FULL PAPER

## **Phosphine–Imidazolyl Ligands for the Efficient Ruthenium-Catalyzed Hydrogenation of Carboxylic Esters**

### Kathrin Junge, Bianca Wendt, Felix Alexander Westerhaus, Anke Spannenberg, Haijun Jiao, and Matthias Beller<sup>\*[a]</sup>

Abstract: The synthesis of phosphineimidazolyl ligands 1 and 2 in good yields is presented. In combination with  $[{Ru(benzene)Cl_2}_2]$ , ligands 1c and 1e formed efficient catalyst systems for the selective hydrogenation of various carboxylic esters into their corresponding primary alcohols. Furthermore, the structures of four ruthenium complexes with ligands 1b, 1c, 1d, and 1e were determined by X-ray crystallography, which showed the formation

Keywords: alcohols · esters · hydrogenation • ligand design • ruthenium

pending on the ligand structure.

of different coordination modes de-

### Introduction

The reduction of esters into alcohols is one of the most-fundamental reactions in organic chemistry.<sup>[1]</sup> Typically, this transformation is realized by using stoichiometric amounts of metal hydrides (LiAlH<sub>4</sub>, NaBH<sub>4</sub>), thereby producing large quantities of waste. Obviously, from economic and ecological viewpoints, catalytic hydrogenation reactions offer an attractive alternative. However, until recently, the catalytic hydrogenation of esters,<sup>[2]</sup> acids,<sup>[3]</sup> and amides<sup>[4]</sup> have only been scarcely explored and the full scope of these methods still need to be evaluated. In industry, heterogeneous catalysts (e.g., copper chromite) are typically used for this process under rather harsh conditions (>200°C, 200 bar), which unfortunately limits their applications. Hence, the development of milder and more-selective methods by using molecular-defined catalysts is of significant interest for the fine chemicals and pharmaceutical industries. In pioneering work on the homogenous hydrogenation of esters, hydrido-ruthenate<sup>[5a,b]</sup> salts or ruthenium-carbonyl clusters<sup>[5c-f]</sup> were used as catalysts. Improved activity was reported with ruthenium-phosphine catalysts that were generated in situ from  $[Ru(acac)_3]$  (acac=acetylacetone) and PR<sub>3</sub>.<sup>[6]</sup> Since 2006, important advancements in the hydrogenation of carboxylic acid esters were achieved by Milstein

[a] Dr. K. Junge, B. Wendt, F. A. Westerhaus, Dr. A. Spannenberg, Dr. H. Jiao, Prof. Dr. M. Beller Leibniz-Institut für Katalyse e.V. an der Universität Rostock Albert-Einstein-Straße 29a, 18059 Rostock (Germany) Fax: (+49)381-1281-5000 Tel.: (+49)381-1281-113 E-mail: Matthias.Beller@catalysis.de

Supporting information for this article is available on the WWW under http://dx.doi.org/10.1002/chem.201200408.

and co-workers,<sup>[5g,k,l]</sup> Saudan et al.,<sup>[5h]</sup> and others.<sup>[5i,j]</sup> Encouraged by their elegant work, and owing to our own experiences in the hydrosilylation of various carboxylic acid derivatives,<sup>[7]</sup> we became interested in investigating this type of reaction in more detail. Although the existing catalysts for ester reduction possess high efficiency and wide substrate scope, their functional-group tolerance is still limited. To tackle this problem, herein, we report the development of a modular built-up catalyst system that was based on ruthenium and phosphine-imidazolyl ligands (Figure 1); this system could be tailor-made for the hydrogenation of different types of carboxylic acid esters.



Figure 1. Structures of various phosphine/amine-imidazolyl ligands.

#### **Results and Discussion**

We began by preparing several new P-N ligands that contained phosphorous and imidazolyl nitrogen donor atoms in a straightforward two-step synthesis (Scheme 1). First, the lithiated 1,2-dimethylimidazole was selectively monosilylated at the 2-methyl position at -78°C to provide 1-methyl-[2-(trimethylsilyl)methyl]-1H-imidazole. Subsequent quenching with R<sub>2</sub>PCl and RPCl<sub>2</sub> gave phosphine-imidazolyl ligands 1 and 2, respectively, in good to excellent yields.<sup>[8,9]</sup>

Chem. Eur. J. 2012, 00, 0-0

© 2012 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

# 🕅 WILEY 师





Scheme 1. Synthesis of phosphine-imidazolyl ligands 1 and 2.

Owing to the large number of commercially available chlorophosphines, their aryl- and alkyl groups on the P-N ligands were modified to vary their steric and electronic properties. Apart from ligands **1a** and **1d**, which have already been reported in the literature, a range of new hemilabile P-N ligands were obtained in good to excellent yields.<sup>[8a,b]</sup> To facilitate the purification process and for ease of handling, the hydrobromide salt was formed after distillation. Thus, the ligand salts were air- and moisture stable solids and could be stored for several months without any decomposition.

The molecular structures of ligands **1a**·2HBr and **1c**·HBr were confirmed by single-crystal X-ray diffraction analysis (Figure 2). In both structures, the hydrogen atom of HBr was coordinated to the unsubstituted nitrogen atom of the imidazole ring. In addition, the hydrogen atom of a second HBr molecule was associated with the phosphorous atom in structure **1a**.

Analogous phosphine–imidazolyl ligand **4**, which contained a two-carbon linker, was prepared according to a literature procedure (Scheme 2).<sup>[8c,d]</sup> In this synthesis, 1-methylimidazol-2-yllithium was generated from the reaction of 1methylimidazole and *n*-butyl lithium at -78 °C followed by treatment with cyclic sulfate to form a lithium sulfate intermediate. The addition of LiPPh<sub>2</sub> led to displacement of the sulfate group by the PPh<sub>2</sub> moiety. Thus, compound **4** was prepared in high yield (85%) as a stable and easy to handle powder, whilst compound **3** was commercially available.<sup>[10]</sup>

With a library of different P-N ligands in hand, we tested them in the ruthenium-catalyzed reduction of methyl benzoate (5a). For convenience, the [RuL<sub>2</sub>Br<sub>2</sub>] catalyst was generated in situ from [Ru(cod)(methylallyl)<sub>2</sub>] (0.5 mmol) and ligands 1-4 (1 mmol).<sup>[11]</sup> Initial studies on the influence of the experimental conditions on the reaction were carried out with ligand 1d in the presence of base (10 mol%) in THF. To afford complete conversion within a reasonable length of time, the reaction was performed under 50 bar  $H_2$ at 100°C (Table 1, entry 3). Benzyl alcohol (6a) was obtained in 88% yield after around 4 h. At 80°C, the conversion and yield of compound 6a decreased dramatically and the formation of a significant amount of benzyl benzoate 7a as a side-product, which was formed by the transesterification of methyl benzoate with benzyl alcohol, was observed (Table 1, entry 4).



ChemPubSoc

Europe

Figure 2. a) ORTEP of compound **1a**-2 HBr; thermal ellipsoids set at 30% probability. Selected bond lengths [Å] and angles [°]: C2–P1 1.822(2), C6–P1 1.813(2), C9–P1 1.807(2); C2-P1-C6 112.09(11), C2-P1-C9 108.32(11), C6-P1-C9 113.11(10). b) ORTEP of compound **1c**-HBr; thermal ellipsoids set at 30% probability. Selected bond lengths [Å] and angles [°]: C1–P1 1.869(2), C6–P1 1.853(2), C12–P1 1.852(2); C1-P1-C6 102.26(10), C1-P1-C12 98.89(10), C6-P1-C12 103.87(10).



