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ABSTRACT: A novel and efficient phosphine-catalyzed intramolecular
cyclization of α-nitroethylallenic esters is reported. This process appears
to be practical for the stereoselective syntheses of (Z)-furan-2(3H)-one
oxime derivatives in excellent yields. Mechanistically, the reaction
involves a phosphine-catalyzed Michael addition of an alkylideneazinate
and rearrangement of the cyclic nitronate to the α-nitrosodihydrofuran.

Nucleophilic phosphine catalysis has recently flourished
because of its high versatility, operational ease, and low

cost. In this context, nucleophilic phosphine-catalyzed cycliza-
tions have become extremely multifaceted synthetic method-
ologies for preparing various carbocycles and heterocycles.1

Some notable examples include the intramolecular Morita−
Baylis−Hillman (MBH) reaction,2 the intramolecular Rauhut−
Currier reaction,3 and various annulations based on allenes,4

MBH alcohol derivatives,5 and alkynes.6 In addition to these
cyclization reactions, methods have also been developed for the
syntheses of oxygen-, sulfur-, and nitrogen-containing hetero-
cycles through double-Michael, γ-umpolung−Michael, and
intramolecular γ-umpolung additions of 2,3-butadienoates and
2-butynoates.7

Based on these earlier studies, we hypothesized that 2-(2′-
nitroethyl)allenic esters 1 would undergo intramolecular γ-
umpolung additions in the presence of phosphine catalysts to
yield highly substituted cyclopentenes A (Figure 1).8a We could

not, however, exclude the possibility of forming cyclic
nitronates B through intramolecular Michael addition of the
oxygen anion of the alkylideneazinate intermediate.8b To our
surprise, compounds 1 produced, instead, five-membered cyclic
N-hydroxyimidic acid esters 2 as novel products in high yields
under the influence of a tertiary phosphine catalyst. Methods
for the synthesis of cyclic N-hydroxyimidic acid esters are
scarce, with the only known processes being oxidative ring
closure of γ- or δ-hydroxyl oximes,9 rearrangement of
nitronates,10 organoselenium-induced cyclization of β,γ-unsa-
turated hydroxamic acids,11 and tandem reactions of β-
nitrostyrenes with 1,3-dicarbonyl compounds.12 Because of
their potential biological activities,9b herein we report a novel
approach toward five-membered cyclic N-hydroxyimidic acid
esters 2 through highly effective phosphine-catalyzed cycliza-
tions of 2-(2′-nitroethyl)allenic esters 1. This transformation,
which occurs through a mechanistically intriguing cascade
process, appears to be a practical and operationally simple
method for preparing five-membered cyclic N-hydroxyimidic
acid esters under extremely mild conditions.
To prepare the requisite α-(nitroethyl)allenic esters 1 for this

study, a series of phosphoranes 4 were formed through Michael
additions of carbethoxymethylenetriphenylphosphorane to
nitroalkenes 3 (Scheme 1). Treatment of the stabilized ylides
4 with AcCl and Et3N produced the allenoates 1 for the
subsequent phosphine catalysis reactions.13

With these α-(nitroethyl)allenic esters 1 in hand, ethyl 2-(2-
nitro-1-phenylethyl)buta-2,3-dienoate (1a) was selected for the
initial trial reaction with 20 mol % Ph3P as the catalyst in
CH2Cl2 at room temperature (Table 1). To our delight, the
cyclic N-hydroxyimidic acid ester 2a was obtained with a
synthetically useful level of efficiency (entry 1). To improve the
product yield, various solvents were examined (entries 2−5).
MeCN proved to be the most efficient reaction medium,
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Figure 1. Phosphine-catalyzed intramolecular cyclizations based on γ-
umpolung and Michael additions.
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providing the cyclic N-hydroxyimidic acid ester 2a in 95%
isolated yield after 1 h (entry 5). Subsequently, the potential of
several commonly used phosphines as catalysts was probed in
MeCN (entries 6−12). MePh2P at 10 mol % was the best
catalyst in terms of product yield and reaction time (entry 13).
Me2PhP, Me3P, and Bu3P also facilitated the cyclization of 1a,
while, surprisingly, Bn3P was ineffective (entries 6−10).
P(OEt)3 did not catalyze this reaction, even when performed
under reflux (entries 11 and 12). Additionally, the loading of
MePh2P could be lowered to 5 mol % without impacting the
product yield, although a slightly longer reaction time was

required (entry 14). Notably, 1 mol % of catalyst was also
sufficient for this reaction, offering the product in 77% yield
within 40 min under reflux (entries 15 and 16). Only a trace
amount of the product formed when using 0.1 mol % of
catalyst, even at elevated temperature (entries 17 and 18).
Notably, the loading of phosphine catalysts in nucleophilic
phosphine-catalyzed reactions is typically greater than 10 mol
%, so this reaction is a rare example in which 1 mol % of a
phosphine catalyst can effectively promote such a reaction. No
product was obtained when the reaction was performed in the
absence of a phosphine (entry 19).
With the optimal conditions in hand, several 2-(2-nitro-1-

