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Five-membered nitrogen-atom-containing heterocycles are struc- rapje 1. Evaluation of Catalysts for Double Michael Additionséi
tural components of many natural products and pharmaceuticals; OH 10 mol% cat.
in addition, many of themfor example, enantiopure azolidine + 7
NHTs co Me

derivatives-have been employed as synthetic intermediates, aux- CO,Me SZ‘ﬂéergh %‘H GOMe
iliaries, ligands, and catalysts for asymmetric synthgé€ianse- 1a
quently, there is a high demand for new methods for the efficient isolated yields (%)
constructiqn of optically ac_tive azolidi_ne derivgti\iéAs part qf a entry catalyst solvent 22 3
progrf\m aimed at developing phosphlne-mgdlated ann_ulatlon reac— PheP oluene 35 20
tions; we sought a novel route tovyard highly substlt.ut‘ed and ob PhPEt toluene 42 30
functionalized five-membered-ring nitrogen-atom-containing het- 3b MesP toluene 0 22
erocycles. In light of recent reports on the phosphine-catalyzed — 4° DPPP toluene 71 12
conjugate additions of electron-deficient olefins and acetylenes with 2 DPPP CH:CN 92 0
alcohols? herein we report a bisphosphine-catalyzed mixed double- 6 DPPI CHCN 37 42

. : P phospr Y , 7 DPPE CHsCN 84 0
Michael proceskthat generates azolidine®; €q 1). Use of amino- 8 DPPB CHiCN 82 0
acid-derived pronucleophiled)(as Michael donors and electron- 9 DPPPerit CHsCN 79 6
deficient acetylenes as Michael acceptors provides efficient access ] " g | ot ! of

i i f i aAll reactions were performed using 1 mmol df, 1.1 mmol o
to azolidines containing both diversity and asymmetry. methylpropiolate, and 10 mol % of the catalysThese reactions were run
XH for 48 h.cDPPM, DPPE, DPPP, DPPB, and DPPPent are acronyms for
J: DPPP (10 mol%) I)\/E diphenylphosphinomethane, -ethane, -propane, -butane, and -pentane,
+ =—E (1) respectively.
R™ "NHTs CH3CN, heat . . . I . .
1 XH = OH. SH 2 as in DPPP, provides additional stabilization to the intermediate

CH(CO,Me), phosphonium ion§ and?. The latter undergoesyd displacement
to produce the cyclized produ2t!! In the absence of anchimeric
Our initial evaluation of the proposed double-Michael addition assistance, as in the case of the monodentate phosphines, the
began with the reaction between amino alcohaland methyl decreased stability of the phosphonium ion led to an unfavorable
propiolate (Table 1). Employing PRlas the catalyst gave the equilibrium for the formation o6 from 3.12 The relatively short
desired double-Michael addu2a in 35% yield in addition to a tether of DPPM prohibits the orbital overlap required for anchimeric
40% yield of the mono-Michael addua (entry 1)7 Use of Ph- assistance because of geometrical constraints. The other phosphines
PEt led to a moderate improvement in the yield of the oxazolidine for which intramolecular stabilization was possible, namely, DPPE,
product 2a (entry 2), but none was formed from the reaction DPPB, and DPPPent, gave results similar to those obtained using
catalyzed by MgP (entry 3)8 In contrast, diphenylphosphinopro- DPPP. Note that intramolecular stabilization of phosphonium ions
pane (DPPP) catalysis increased the yield of the desired double-by nitrogen atoms has precedent in the literatgre.
Michael adducRato 71% (entry 4. Further increases in the yield With the optimal reaction conditions in hand, that is, DPPP as
and reaction rate were achieved when performing the reaction in acatalyst and CECN as solvent, we next explored the scope of the
more polar solvent, C¥CN (entry 5). On the basis of the double-Michael reaction using a variety of amino-acid-derived
encouraging results we obtained with DPPP as the catalyst, we alsgoronucleophiles and electron-deficient acetylenes (Table 2). The
tested the applicability of the homologous bisphosphines diphe- formation of oxazolidines fromB-amino alcohols and methyl
nylphosphinomethane (DPPM), diphenylphosphinoethane (DPPE), propiolate proceeded smoothly, with high yields and diastereose-
diphenylphosphinobutane (DPPB), and diphenylphosphinopentanelectivities (entries 1 and 4). The Michael acceptors acetylacetylene
(DPPPent). The appreciably poorer yield (37%) of the DPPM- and tosylacetylene also gave good results (entries 2 and 3). This
mediated reaction, relative to those of the other bisphosphines methodology works well for the syntheses of thiazolidines from
(entries 6-9), provides a critical clue regarding the reaction S-amino thiols (entries 57).14 All of the substrates provided
mechanism (vide infra). similarly high yields and diastereoselectivities for the formation of
Scheme 1 presents a plausible mechanism for the dependenc¢hiazolidines!®

of the reaction on both the bidentate nature of the phosphine catalyst We further tested the generality of our reaction by using
and the tether length between the two phosphine moieties. Thecarbonucleophiles (entries-8.0) for the preparation of pyrrolidine
reaction is triggered by the conjugate addition of the phosphine to derivatives, which are ubiquitous in natural products of pharma-
the electron-deficient acetylene. The resulting vinyl anién cological interest® Under the optimized conditions, we generated
deprotonates the pronucleophile which facilitates the first the pyrrolidine2h and2i from the valine-derivegr--amino malonate
conjugate addition to form intermediaé 12 Upon -elimination 1h (entries 8 and 9, respectivelyEmploying the cyclicy-amino
of the phosphine, the mono-Michael prodi&tis formed. The diesterlj furnished the octahydroindole derivati2g as a single
presence of an additional phosphine moiety at the optimal distance,diasterecisomer in good yield (entry 10). Octahydroindoles, which
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Scheme 1. Proposed Mechanism for the Formation of 2 crystallographic analyses. O.K. thanks Dr. Patrick J. Walsh, Richard

XH P. Hsung, and Chulbom Lee for helpful discussions.
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are present in a large number of natural products, are often
challenging synthetic targets.
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