Scheme 2. Synthesis of 2-(2-(diphenylphosphino)ethyl)-1-methyl-1*H*-imidazole (4).

Next, we investigated the influence of the structure of the ligand on the catalytic activity for the reduction of methyl benzoate at 80 °C by stepwise variation of the ligand pattern. As well as investigating different aryl and alkyl substituents on the phosphorous atom in ligands 1 and 2, NH<sub>2</sub>-substituted derivative 3 and ligand 4, which had an extended carbon chain, were also tested (Table 1). In the presence of imidazolyl ligands 2-4, only low yields of benzyl alcohol (up to 30%) were obtained (Table 1, entries 11-14). Of the different ligands 1 examined, the highest product yield (92%)was achieved for ligand 1e (Table 1, entry 8). In that case, a simple exchange of the phenyl ring with the electron-donating p-tolyl group at the phosphorous atom led to an increase in reactivity. Surprisingly, more-sterically demanding mesityl-substituted ligand 1g showed a dramatic decrease in catalytic activity (Table 1, entry 10).

Furthermore, cyclohexyl-substituted ligand 1c showed high efficiency for the reaction of methyl benzoate (Table 1,

# **FULL PAPER**

| $\bigcirc$ | 0<br>0Me <sup>-</sup><br>5a | .5 mol% [RuL <sub>2</sub> Br <sub>2</sub> ]<br>50 bar H <sub>2</sub> ;<br>80–140°C,<br>4.5 h | Or<br>6a   |        |        |
|------------|-----------------------------|----------------------------------------------------------------------------------------------|------------|--------|--------|
|            | Ligand                      | Т                                                                                            | Conversion | Yield  | Yield  |
|            |                             | [°C]                                                                                         | [%]        | 7a [%] | 6a [%] |
| 1          | -                           | 140                                                                                          | 13         | 6      | 2      |
| 2          | 1 d                         | 140                                                                                          | 97         | 1      | 88     |
| 3          | 1 d                         | 100                                                                                          | >99        | -      | 88     |
| 4          | 1 d                         | 80                                                                                           | 37         | 10     | 13     |
| 5          | 1a                          | 80                                                                                           | 82         | -      | 70     |
| 6          | 1b                          | 80                                                                                           | 30         | 10     | 9      |
| 7          | 1c                          | 80                                                                                           | 92         | 4      | 80     |
| 8          | 1e                          | 80                                                                                           | 99         | <1     | 92     |
| 9          | 1f                          | 80                                                                                           | 56         | 15     | 37     |
| 10         | 1g                          | 80                                                                                           | 18         | 11     | 1      |
| 11         | 2 a                         | 80                                                                                           | 37         | 14     | 8      |
| 12         | 2 b                         | 80                                                                                           | 55         | 23     | 16     |
| 13         | 3                           | 80                                                                                           | 36         | 14     | 4      |
| 14         | 4                           | 100                                                                                          | 55         | 6      | 30     |

Table 1. Ruthenium-catalyzed hydrogenation of methyl benzoate in the presence of different phosphine/amine-imidazolyl ligands.<sup>[a]</sup>

[a] Conditions: methyl benzoate (10 mmol),  $[RuL_2Br_2]$  (0.5 mol%), KOtBu (10 mol%), THF (10 mL), 80–140 °C, H<sub>2</sub> (50 bar), 4.5 h. Catalyst preparation:  $[Ru(cod)(methylallyl)_2]$  (0.5 mmol), ligand 1–4 (1 mmol), and 3 equivalents HBr (0.29 M in MeOH) in acetone (1 mL) were stirred for 30 min, evaporated, and suspended in THF. cod=1,5-cyclooctadiene.

entry 7). A number of different ruthenium precursors were also investigated with the two best ligands, 1c and 1e (Table 2), which led to the discovery of two efficient in situ catalyst systems. Whilst the combination [{Ru(ben-zene)Cl<sub>2</sub>}<sub>2</sub>]/1e was highly active in the reduction of substituted aromatic esters and lactones (Table 3), [{Ru(ben-zene)Cl<sub>2</sub>}<sub>2</sub>]/1c afforded especially good results with more-challenging substrates, such as aliphatic lactones or aliphatic carboxylic esters (Table 4).

The influence of various alkyl benzoates on the scope of the catalytic hydrogenation reaction was examined with the catalyst system [{Ru(benzene)Cl<sub>2</sub>]<sub>2</sub>]/1e (0.5 mol%; Table 3, entries 1-4). Whilst most of the substrates were smoothly reduced into their corresponding benzyl alcohols in high yields, the reduction of isopropyl benzoate only proceeded in a low yield. This result was in contrast to the findings of Saudan et al. who observed higher reactivity of isopropyl benzoate than other alkyl benzoates.<sup>[5h]</sup> Furthermore, the tolerance of the reaction towards different functional groups was investigated. Good yields were achieved for aromatic esters that contained halide, ether, hydroxy, alkyl, and aryl substituents (Table 3, entries 5-11). However, cyano and ketone groups were preferentially reduced over the ester group.<sup>[12]</sup> Notably, dicarboxylic esters and lactones were also reduced into their corresponding diols (Table 3, entries 12-14).

Finally, a series of aliphatic carboxylic esters and lactones was tested in the catalytic system [{Ru(benzene)Cl<sub>2</sub>}<sub>2</sub>]/1c. Their corresponding alcohols were formed in generally good yields (Table 4).  $\alpha$ , $\beta$ -Unsaturated esters gave their completely reduced products in up to 83% yield (Table 4, entries 4)

Table 2. Hydrogenation of methyl benzoate with various ruthenium precursors  $\ensuremath{^{[a]}}$ 

