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Abstract

A series of square-planar complexes [MLCH]CIO, (M=Pd(II), Pt(ll); L =bis(3-(diphenylphosphino)propyl)sulfide (psp), bis(3-
(diphenylarsino)propyl)sulfide (asa)) have been prepared and characterized. The X-ray crystal structures of two of them have been
determined: [Pd(psp)Cl]CIO,, P2,/c, a=12.519(2), b=15.766(2), c=16.501(2) A, 8=105.22(1)°, Z=4; and [Pt(asa)C1]CIO,, P2,/
¢, a=12.583(5), b=16.007(6), c=16.549(6) A, B=104.89(3)°, Z=4. In both structures, there is a conformational disorder betweer: the
chair and skew-boat orientation in one of the two six-membered chelate rings. The C~-H:--O hydrogen bond between the hybrid ligand and

the perchlorate counter ion that induces the conformational disorder is discussed.
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1. Introduction

Transition metal complexes containing tertiary phosphine
and arsine ligands have been increasingly investigated owing
to their steric and electronic properties and their applications
in homogeneous catalysis [1]. On the other hand, thiolate
metal complexes have also been extensively studied because
of their possibie relevance to the biochemical function of
active reaction centres in metalloproteins [2]. However, less
attention has been paid to the arsine-thiolate and phosphine-
thiolate hybrid ligands {3], especially the multidentate
ligands, and their complexes.

Our research efforts have been concentrated on the synthe-
sis of tridentate ligands, which involve phosphines or arsines,
sulfides or sulfoxides, and on the structural, catalytic prop-
erties and the coordination chemistry of the resulting
nickel(I[), palladium(I) and platinum(I) complexes.
Recent studies in our group on the coordination behaviour of
tridentate hybrid ligand (Ph,PCH,CH,CH,),S (psp) to
nickel(II} chloride reveals that the sulfur and both of the
phosphoerus coordinate to Ni(H) to form a five coordinated
neutral complex [4]. In this paper, we report the synthesis of
an analogous ligand (Ph,AsCH,CH,CH,),S (asa), and the
structural study on the palladium(II) and platinum(II) com-
plexes of these two ligands. :
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2. Experimental

Bis(3-(diphenylphosphino)propyl)sulfide (psp) was
synthesized as described previously [4]. Other chemicals
were purchased from commercial sources and were used
without further purification. All syntheses and manipulations
involving air-sensitive materials were performed under nitro-
gen atmosphere by the use of standard Schienk techniques.
Routine 'H and 3'P NMR spectra were measured on a Bruker
ACF 300 spectrometer. Elemental analyses were performed
on a Perkin-Elmer (PE) 2400 elemental analyzer by the
Microanalytical Laboratory of the Department of Chemistry.
Conductivities were measured with a STEM conductivity-
1000 conductivity meter at 25°C.

Safety Note! Perchlorate salts are potentially explosive,
only small amounts of materials should be used.

2.1. Bis(3-(diphenylarsino)propyl)sulfide (asa)

To a mixture of diphenylarsine ¢ 7.00 cm®, 46.0 mmol) in
40 cm” of dry THF and n-BuLi in hexane (1.6 M, 25.0 cm®,
40.0 mmol), a solution of bis(3-(methylsulfonyloxy)-
propyDsulfide (6.12 g, 20.0 mmol) in 10 cm® of dry THF
was added slowly at ~78°C. The solution was stirred for
30 minat —78°C and then 2 h atroom temperature. Thecrude
product was isolated by extraction with diethyl ether
(50cm?x2) followed by the removal of solvents under
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reduced pressure. Pure asa was obtained as a colourless oil
by silica column chromatography, yield 7.50 g (65%). "H
NMR (CDCl,): 7.37 (m, 20H, aromatics); 2.50 (1, 4H,
2SCH,); 2.09 (1, 4H, 2AsCH,); 1.74 ppm (m, 4H, 2CH,).
Anal. Calc. for C3H3:As,S: C, 62.7; H, 5.6. Found: C, 63.0;
H,5.6%.