arylethyl)buta-2,3-dienoate esters 1 were converted to their
corresponding five-membered cyclic N-hydroxyimidic acid
esters 2 (Table 2). The yields for these cycloisomerizations

were generally very high. Both meta- and para-substituted
phenyl moieties, possessing either electron-donating or -with-
drawing substituents, were well tolerated (entries 1−12). For
example, α-(2-nitro-1-arylethyl)allenic esters presenting p- and
m-methoxyphenyl groups underwent their reactions smoothly,
providing the desired products 2d and 2i in 97% and 93%
yields, respectively (entries 4 and 9). Importantly, halogen
substituents (F, Cl, Br) remained intact under the reaction
conditions, providing a handle for subsequent transformations
through various coupling protocols (entries 5−7 and 10−12).

Scheme 1. Synthesis of α-(Nitroethyl)allenic Esters 1

Table 1. Optimization of Reaction Conditionsa

aReaction of 1a (0.1 mmol) was performed in the listed solvent (1
mL). bIsolated yield.

Table 2. Synthesis of Cyclic N-Hydroxyimidic Acid Estersa

entry R1 R2 R3
time
(min) product

yield
(%)b

1 Ph H Et 40 2a 96
2 4-MeC6H4 H Et 20 2b 96
3 4-MeSC6H4 H Et 40 2c 94
4 4-MeOC6H4 H Et 15 2d 97
5 4-BrC6H4 H Et 30 2e 87
6 4-ClC6H4 H Et 20 2f 93
7 4-FC6H4 H Et 30 2g 94
8 4-PhC6H4 H Et 20 2h 91
9 3-MeOC6H4 H Et 40 2i 93
10 3-BrC6H4 H Et 30 2j 95
11 3-ClC6H4 H Et 30 2k 88
12 3-FC6H2 H Et 35 2l 96
13 4-(AcO)-3,5-

(MeO)2C6H2

H Et 180 2m 50

14 4-(AcO)-3,5-
(MeO)2C6H2

H Et 50 2m 79c

15 2-naphthyl H Et 30 2n 94
16 5-Me-2-furyl H Et 20 2o 86
17 2-thienyl H Et 40 2p 73
18d Ph Me Et 720 − −
19 Ph H Me 35 2q 93
20 Ph H Bn 40 2r 88
21 Ph H t-Bu 40 2s 92

aAll reactions were performed using a β′-nitroalkylallenic ester 1 (0.1
mmol) and MePh2P (5 mol %) in MeCN at room temperature.
bIsolated yield. c10 mol % of MePh2P was used. dNo product was
formed.
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The yield was low when the aryl group was trisubstituted (entry
13), but it improved when using a higher catalyst loading (10
mol %; entry 14). The reaction was equally effective at
producing the corresponding product in good yield when a 2-
naphthyl group was present (entry 15). Gratifyingly, the
benzene ring of the substrates 1 could be replaced by heteroaryl
groups, providing the furyl- and thienyl-substituted five-
membered cyclic N-hydroxyimidic acid esters 2o and 2p in
86% and 73% yields, respectively (entries 16 and 17). γ-
Substituted allenoates did not participate in this process (entry
18), presumably because the steric bulk lowered the electro-
philicity. Variation of the ester group had no obvious effect on
the reaction, with the cyclized products again obtained in high
yield (entries 19−21). The structures of the products were
confirmed through X-ray crystallographic analysis of compound
2m (Figure 2).14

Scheme 2 presents a proposed mechanism to account for the
formation of the cyclic N-hydroxyimidic acid esters 2.
Conjugate addition of the phosphine to the α-(nitroethyl)-
allenic ester 1 leads to the formation of the zwitterionic
intermediates 5↔6. 1,5-Proton transfer of the intermediate 6
yields the α-nitro anion 7, the alternative resonance form (the
alkylideneazinate 8) of which undergoes cyclization to form the
nitronate 9. β-Elimination of the phosphine from the
zwitterionic intermediate 9 produces the cyclic nitronate B,
which rearranges to produce the 2-nitrosodihydrofuran
intermediate 10,10 with tautomerization giving the five-
membered cyclic N-hydroxyimidic acid ester 2.
In conclusion, we have observed the unprecedented

chemoselective phosphine-catalyzed intramolecular cyclization
of α-nitroethylallenic esters to five-membered cyclic N-
hydroxyimidic acid esters. This catalytic process, performed
under mild and seemingly general conditions, provides access

to five-membered cyclic N-hydroxyimidic acid esters in high
yields. This transformation is a rare example of the rearrange-
ment of cyclic nitronates to furanone oximes.
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