| ear oo            |                                                                                           |        |            |               |               |
|-------------------|-------------------------------------------------------------------------------------------|--------|------------|---------------|---------------|
|                   | 0<br>0.5 mol% [Ru]/<br>1 mol% 1c or 1e<br>50 bar H <sub>2</sub> :<br>80–100°C,<br>2–4.5 h |        | OH +       | 0<br>0<br>7a  | $\bigcirc$    |
|                   | [Ru]                                                                                      | Ligand | Conversion | Yield         | Yield         |
|                   |                                                                                           |        | [%]        | <b>/a</b> [%] | <b>0a</b> [%] |
| 1                 | [Ru(cod)(methylallyl) <sub>2</sub> ]                                                      | 1c     | 92         | 4             | 80            |
| 2                 | $[Ru(cod)Cl_2]$                                                                           | 1c     | 68         | 11            | 48            |
| 3                 | $[\operatorname{Ru}(\operatorname{cod})_2\operatorname{BF}_4]$                            | 1c     | 53         | 8             | 32            |
| 4                 | $[RuCl_3]$ • $xH_2O$                                                                      | 1c     | 67         | 9             | 47            |
| 5                 | $[\{\mathrm{Ru}(\mathrm{CO})_{3}\mathrm{Cl}_{2}\}_{2}]$                                   | 1c     | 62         | 18            | 38            |
| 6                 | $[Ru_2(CO)_{12}]$                                                                         | 1c     | -          | -             | -             |
| 7                 | $[{Ru(C_5H_5)(CO)_2}_2]$                                                                  | 1c     | 22         | 7             | 5             |
| 8                 | $[Ru(C_5H_5)(C_{10}H_{15})]PF_6$                                                          | 1c     | 7          | -             | -             |
| 9                 | $[Ru(acac)_2(cod)]$                                                                       | 1c     | 6          | 4             | -             |
| 10                | [Ru(acac) <sub>3</sub> ]                                                                  | 1c     | 58         | 13            | 38            |
| 11                | $[Ru(acac)_2]$                                                                            | 1c     | -          | -             | -             |
| 12                | [Ru(DMSO) <sub>4</sub> Cl <sub>2</sub> ]                                                  | 1c     | 83         | 4             | 69            |
| 13                | $[Ru_2Cl_2(C_{10}H_{16})_2]$                                                              | 1c     | 88         | 4             | 76            |
| 14                | $[{Ru(p-cymene)Cl_2}_2]$                                                                  | 1c     | 97         | 2             | 88            |
| 15                | $[{Ru(benzene)Cl_2}_2]$                                                                   | 1c     | 96         | 4             | 90            |
| $16^{[b]}$        | [{Ru(benzene)Cl <sub>2</sub> } <sub>2</sub> ]                                             | 1c     | 97         | 1             | 92            |
| 17                | [Ru(methylallyl) <sub>2</sub> (cod)]                                                      | 1e     | 99         | <1            | 92            |
| 18                | $[{Ru(p-cymene)Cl}_2]$                                                                    | 1e     | 49         | 23            | 17            |
| 19                | [{Ru(benzene)Cl <sub>2</sub> }2]                                                          | 1e     | 95         | 3             | 87            |
| 20 <sup>[c]</sup> | [{Ru(benzene)Cl <sub>2</sub> } <sub>2</sub> ]                                             | 1e     | 77         | 7             | 74            |
| 21 <sup>[d]</sup> | [{Ru(benzene)Cl <sub>2</sub> }2]                                                          | 1e     | 99         | <1            | 94            |
| 22 <sup>[e]</sup> | [{Ru(benzene)Cl <sub>2</sub> }2]                                                          | 1e     | 13         | 8             | 4             |
| 23 <sup>[b]</sup> | $[Ru(C_6H_6)Cl_2(1e)]$                                                                    | -      | 49         | 14            | 26            |
| 24 <sup>[f]</sup> | $[\operatorname{Ru}(\operatorname{C_6H_6})\operatorname{Cl_2}(\mathbf{1e})]$              | 1e     | 98         | 1             | 83            |
| 25 <sup>[b]</sup> | $[Ru(C_6H_6)Cl(1c)]Cl$                                                                    | -      | 48         | 13            | 23            |
| 26 <sup>[f]</sup> | $[Ru(C_6H_6)Cl(1c)]Cl$                                                                    | 1c     | 99         | 2             | 83            |

[a] Conditions: methyl benzoate (10 mmol), [Ru] (0.5 mol%), ligand 1c or 1e (1 mol%), KOtBu (10 mol%), THF (10 mL), 80 °C, H<sub>2</sub> (50 bar), 4.5 h; [b] 100 °C, H<sub>2</sub> (50 bar), 2 h; [c] Ru/L=1:1, 100 °C, H<sub>2</sub> (50 bar), 2 h; [d] Ru/L=1:2, 100 °C, H<sub>2</sub> (50 bar), 2 h; [e] Ru/L=1:4, 100 °C, H<sub>2</sub> (50 bar), 2 h; [f] [Ru(C<sub>6</sub>H<sub>6</sub>)Cl<sub>2</sub>(1)] (0.5 mol%), 1 (0.5 mol%), KOtBu (10 mol%), 100 °C, H<sub>2</sub> (50 bar), 2 h.

and 6), whilst cyclic lactones reacted to afford their corresponding diols in excellent yield (Table 4, entries 8 and 9).

As demonstrated in the initial experiments (Table 1) both in-situ-generated catalysts [{Ru(benzene)Cl<sub>2</sub>}<sub>2</sub>]/1c and [{Ru-(benzene)Cl<sub>2</sub>}<sub>2</sub>]/1e were active for the reduction of methyl benzoate but the latter one showed higher efficiency for the reduction of aromatic esters. For comparison, the reduction of two aliphatic carboxylic esters were performed with [{Ru-(benzene)Cl<sub>2</sub>}<sub>2</sub>]/1e (Table 4, entries 6 and 9) and moderate yields of the corresponding alcohols were obtained.

To get more information on the catalytic active species, crystals were grown from the catalyst solutions. To our delight, single crystals of  $[Ru(C_6H_6)Cl(1b)]Cl$ ,  $[Ru(C_6H_6)Cl(1c)]Cl$ ,  $[Ru(C_6H_6)Cl(1d)]Cl$ , and  $[Ru(C_6H_6)Cl_2(1e)]$  that were suitable for X-ray analysis were obtained by layering solutions of the complexes in CHCl<sub>3</sub> with *n*-pentane.

The ORTEPs of three cationic complexes,  $[Ru(C_6H_6)Cl(1b)]Cl$ ,  $[Ru(C_6H_6)Cl(1c)]Cl$ , and  $[Ru(C_6H_6)Cl(1d)]Cl$  are shown in Figure 3a–c. In all three of these structures, the nitrogen and phosphorous atoms of the P-N ligands were coordinated onto the metals, thus forming a five-membered

| Chem. | Eur. | J. | 2012, | 00, | 0 - 0 |  |
|-------|------|----|-------|-----|-------|--|
|-------|------|----|-------|-----|-------|--|

© 2012 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

GaA, Weinheim www.chemeurj.org \_\_\_\_\_3 These are not the final page numbers!

|                   | Ester    | Alcohol | Yield<br>[%]            |
|-------------------|----------|---------|-------------------------|
| 1 <sup>[b]</sup>  | OMe      | ОН      | 94                      |
| 2                 | OEt      | ОН      | 99                      |
| 3                 | OiPr     | ОН      | 44                      |
| 4 <sup>[b]</sup>  | OBn      | ОН      | 99                      |
| 5                 | CI       | СІ      | 92                      |
| 6                 | O<br>Br  | Вг      | 24                      |
| 7                 | CF3 OEt  | CF3 OH  | 17<br>84 <sup>[e]</sup> |
| 8                 | OEt      | ОН      | 66 <sup>[e]</sup>       |
| 9                 | OMe      | ОН      | 49<br>58 <sup>[e]</sup> |
| 10 <sup>[b]</sup> | MeO      | мео     | 66                      |
| 11                | НО       | но      | 80                      |
| 12 <sup>[c]</sup> | MeO      | но      | 31                      |
| 13 <sup>[d]</sup> | MeO      | но      | 67                      |
| 14                | С С<br>С | ОН      | 64<br>83 <sup>[e]</sup> |

Table 3. Catalytic hydrogenation of aromatic carboxylic esters and lactones with  $[{Ru(benzene)Cl_2}_2]/1e^{[a]}$ 