2.2. [Pd(psp)CIICIO,

To a solution of PACI, (35 mg; 0.20 mmol) in 10 cm® of
acetonitrife, ligand psp (100 mg; 0.20 mmol) in 10 cm® of
dichloromethane was added. After refluxing the solution for
half an hour, NaClO, (25 mg; 0.20 mmol) in a small amount
of acetonitrile was added. Immediately, white precipitate of
NaCl formed. After removing ihe solvents with rotary evap-
orator, the residue was dissolved in 10 cm?® of dichlorome-
thane and 5 cm® of ethyl acetate, and the resulting solution
was filtered and set aside. Yellow prismatic crystals (yield
100 mg; 70%) formed after standing for a few hours. 'H
NMR (CD.Cl,): 7.71 (m, 8H, aromatics); 7.44 (m, 12H,
aromatics); 3.31 {t, 4H, SCH,); 2.65 (t, 4H, PCH;);
2.17 ppm (m, 4H, CH,). *PNMR: § —0.82 (s). Anal. Calc.
for C3oH3.C1L,0,P,PdS: C, 49.5; H, 4.4. Found: C, 49.6; H,
4.4%.

The following compounds were similarly prepared.

2.3. [Pd(asa)CI]CIO,

The product prepared from asa (160 mg; 0.17 mmol) and
PdCl, (31 mg; 0.17 mmol) was obtained as yellow prisms.
Yield: 100 mg; 72%. lHNMR (CD,Cl,): 7.72 (m, 8H, aro-
matics); 7.49 (m,12H, aromatics); 3.35 (t, 4H, SCH;); 2.66
(t, 4H, AsCH,); 2.37 ppm (m, 4H, CH,). Anai. Calc. for
C;H:.As,CLO,PAS: C, 44.1; H, 3.9. Found: C, 44.1; H,
3.9%.

2.4. [Pypsp)Ci]ClO,

The product was obtained as white prisms from psp
(100 mg; 0.20 mmol} and PtCl, (55 mg; 0.20 mmot). Yield:
110 mg; 66%. 'H NMR (CD.Cl,): 7.73 (s, 8H, aromatics);
7.52 (m, 12H, aromatics); 3.44 (s, 4H, Jp,;=69.3 Hz,
2SCH,); 2.79 (1, 4H, 2PCH,); 2.31 ppm (s, 4H, 2CH,). *'P
NMR: —4.97 ppm (s, Jpp=2330Hz). Anal. Calc. for
C;oH3,CLO,P,P1S: C, 44.1; H, 3.9. Found: C,43.8; H, 4.1%.

2.5. [Pdasa)ClCIO,

The product was prepared from asa ( 100 mg; 0.17 mmol)
and PtCl, (46 mg; 0.17 mmol) and was obtained as white
prisms. Yield: 110 mg; 70%. Crystals suitable for X-ray anal-
ysis were recrystatlized from dichloromethane—cthyl acetate
solution. '"H NMR (CD,Cl,): 7.68 (s, 8H, aromatics); 7.51
(s, 12H, aromatics); 3.4 (s, 4H, *Jp_,; = 66.2 Hz, 28CH,);
2.74 (1,4H, 2AsCH,); 2.50 ppm (m, 4H, 2CH;). Anal. Calc.

for CyH;,As,Cl1,0,4PtS: C, 39.8; H, 3.5. Found: C, 39.7; H,
3.6%.

2.6. Crystallographic analyses

The crystals used for analyses were of approximate dimen-
sions 0.22 X0.30X0.44 mm and 0.22 X 0.30X0.36 mm for
[Pd(psp)CI]ClO, and [Pt(asa)Cl]ClO, respectively. Data
were collected on a Siemens R3m/V four-circle diffracto-
meter using graphite-monochromated Mo Ka radiation
(X=0.71073 A). Unit cell parameters were determined by
least-squares fit of 25 independent reflections, which were
obtained by an automatic random search routine. Intensities
were measured by the w/260 scan method in the index
ranges 0<h<14; 0<k<18; -19<I<18 and 0<h<14;
0<k<19; —19<1<19 for complexes {Pd{psp)Cl]CIO,
and [Pt(asa)Cl])ClO, respectively. Intensities of two stan-
dard reflections were measured after every 98 reflection data
were collected. Semi-empirical absorption corrections were
applied; minimum and maximum transmission coefficients
were 0.763-0.828 and 0.622-0.825 for [Pd(psp)Cl]CIO,
and [Pt(asa)Cl]ClO, respectively.

