for the loss of the  $C_2$ symmetry (see Section 4). This is also clearly evidenced from the  ${}^{13}C{}^{1}H$  NMR spectra in which ten separate signals are observed for the bis(allyl) unit.

Significantly, all attempts to form the corresponding cationic derivatives  $[Ru(\eta^3:\eta^3-C_{10}H_{16})Cl\{\kappa^2-P,O-Ph_2P(CH_2)_nP(=O)Ph_2\}][BF_4]$  (n = 3, 4) by treatment of **5c,d** with AgBF<sub>4</sub> or starting directly from **1** have been unsuccessful obtaining instead mixtures of uncharacterized products. This behaviour can be attributed to the lower thermodynamic stability of the seven and eightmembered rings with respect to those of only five and six members (**6a,b**).

### 4. Conclusions

 C<sub>10</sub>H<sub>16</sub>)Cl( $\kappa^2$ -*P*,*P*-Ph<sub>2</sub>PCH<sub>2</sub>PPh<sub>2</sub>)][BF<sub>4</sub>] and [Ru( $\eta^3$ : $\eta^3$ -C<sub>10</sub>H<sub>16</sub>)Cl{ $\kappa^2$ -*P*,*O*-Ph<sub>2</sub>P(CH<sub>2</sub>)<sub>n</sub>P(=O)Ph<sub>2</sub>}][BF<sub>4</sub>] (*n* = 1, 2), can be obtained from the readily available dimer [{Ru( $\eta^3$ : $\eta^3$ -C<sub>10</sub>H<sub>16</sub>)( $\mu$ -Cl)Cl}<sub>2</sub>] via initial chloride bridging cleavage to form neutral mononuclear species, i.e. [Ru( $\eta^3$ : $\eta^3$ -C<sub>10</sub>H<sub>16</sub>)Cl<sub>2</sub>( $\kappa^1$ -*P*-Ph<sub>2</sub>PCH<sub>2</sub>PPh<sub>2</sub>)] and [Ru( $\eta^3$ : $\eta^3$ -C<sub>10</sub>H<sub>16</sub>)Cl<sub>2</sub>( $\kappa^1$ -*P*-Ph<sub>2</sub>P(CH<sub>2</sub>)<sub>n</sub>P(=O)Ph<sub>2</sub>}] (*n* = 1, 2), and subsequent chloride extraction using silver(I) tetrafluoroborate. The former process is clearly the key step on this synthetic procedure since the formation of undesirable dinuclear ligand-bridged species, i.e. [Ru( $\eta^3$ : $\eta^3$ -C<sub>10</sub>H<sub>16</sub>)Cl<sub>2</sub>( $\kappa^1$ -*P*-Ph<sub>2</sub>P(CH<sub>2</sub>)<sub>n</sub>P(H<sub>2</sub>)] (*n* = 2, 3, 4), avoids the chelation of the ligand.

### Acknowledgements

This work was supported by the Ministerio de Ciencia y Tecnología (MCyT) of Spain (Project BQU2000-0227) and the EU (COST programme D12/0025/99). S.E.G.-G. thanks the MCyT for the award of a Ph.D. grant.

### References

- (a) L. Porri, M.C. Gallazzi, A. Colombo, G. Allegra, Tetrahedron Lett. 47 (1965) 4187;
  - (b) L. Porri, G. Allegra, Acta Crystallogr., B 27 (1971) 1653.
- [2] For a review on the chemistry of dimers [{ $Ru(\eta^6-arene)(\mu-Cl)Cl$ }] see: H. Le Bozec, D. Touchard, P.H. Dixneuf, Adv. Organomet. Chem. 29 (1989) 163.
- [3] (a) S.O. Sommerer, G.J. Palenik, Organometallics 10 (1991) 1223;
   (b) S. Wache, J. Organomet. Chem. 491 (1995) 235.
- [4] (a) K. Hiraki, A. Kuroiwa, H. Hirai, J. Polym. Sci. A-19 (1971) 2323;

(b) L. Porri, R. Rossi, P. Diversi, A. Lucherini, Macromol. Chem. 175 (1974) 3097;

(c) S. Wache, W.A. Herrmann, G. Artus, O. Nuyken, D. Wolf, J. Organomet. Chem. 491 (1995) 181;

(d) W.A. Herrmann, W.C. Schattenmann, O. Nuyken, S.C. Glander, Angew. Chem., Int. Ed. Engl. 35 (1996) 1087;
(e) M. Bartz, J. Küther, R. Seshadri, W. Tremel, Angew. Chem., Int. Ed. Engl. 37 (1998) 2466.