[a] Conditions: ester (10 mmol), [[Ru(benzene)Cl<sub>2</sub>]<sub>2</sub>] (0.25 mol%), **1e** (1 mol%), KOtBu (10 mol%), THF (10 mL), 100 °C, 4.5 h, H<sub>2</sub> (50 bar); [b] 100 °C, 2 h, H<sub>2</sub> (50 bar); [c] 18% monoreduction of the ester into the corresponding alcohol; [d] 13% monoreduction; [e] 100 °C, 16 h, H<sub>2</sub> (50 bar).

chelate ring. The ruthenium center was surrounded by phosphorous, nitrogen, and chlorine atoms, as well as by the arene ligand, in a piano-stool geometry. A second chlorine atom was placed as Cl<sup>-</sup> counterion. The shortest P1–Ru1

www.chemeurj.org

distance (2.3087(5) Å) of the cationic complexes was found in  $[Ru(C_6H_6)Cl(1d)]Cl$ . In  $[Ru(C_6H_6)Cl(1c)]Cl$ , the P1-Ru1 distance (2.3325(11) Å) was shorter than that in [Ru- $(C_6H_6)Cl(1b)$ ]Cl (2.3820(4)Å), which was in agreement with the stronger donating ability of the tBu<sub>2</sub>P moiety compared to the Cy<sub>2</sub>P group. Figure 3d shows the ORTEP of neutral complex  $[Ru(C_6H_6)Cl_2(1e)]$ , which also exhibited a piano-stool motif. In this structure, only the phosphorous atom of ligand 1e was coordinated to the metal center, which was unexpected coordination behavior for this type of P-N ligands.<sup>[13]</sup> In addition, the arene ligand and two chlorine atoms completed the coordination sphere, thereby forming a neutral complex. The P1-Ru1 distance (2.3374(4) Å) was consistent with that observed in  $[Ru(C_6H_6)Cl(1c)]Cl$ (2.3325(11) Å). This analysis was supported by MS (ESI-TOF) data:  $[Ru(C_6H_6)Cl(1b)]Cl$ ,  $[Ru(C_6H_6)Cl(1c)]Cl$ , and  $[Ru(C_6H_6)Cl(1d)]Cl$  showed signals in the positive-ion mode at m/z=455.09549, 507.12655, and 495.03276, which corresponded to  $[\operatorname{Ru}(C_6H_6)\operatorname{Cl}(\mathbf{1b})]^+$ ,  $[\operatorname{Ru}(C_6H_6)\operatorname{Cl}(\mathbf{1c})]^+$ , and  $[Ru(C_6H_6)Cl(1d)]^+$ , respectively, where the chlorine anion had dissociated. In the case of neutral complex [Ru- $(C_6H_6)Cl_2(1e)]$ , a signal at m/z = 559.04162 appeared to correspond to  $[Ru(C_6H_6)Cl_2(1e)+H]^+$ , for which both chlorine atoms were detected. To understand the different coordination behavior of ligands 1c and 1e in the ruthenium complexes, BP86 density functional theory (DFT) computations were performed on the molecular structures and energies of cationic bidentate monochloride complexes ([Ru(C<sub>6</sub>H<sub>6</sub>)Cl-(1c)]<sup>+</sup> and [Ru(C<sub>6</sub>H<sub>6</sub>)Cl(1e)]<sup>+</sup>), neutral monodentate dichloride complexes ( $[Ru(C_6H_6)Cl_2(1c)]$  and  $[Ru(C_6H_6)Cl_2-$ (1e)]), ligands 1c and 1e, as well as the cationic [Ru- $(C_6H_6)Cl^+$  and neutral  $[Ru(C_6H_6)Cl_2]$  fragments. The computational details (see the Experimental Section) and energies, as well as coordinates for all of the species investigated, are given in the Supporting Information. The computed structural parameters of the cationic [Ru- $(C_6H_6)Cl(1c)$ <sup>+</sup> and neutral [Ru $(C_6H_6)Cl_2(1e)$ ] complexes were in excellent agreement with the X-ray data, thus indicating that the computational methods were reasonable and reliable.

First, we compared the coordination ability of ligands 1c and 1e to the cationic  $[Ru(C_6H_6)Cl]^+$  and neutral [Ru- $(C_6H_6)Cl_2$ ] fragments with the formation of the cationic  $([Ru(C_6H_6)Cl(1c)]^+$  and  $[Ru(C_6H_6)Cl(1e)]^+)$  and neutral complexes ( $[Ru(C_6H_6)Cl_2(1c)]$  and  $[Ru(C_6H_6)Cl_2(1e)]$ ), as shown in Equations (1) and (2). Ligand 1e had a higher coordination energy than ligand 1c in both the cationic bidentate and neutral monodentate complexes, by 1.11 and 3.24 kcalmol<sup>-1</sup>, respectively. Additional comparisons showed that the coordination of ligand 1e in the neutral monodentate complex was stronger than in the cationic bidentate complex and the coordination of ligand 1c in the cationic bidentate complex was stronger than in the neutral monodentate complex. This result indicated that ligand 1e preferred monodentate coordination, whilst ligand 1c preferred bidentate coordination, as observed experimentally. However, the energetic difference of 2.13 kcal mol<sup>-1</sup> was rather small, and

© 2012 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

Table 4. Catalytic hydrogenation of aliphatic esters and lactones with  $[\{Ru(benzene)Cl_2]_2/|1\,c^{[a]}$ 



[a] Conditions: ester (10 mmol), [{Ru(benzene)Cl<sub>2</sub>]<sub>2</sub>] (0.25 mol%), **1c** (1 mol%), KOtBu (10 mol%), THF (10 mL), 100 °C, H<sub>2</sub> (50 bar), 4.5 h; [b] 100 °C, 16 h; [c] 120 °C, 4.5 h; [d] 120 °C, 16 h; [e] [{Ru(benzene)Cl<sub>2</sub>}<sub>2</sub>] (0.25 mol%), **1e** (1 mol%).

the coordination modes might have changed upon changing the reaction conditions.

$$\begin{aligned} [\operatorname{Ru}(\operatorname{C}_{6}\operatorname{H}_{6})\operatorname{Cl}]^{+} + \mathbf{1}\,\mathbf{c} &= [\operatorname{Ru}(\operatorname{C}_{6}\operatorname{H}_{6})\operatorname{Cl}(\mathbf{1}\,\mathbf{c})]^{+}\\ \Delta H &= -95.12\,\operatorname{kcal}\,\operatorname{mol}^{-1} \end{aligned} \tag{1a}$$

$$[Ru(C_6H_6)Cl]^+ + \mathbf{1} \mathbf{e} = [Ru(C_6H_6)Cl(\mathbf{1} \mathbf{e})]^+$$
  

$$\Delta H = -96.23 \text{ kcal mol}^{-1}$$
(1b)

$$[\operatorname{Ru}(\operatorname{C}_{6}\operatorname{H}_{6})\operatorname{Cl}_{2}]+\mathbf{1}\mathbf{c} = [\operatorname{Ru}(\operatorname{C}_{6}\operatorname{H}_{6})\operatorname{Cl}_{2}(\mathbf{1}\mathbf{c})]$$
  

$$\Delta H = -28.12 \operatorname{kcal} \operatorname{mol}^{-1}$$
(2a)

$$\begin{aligned} & [\operatorname{Ru}(\operatorname{C}_6\operatorname{H}_6)\operatorname{Cl}_2] + \mathbf{1} \, \mathbf{e} = [\operatorname{Ru}(\operatorname{C}_6\operatorname{H}_6)\operatorname{Cl}_2(\mathbf{1} \, \mathbf{e})] \\ & \Delta H = -31.36 \, \mathrm{kcal} \, \mathrm{mol}^{-1} \end{aligned} \tag{2b}$$

In addition, we computed the heterolytic dissociation energy of a chloride anion from the neutral monodentate complexes ( $[Ru(C_6H_6)Cl_2(1c)]$  and  $[Ru(C_6H_6)Cl_2(1e)]$ ) to the cationic bidentate complexes ( $[Ru(C_6H_6)Cl(1c)]^+$  and  $[Ru(C_6H_6)Cl(1e)]^+$ ), as shown in Equation (3). Although both dissociation reactions were endothermic, the difference between the dissociation energies showed that [Ru-( $C_6H_6$ )Cl<sub>2</sub>(1e)] had stronger chloride coordination than [Ru-( $C_6H_6$ )Cl<sub>2</sub>(1c)] by 2.13 kcal mol<sup>-1</sup>.

$$\begin{aligned} [\operatorname{Ru}(\operatorname{C}_{6}\operatorname{H}_{6})\operatorname{Cl}_{2}(\mathbf{1}\,\mathbf{c})] &= [\operatorname{Ru}(\operatorname{C}_{6}\operatorname{H}_{6})\operatorname{Cl}(\mathbf{1}\,\mathbf{c})]^{+} + \operatorname{Cl}^{-} \\ \Delta H &= 87.27 \ \mathrm{kcal} \ \mathrm{mol}^{-1} \end{aligned} \tag{3a}$$

$$\begin{aligned} [\text{Ru}(\text{C}_{6}\text{H}_{6})\text{Cl}(\mathbf{1}\,\mathbf{e})] &= [\text{Ru}(\text{C}_{6}\text{H}_{6})\text{Cl}(\mathbf{1}\,\mathbf{e})]^{+} + \text{Cl}^{-} \\ \Delta H &= 89.40 \text{ kcal mol}^{-1} \end{aligned} \tag{3b}$$

Finally, we computed the ligand-exchange energies on the basis of the reactions in Equation (4). The exchange reactions were exothermic, thus indicating that both [Ru- $(C_6H_6)Cl_2(1e)$ ] and [Ru $(C_6H_6)Cl(1e)$ ]<sup>+</sup> were thermodynamically favored over [Ru $(C_6H_6)Cl_2(1c)$ ] and [Ru $(C_6H_6)Cl_2(1c)$ ] and [Ru $(C_6H_6)Cl_2(1e)$ ]<sup>+</sup>, respectively. The difference in energy (2.13 kcal mol<sup>-1</sup>) revealed that [Ru $(C_6H_6)Cl_2(1e)$ ] was more-favored compared to [Ru $(C_6H_6)Cl_2(1e)$ ]<sup>+</sup> or, in terms of the reversal reaction, [Ru $(C_6H_6)Cl_2(1c)$ ] was less-favored than [Ru- $(C_6H_6)Cl_1(1c)$ ]<sup>+</sup>.

$$[\operatorname{Ru}(\operatorname{C}_{6}\operatorname{H}_{6})\operatorname{Cl}_{2}(\mathbf{1}\,\mathbf{c})] + \mathbf{1}\,\mathbf{e} = [\operatorname{Ru}(\operatorname{C}_{6}\operatorname{H}_{6})\operatorname{Cl}_{2}(\mathbf{1}\,\mathbf{e})] + \mathbf{1}\,\mathbf{c}$$
  

$$\Delta H = -3.24 \operatorname{kcal} \operatorname{mol}^{-1}$$
(4a)

$$[\operatorname{Ru}(\operatorname{C}_{6}\operatorname{H}_{6})\operatorname{Cl}(\mathbf{1}\,\mathbf{c})]^{+}+\mathbf{1}\,\mathbf{e} = [\operatorname{Ru}(\operatorname{C}_{6}\operatorname{H}_{6})\operatorname{Cl}(\mathbf{1}\,\mathbf{e})]^{+}+\mathbf{1}\,\mathbf{c}$$
  

$$\Delta H = -1.11 \, \text{kcal mol}^{-1}$$
(4b)

On the basis of this rather small difference in energy, and also based on the existence of  $[Ru(C_6H_6)Cl_2(1e)]$  and  $[Ru-(C_6H_6)Cl(1c)]^+$ , we expected that the cationic complex  $[Ru-(C_6H_6)Cl(1e)]^+$  should be obtainable under suitable conditions. In fact, the energy difference of the exchange from the monodentate into the bidentate coordination of ligand 1e in solution should be very small. Because such exchange is favored by an increased entropy change, simply raising the temperature should result in such a coordination change. To confirm this assumption, variable-temperature <sup>1</sup>H NMR and <sup>31</sup>P NMR experiments of  $[Ru(C_6H_6)Cl_2(1e)]$ were carried out (Figure 4).

At room temperature (297 K), the <sup>31</sup>P NMR spectrum shows a strong signal at  $\delta = 30.5$  ppm, which was assigned to the neutral complex  $[Ru(C_6H_6)Cl_2(1e)]$ , and a small signal at  $\delta = 57$  ppm, which represented the cationic species [Ru- $(C_6H_6)Cl(1e)$ ]Cl. When heating the NMR tube in increments of 10 °C up to 60 °C (333 K), the peak at  $\delta = 30.5$  ppm vanished whilst the signal at  $\delta = 57$  ppm increased. After 2 h at 60 °C, the equilibrium shifted completely towards the cationic complex. Interestingly, after heating the cationic complex, it became stable, even at room temperature, which indicated that the neutral complex was kinetically stable but that the cationic complex was thermodynamically morestable. A similar transformation of a neutral species into a cationic species was also observed by NMR spectroscopy of the neutral complex  $[Ru(C_6H_6)Cl_2(1e)]$  at room temperature after 2 weeks.

Moreover, a second set of signals was observed in the <sup>1</sup>H NMR spectrum at room temperature, which grew during the heating process. In this case, the chemical shift of the benzene moiety was particularly suitable for investigating the transformation of the neutral complex into the cationic