- [5] K. Hiraki, H. Hirai, Macromolecules 3 (1970) 382.
- [6] D.N. Cox, R. Roulet, Inorg. Chem. 29 (1990) 1360.
- [7] (a) R.A. Head, J.F. Nixon, J.R. Swain, C.M. Woodard, J. Organomet. Chem. 76 (1974) 393;

(b) P.B. Hitchcock, J.F. Nixon, J. Sinclair, J. Organomet. Chem. 86 (1975) C34;

(c) D.N. Cox, R.W.H. Small, R. Roulet, J. Chem. Soc., Dalton Trans. (1991) 2013;

(d) J.W. Steed, D.A. Tocher, J. Organomet. Chem. 471 (1994) 221;

(e) G. Belchem, J.W. Steed, D.A. Tocher, J. Chem. Soc., Dalton Trans. (1994) 1949;

(f) A.N. Sahay, D.S. Pandey, M.G. Walawalkar, J. Organomet. Chem. 613 (2000) 250.

[8] (a) J.G. Toerien, P.H. van Rooyen, J. Chem. Soc., Dalton Trans. (1991) 1563;

(b) J.W. Steed, D.A. Tocher, Inorg. Chim. Acta 189 (1991) 135;
(c) J.W. Steed, D.A. Tocher, J. Chem. Soc., Dalton Trans. (1992) 2765;

(d) B. Kavanagh, J.W. Steed, D.A. Tocher, J. Chem. Soc., Dalton Trans. (1993) 327;

(e) J.W. Steed, D.A. Tocher, Polyhedron 13 (1994) 167;

(f) G. Belchem, D.H.A. Schreiber, J.W. Steed, D.A. Tocher, Inorg. Chim. Acta 218 (1994) 81.

[9] (a) J.G. Toerien, P.H. van Rooyen, J. Chem. Soc., Dalton Trans. (1991) 2693;
(b) J.W. Steed, D.A. Tocher, Polyhedron 11 (1992) 2729;
(c) V. Cadierno, S.E. García-Garrido, J. Gimeno, J. Organomet.

Chem. 637-639 (2001) 776.

[10] (a) J.W. Steed, D.A. Tocher, J. Chem. Soc., Dalton Trans. (1992) 459;

(b) J.W. Steed, D.A. Tocher, Polyhedron 11 (1992) 1849;(c) M. Rowley, J.W. Steed, D.A. Tocher, Polyhedron 14 (1995)

(c) M. Kowicy, J.W. Steed, D.A. Toeler, Tolyneiron 14 (1995) 1415.

- [11] H. Werner, G. Fries, B. Weberndörfer, J. Organomet. Chem. 607 (2000) 182.
- [12] (a) V.V. Grushim, J. Am. Chem. Soc. 121 (1999) 5831;
  (b) V.V. Grushim, Organometallics 20 (2001) 3950.
- [13] (a) For general reviews on hemilabile ligands see: A. Bader, E. Lindner, Coord. Chem. Rev. 108 (1991) 27;
  (b) C.S. Slone, D.A. Weinberger, C.A. Mirkin, Prog. Inorg. Chem. 48 (1999) 233;
  (c) For recent references on coordination chemistry and catalytic applications of diphosphine-monoxides see: J.W. Faller, J. Parr, Organometallics 19 (2000) 1829;
  (d) J.W. Faller, J. Parr, Organometallics 19 (2000) 3556;
  - (e) J.W. Faller, B.J. Grimmond, M. Curtis, Organometallics 19 (2000) 5174;
  - (f) R. Weber, U. Englert, B. Ganter, W. Keim, M. Möthrath, Chem. Commun. (2000) 1419;
  - (g) J.W. Faller, J. Parr, Organometallics 20 (2001) 697;
  - (h) J.W. Faller, B.J. Grimmond, D.G. D'Alliessi, J. Am. Chem. Soc. 123 (2001) 2525.