*Chem. Eur. J.* **2012**, *00*, 0–0

© 2012 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim





# -FULL PAPER

These are not the final page numbers! **77** 



Figure 3. a) ORTEP of the cation of  $[Ru(C_6H_6)Cl(1b)]Cl.$  Hydrogen atoms are omitted for clarity; thermal ellipsoids set at 30% probability. Selected bond lengths [Å] and angles [°]: P1–Ru1 2.3820(4), Cl1–Ru1 2.4066(4), N1–Ru1 2.0931(11); N1-Ru1-P1 77.90(3), P1-Ru1-Cl1 89.44(1), N1-Ru1-Cl1 82.57(3). b) ORTEP of the cation of  $[Ru(C_6H_6)Cl(1c)]Cl.$  Hydrogen atoms are omitted for clarity; thermal ellipsoids set at 30% probability. Selected bond lengths [Å] and angles [°]: P1–Ru1 2.4039(10), N1–Ru1 2.089(3); N1-Ru1-P1 79.62(10), P1-Ru1-Cl1 83.03(4), N1-Ru1-Cl1 83.1(1). c) ORTEP of the cation of  $[Ru(C_6H_6)Cl-(1d)]Cl.$  Hydrogen atoms are omitted for clarity; thermal ellipsoids set at 30% probability. Selected bond lengths [Å] and angles [°]: P1–Ru1 2.3087(5), Cl1–Ru1 2.4016(5), N1–Ru1 2.079(2); N1-Ru1-P1 79.51(5), P1-Ru1-Cl1 83.74(2), N1-Ru1-Cl1 86.12(5). d) ORTEP of  $[Ru(C_6H_6)Cl_2(1e)].$  Hydrogen atoms are omitted for clarity; thermal ellipsoids set at 30% probability. Selected bond lengths [Å] and angles [°]: P1–Ru1 2.3087(5), Cl1–Ru1 2.4016(5), N1–Ru1 2.079(2); N1-Ru1-P1 79.51(5), P1-Ru1-Cl1 83.74(2), N1-Ru1-Cl1 86.12(5). d) ORTEP of  $[Ru(C_6H_6)Cl_2(1e)].$  Hydrogen atoms are omitted for clarity; thermal ellipsoids set at 30% probability. Selected bond lengths [Å] and angles [°]: P1–Ru1 2.3374(4), Cl1–Ru1 2.4094(5), Cl2–Ru1 2.4028(4); Cl2-Ru1-Cl1 88.172(16), P1-Ru1-Cl1 85.538(16), P1-Ru1-Cl2 84.525(15).



complex. The benzene group of  $[Ru(C_6H_6)Cl_2(1e)]$  gave a characteristic peak at  $\delta = 5.3$  ppm. An additional small signal at 5.8 ppm was found at 297 K, which was attributed to benzene in  $[Ru(C_6H_6)Cl(1e)]Cl.$ On heating the sample, the <sup>1</sup>H NMR spectra showed a decrease in the signal at  $\delta =$ 5.3 ppm whilst the peak at  $\delta =$ 5.8 ppm grew. Finally, the NMR sample was evaporated and investigated by MS (ESI-TOF), which showed a signal at m/z =523.06449, which corresponded to the cationic  $[Ru(C_6H_6)Cl-$ (1e)]<sup>+</sup> species, with only one chlorine atom being detected.

To determine the relative stability of the different complexes, ligand 1e was added into a solution of complex [Ru- $(C_6H_6)Cl(1c)]Cl.$  Besides the <sup>31</sup>P NMR signal for complex  $[Ru(C_6H_6)Cl(1c)]Cl$  $(\delta =$ 74.45 ppm) and the free ligand 1e ( $\delta = -18.3$  ppm), a third peak appeared at  $\delta = 30$  ppm, which corresponded to [Ru- $(C_6H_6)Cl_2(1e)]$ . Neutral complex  $[Ru(C_6H_6)Cl_2(1e)]$  was formed by ligand exchange from the cationic complex [Ru- $(C_6H_6)Cl(\mathbf{1c})]Cl.$ 

Based on these spectroscopic findings, different metal to ligand ratios of the in-situ-generated catalyst [{Ru-(benzene)Cl<sub>2</sub>]<sub>2</sub>]/1e were tested in the benchmark hydrogenation of methyl benzoate (Table 1, entries 20-22). The best result was obtained with a [Ru]/1e ratio of 1:2 (94% yield), whereas, for a metal/ligand ratio of 1:1, the reactivity was somewhat lower (74% yield). When a metal/ligand ratio of 1:4 was applied, almost no reaction took place. Finally, the use of two isolated complexes,  $[Ru(C_6H_6)Cl(1c)]Cl$  and [Ru- $(C_6H_6)Cl_2(1e)]$ , in the reduction of methyl benzoate showed comparable activity (23-26% yield; Table 1, entries 23 and 25). When a second equivalent of ligand 1c or 1e was added to the respective isolated complexes, the results were similar to those with the corresponding in-situ-generated catalyst  $[{Ru(benzene)Cl_2}/1c \text{ or } [{Ru(benzene)Cl_2}/1e (Table 1,$ entries 24 and 26).

### Conclusion

Figure 4. <sup>31</sup>P NMR spectra of  $[Ru(C_6H_6)Cl_2(1e)]$  at different temperatures. Transformation of the neutral complex  $[Ru(C_6H_6)Cl_2(1e)]$  into the cationic form  $[Ru(C_6H_6)Cl(1e)]Cl$ .

A convenient synthesis of hemilabile P-N ligands  ${\bf 1}$  and  ${\bf 2}$  and their application in the ruthenium-catalyzed reduction

**FF** These are not the final page numbers!

www.chemeurj.org

© 2012 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

of esters is presented. The combination of [{Ru- $(\text{benzene})Cl_2]_2/1e$  gave an active and selective catalyst for the reduction of substituted aromatic esters and lactones. On the other hand, the combination of  $[{Ru(benzene)Cl_2}]/$ 1c gave especially good results for the hydrogenation of aliphatic lactones or carboxylic esters. The scope of these in situ catalyst systems was demonstrated in the reduction of 23 esters, which generally proceeded in good yields. Furthermore, a series of ruthenium complexes with phosphine-imidazolyl ligands  $[Ru(C_6H_6)Cl_2(1)]$  were synthesized and fully characterized to investigate the active catalyst. These complexes should also be useful in other reductions reactions, such as the reduction of nitriles,<sup>[14]</sup> amides, etc.

#### **Experimental Section**

General procedure for the catalytic hydrogenation of esters: A mixture of  $[\{Ru(benzene)Cl_2\}_2]~(0.5~mol\,\%~Ru)$  and ligand  $1~(1~mol\,\%)$  in THF (5 mL) was purged with argon in a Schlenk tube and stirred for 15 min at RT. To the in-situ-generated catalyst were added KOtBu (0.1 mmol), hexadecane (as a standard, 1 mL), and a liquid ester (10 mmol) and the mixture was stirred for a further 5 min. (If a solid ester was used, it was added directly into the autoclave.) The reaction mixture was transferred via a syringe into the autoclave (25 mL Parr autoclave), the autoclave was flushed twice with hydrogen, filled with hydrogen (50 bar), and the mixture was stirred at the required temperature (80-120 °C) for the predetermined time (4.5-16 h). The autoclave was allowed to cool to RT, the hydrogen was released, and the reaction mixture was passed through a short plug of silica gel. The yield was determined by GC (30 m HP 5 Agilent Technologies 50-300 °C).

Computational details: Structure optimizations were carried out at the BP86<sup>[15]</sup> density functional level of theory with the SVP basis set for nonmetal elements (C, H, P, N, Cl)<sup>[16]</sup> and with the LANL2DZ basis set for Ru<sup>[17]</sup> with the Gaussian03 program package.<sup>[18]</sup> The optimized geometries were characterized as energy minima at the potential energy surface from frequency calculations at the same level of theory (BP86/SVP), that is, the energy-minimum structure had only real frequencies. For comparison with the X-ray structural parameters, the structures were refined with the TZVP basis set for the non-metal elements;<sup>[19]</sup> the computed energies were used for the relative-energy discussion.

X-ray crystal-structure analysis: Diffraction data for 1a-2HBr and 1c-HBr were collected on a STOE IPDS II diffractometer, whilst diffraction data for [Ru(C<sub>6</sub>H<sub>6</sub>)Cl(1b)]Cl, [Ru(C<sub>6</sub>H<sub>6</sub>)Cl(1c)]Cl, [Ru(C<sub>6</sub>H<sub>6</sub>)Cl-(1d)]Cl, and [Ru(C<sub>6</sub>H<sub>6</sub>)Cl<sub>2</sub>(1e)] were collected on an Bruker APEX II Duo: graphite-monochromated Mo K $\alpha$  radiation was used in all cases. The structures were solved by direct methods and refined by full-matrix least-squares procedures on  $F^2$  with the SHELXTL software package; XP (Bruker AXS) was used for graphical representations.<sup>[20]</sup>

CCDC-865729 (1a-2 HBr), CCDC-865728 (1c-HBr), CCDC-865726 ([Ru-(C<sub>6</sub>H<sub>6</sub>)Cl(1b)]Cl), CCDC-865724 ([Ru(C<sub>6</sub>H<sub>6</sub>)Cl(1c)]Cl), CCDC-865727  $([Ru(C_6H_6)Cl(1d)]Cl), CCDC-865725 ([Ru(C_6H_6)Cl_2(1e)])$  contain the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data\_request/cif.

### Acknowledgements

We thank Dr. C. Fischer, S. Buchholz, S. Schareina, and S. Rossmeisl (all at the Leibniz-Institut für Katalyse e.V.) for their excellent analytical and technical support. Special thanks go to Dr. W. Baumann and A. Koch for the variable-temperature NMR spectroscopy measurements.

- [1] a) P. N. Rylander, Catalytic Hydrogenation in Organic Syntheses, Academic Press, New York, 1979; b) Handbook of Heterogeneous hydrogenation for Organic Synthesis (Ed.: S. Nishimura), Wiley, New York, 2001; c) Handbook of Homogeneous Hydrogenation (Eds.: J. G. de Vries, C. J. Elsevier), Wiley-VCH, Weinheim, 2007; d) P. G. Andersson, I. J. Munslow, Modern Reduction Methods, Wiley, New York, 2008.
- [2] a) L. Saudan in Applied Homogeneous Catalysis with Organometallic Compounds: A Comprehensive Handbook in Three Volumes (Eds.: B. Cornils, W. A. Herrmann, M. Beller, R. Paciello), Wiley-VCH, Weinheim, 2012, in press; b) M. L. Clarke, G. J. Roff, The Handbook of Homogeneous Hydrogenation (Eds.: J. G. de Vries, C. J. Elsevier), Wiley-VCH, Weinheim, 2007, pp. 313-454; c) M. Ito, T. Ikariya, Chem. Commun. 2007, 5134-5142.
- [3] For the catalytic reduction of carboxylic acids, see: a) M. Bianchi, G. Menchi, F. Francalanci, F. Piacenti, U. Matteoli, P. Frediani, C. Botteghi, J. Organomet. Chem. 1977, 141, 107-111; b) M. Bianchi, G. Menchi, F. Francalanci, F. Piacenti, U. Matteoli, P. Frediani, C. Botteghi, J. Organomet. Chem. 1980, 188, 109-119; c) D. He, N. Wakasa, T. Fuchikami, Tetrahedron Lett. 1995, 36, 1059-62.
- [4] For the catalytic reduction of amide derivatives, see: a) A. A. Núñez Magro, G. R. Eastham, D. J. Cole-Hamilton, Chem. Commun. 2007, 3154-3156; b) E. Balaraman, B. Gnanaprakasam, L. J. W. Shimon, D. Milstein, J. Am. Chem. Soc. 2010, 132, 16756-16758; c) M. Ito, T. Ootsuka, R. Watari, A. Shiibashi, A. Himizu, T. Ikariya, J. Am. Chem. Soc. 2011, 133, 4240-4242; d) J. M. John, S. H. Bergens, Angew. Chem. 2011, 123, 10561-10564; Angew. Chem. Int. Ed. 2011, 50, 10377-10380; e) E. Balaraman, Y. Ben-David, D. Milstein, Angew. Chem. 2011, 123, 11906-11909; Angew. Chem. Int. Ed. 2011, 50, 11702-11705. For the catalytic reduction of imide derivatives, see: f) R. Aoun, J.-L. Renaud, P. H. Dixneuf, C. Bruneau, Angew. Chem. 2005, 117, 2057-2059; Angew. Chem. Int. Ed. 2005, 44, 2021-2023; g) M. Ito, A. Sakaguchi, C. Kobayashi, T. Ikariya, J. Am. Chem. Soc. 2007, 129, 290-291.
- [5] a) R. A. Grey, G. P. Pez, A. Wallo, J. Corsi, Chem. Commun. 1980, 783-784; b) A. R. Grey, G. P. Pez, A. Wallo, J. Am. Chem. Soc. 1981, 103, 7536-7542; c) U. Matteoli, M. Bianchi, G. Menchi, P. Prediani, F. Piacenti, J. Mol. Catal. 1984, 22, 353-362; d) U. Matteoli, G. Mechi, M. Bianchi, F. Piacenti, J. Organomet. Chem. 1986, 299, 233-238; e) U. Matteoli, G. Menchi, M. Bianchi, F. Piacenti, J. Mol. Catal. 1988, 44, 347-355; f) U. Matteoli, G. Mechi, M. Bianchi, F. Piacenti, S. Ianelli, M. Nardelli, J. Organomet. Chem. 1995, 498, 177-186; g) J. Zhang, G. Leitus, Y. Ben-David, D. Milstein, Angew. Chem. 2006, 118, 1131-1133; Angew. Chem. Int. Ed. 2006, 45, 1113-1115; h) L. A. Saudan, C. M. Saudan, C. Debieux, P. Wyss, Angew. Chem. 2007, 119, 7617-7620; Angew. Chem. Int. Ed. 2007, 46, 7473-7476; i) M. L. Clarke, M. B. Dıaz-Valenzuela, A. M. Z. Slawin, Organometallics 2007, 26, 16-19; j) Y. Sun, C. Koehler, R. Tan, V. T. Annibale, D. Song, Chem. Commun. 2011, 47, 8349-8351; k) E. Fogler, E. Balaraman, Y. Ben-David, G. Leitus, L. J. W. Shimon, D. Milstein, Organometallics 2011, 30, 3826-3833; 1) E. Balaraman, E. Fogler, D. Milstein, Chem. Commun. 2012, 48, 1111-1113.
- [6] For the in situ formation of a [Ru(acac)<sub>3</sub>]/phosphine catalyst, see: a) Y. Hara, H. Inagaki, S. Nishimura, K. Wada, Chem. Lett. 1992, 1983-1986; b) H. T. Teunissen, C. J. Elsevier, Chem. Commun. 1997, 667-668; c) H. T. Teunissen, C. J. Elsevier, Chem. Commun. 1998, 1367-1367; d) K. Nomura, H. Ogura, Y. Imanishi, J. Mol. Catal. A: Chem. 2001, 166, 345-349; e) M. C. Van Engelen, H. T. Teunissen, J. G. de Vries, C. J. Elsevier, J. Mol. Catal. A: Chem. 2003, 206, 185-192; f) M. J. Hanton, S. Tin, B. J. Boardman, P. Miller, J. Mol. Catal. A: Chem. 2011. 346. 70-78.
- [7] a) S. Zhou, K. Junge, D. Addis, S. Das, M. Beller, Angew. Chem. 2009, 121, 9671-9674; Angew. Chem. Int. Ed. 2009, 48, 9507-9510; b) S. Zhou, D. Addis, S. Das, K. Junge, M. Beller, Chem. Commun. 2009, 4883-4885; c) S. Zhou, K. Junge, D. Addis, S. Das, M. Beller, Org. Lett. 2009, 11, 2461-2464; d) S. Das, D. Addis, S. Zhou, K. Junge, M. Beller, J. Am. Chem. Soc. 2010, 132, 1770-1771; e) S. Das, S. Zhou, D. Addis, S. Enthaler, K. Junge, M. Beller, Top. Catal.

© 2012 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

www.chemeurj.org



**FULL PAPER** 

### 

**2010**, *53*, 979984; f) D. Addis, S. Das, K. Junge, M. Beller, *Angew. Chem.* **2011**, *123*, 6128–6135; *Angew. Chem. Int. Ed.* **2011**, *50*, 6004–6011; g) S. Das, K. Möller, K. Junge, M. Beller, *Chem. Eur. J.* **2011**, *17*, 7414–7417; h) S. Das, D. Addis, L. R. Knöpke, U. Bendrup, K. Junge, A. Brückner, M. Beller, *Angew. Chem.* **2011**, *123*, 9346–9359; *Angew. Chem. Int. Ed.* **2011**, *50*, 9180–9184; i) S. Das, D. Addis, K. Junge, M. Beller, *Chem. Eur. J.* **2011**, *17*, 12186–12192; j) S. Das, B. Join, K. Junge, M. Beller, *Chem. Commun.* **2012**, *48*, 2683–2685.

- [8] a) M. A. Jalil, S. Fujinami, H. Senda, H. Nishikawa, J. Chem. Soc. Dalton Trans. 1999, 1655–1661; b) M. A. Jalil, S. Fujinami, H. Nishikawa, J. Chem. Soc. Dalton Trans. 1999, 3499–3505; c) M. A. Jalil, S. Fujinami, H. Nishikawa, J. Chem. Soc. Dalton Trans. 2001, 1091–1098; d) M. A. Jalil, E. B. Hui, Tetrahedron Lett. 2006, 47, 1473–1475; e) L. D. Field, B. A. Messerle, K. Q. Vuong, P. Turner, Dalton Trans. 2009, 3599–3614.
- [9] For further examples of imidazole-based P-N ligands, see: a) M. Abdul Jalil, T. Yamada, S. Fujinami, T. Honjo, H. Nishikawa, *Polyhedron* 2001, 20, 627–633; b) G. Espino, F. A. Jalón, M. Maestro, B. R. Manzano, M. Pérez-Manrique, A. C. Bacigalupe, *Eur. J. Inorg. Chem.* 2004, 2542–2552; c) C. Tejel, M. A. Ciriano, S. Jiménez, L. A. Oro, C. Graiff, A. Tiripicchio, *Organometallics* 2005, 24, 1105–1111; for tridentate imidazolyl ligands: d) N. Braussaud, T. Rüther, K. J. Cavell, B. W. Skelton, A. H. White, *Synthesis* 2001, 4, 0626–0632; e) T. Rüther, M. C. Done, K. J. Cavell, E. J. Peacock, B. W. Skelton, A. H. White, *Organometallics* 2005, 22–5531.
- [10] (1-Methyl-1-H-imidazol-2-yl)methanamine (3) was purchased from Aldrich. For a synthetic procedure, see: S. Price, R. Bull, S. Cramo, S. Garden, M. v. d. Heuvel, D. Neigibour, S. E. Osbourn, I. J. P. de Esch, C. L. Buenemann, *Tetrahedron Lett.* 2004, 45, 5581–5583.
- [11] a) K. Junge, B. Hagemann, S. Enthaler, G. Oehme, M. Michalik, A. Monsees, T. Riermeier, U. Dingerdissen, M. Beller, *Angew. Chem.* 2004, *116*, 5176–5179; *Angew. Chem. Int. Ed.* 2004, *43*, 5066–5069;
  b) B. Hagemann, K. Junge, S. Enthaler, M. Michalik, T. Riermeier, A. Monsees, M. Beller, *Adv. Synth. Catal.* 2005, *347*, 1978–1986.
- [12] Methyl-4-cyanobenzoate was reduced with [{Ru(benzene)Cl<sub>2</sub>]<sub>2</sub>]/1c to give methyl-4-(aminomethyl)benzoate (51%) and 4-(hydroxy-methyl)benzonitrile (13% yield). The reduction of methyl-4-acetyl-benzoate with [{Ru(benzene)Cl<sub>2</sub>]<sub>2</sub>]/1e afforded methyl 4-(1-hydroxy-ethyl)benzoate in 58% yield.

- [13] Crystal structures of Ni-, Mo-, Ir-, Rh-, and Pd complexes of ligands 1a and 1d are reported;<sup>[8a,b,c,e]</sup> in these cases, the P-N ligands were always coordinated as bidentate species.
- [14] For selected recent examples of the ruthenium-catalyzed hydrogenation of nitriles, see: a) T. Li, I. Bergner, F. N. Haque, M. Zimmer-De Iuliis, D. Song, R. H. Morris, Organometallics 2007, 26, 5940-5949; b) S. Enthaler, D. Addis, K. Junge, G. Erre, M. Beller, Chem. Eur. J. 2008, 14, 9491-9494; c) S. Enthaler, K. Junge, D. Addis, G. Erre, M. Beller, ChemSusChem 2008, 1, 1006-1010; d) D. Addis, S. Enthaler, K. Junge, B. Wendt, M. Beller, Tetrahedron Lett. 2009, 50, 3654-3656; e) R. Reguillo, M. Grellier, N. Vautravers, L. Vendier, S. Sabo-Etienne, J. Am. Chem. Soc. 2010, 132, 7854-7855; f) C. Gunanathan, M. Hölscher, W. Leitner, Eur. J. Inorg. Chem. 2011, 3381-3386.
- [15] J. P. Perdew, Phys. Rev. B 1986, 33, 8822-8824.
- [16] A. Schäfer, H. Horn, R. Ahlrichs, J. Chem. Phys. 1992, 97, 2571-77.
- [17] P. J. Hay, W. R. Wadt, J. Chem. Phys. 1985, 82, 299-310.
- [18] Gaussian 03, Revision D.02, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery, Jr., T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, J. A. Pople, Gaussian, Inc., Wallingford CT, 2004.
- [19] A. Schäfer, C. Huber, R. Ahlrichs, J. Chem. Phys. 1994, 100, 5829– 5835.
- [20] G. M. Sheldrick, Acta Cryst. 2008, A64, 112-122.

Received: February 7, 2012 Published online: ■ ■ ↓, 0000



P-N the tail on the donkey: The combination of [{Ru(benzene)Cl<sub>2</sub>}] and P-N ligand 1e was active in the hydrogenation of aromatic esters and lactones,

whilst  $[{Ru(benzene)Cl_2}_2]/1c$  attained good results in the reduction of aliphatic lactones and esters (see scheme).

ОH

### Ru Catalysis -

| К. | Junge, | В.  | Wendt,  | F. A. | Westerhaus, |
|----|--------|-----|---------|-------|-------------|
| Α. | Spanne | enb | erg, H. | Jiao, |             |
| M. | Beller | *   |         |       |             |

Phosphine–Imidazolyl Ligands for the Efficient Ruthenium-Catalyzed Hydrogenation of Carboxylic Esters