The structure of [Pd(psp)C1]ClO, was solved by a com-
bination of Patterson and Fourier difference-map methods
and was refined by full matrix least-squares. The structure of
[Pt(asa)Cl]ClO, was solved by direct methods followed by
Fourier syntheses. Structures were solved on a Digital Equip-
ment Corporation MicroVax II computer, and full matrix
least-squares refinements were done on a PC by using
SHELXTL PC software package. All non-hydrogen atoms
were refined anisotropically. Hydrogen atoms were intro-
duced at calculated positions (C-H=0.96 f\) and given
fixed thermal parameters.

When the structures were refined, difference electron den-
sity maps for both of the complexes clearly showed two peaks
appropriate to the site for C7, which were respectively suit-
able for ‘skew-boat’ and ‘chair’ conformations for the cor-
responding chelate rings. The two peaks were incorporated
in following least-squares refinement with the sum of the
occupations for C7TA and C7B constrained to unity. The
appropriate constraint was applied o the correspond H atoms
at C6, C7A, C7B and C8. The occupation of C7A converged
to 0.68(1) for complex [Pd(psp)C11CIQO, and 0.65(5) for
complex {Pt(asa)Cl]CIO,.

3. Results and discussion

All the complexes were obtained as highly crystalline per-
chlorate salts in high yicids. In dichloromethane, they behave
as 1:1 electrolytes, indicating that all the Pd(IY} and Pt(II)
complexes are four coordinated.

At room temperature, 'H NMR spectra show simple reso-
nance patterns for the three methylene groups for all the four
complexes. The two protons in each methylene group are
stereochemically identical due to the rapid conformational
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interconversion of the six-membered chelate rings. This inter-
conversion can be hindered at low temperature as every res-
onance peak of the methylene groups splits into two sets at
- 35°C arising from non-equivalent axial and equatorial dis-
positions. The 'H NMR spectra of both platinum complexes
exhibit Pt-H coupling to SCH, protons with *Jp,_;=69.3 Hz
for [Pt(psp)C1]ClO, and *Jp, ;= 66.2 Hz for [Pt(asa)Cl]-
ClO, respectively. These values are significantly higher than
those of the corresponding sulfoxide complexes previously
observed (around 20 Hz) indicating that Pt-S bonds are
stronger in the thioether complexes [5]. The *'P NMR spec-

Table 1

tra of [Pd(psp)Cl]CIO; and [Pt(psp)Cl1CIO, show only a
singlet at §0.82 and & —4.97 respectively with coordination
chemical shift A =17.42 and 11.63 ppm. The small 'Jp,
value (2330 Hz) of [ Pt(psp)C1]CIO, indicates that the two
phosphines coordinate to Pt(I) in a trans manner [6].
Crystallographic data of [Pd(psp)CIICIO, and
[Pt(asa)Cl]ClO, are presented in Table 1. Final atomic posi-
tional and thermal parameters of these two complexes are
given in Table2. Fig.1 is the stereoview of complex
[Pd(psp)C11CIO,, and Fig. 2 shows the structure of com:iex
cation {Pt(asa)Cl]*. The molecular geometry of these two

Crystallographic and diffraction data for [Pd(psp)C1]1CIO, and (Pt(asa)Cl1]ClO,

[Pd(psp)CIICIO, [P1(2sa)CI]CIO,
Chemical formula CyHy,CLOP,PAS CyoH3,As.CLOPIS
M, 7219 904.4

Crystal size (mm) 0.22x0.30X044 0.22X0.30%0.36
Crystal system Monoclinic Monoclinic
Space group P2,/c P2/c

a(A) 12.519(2) 12.583(5)

b(h) 15.766(2) 16.007(6)

c(A) 16.501(2) 16.549(6)

B(°) 10522(1) 104.89(3)
V(A% 3143(2) 3221(2)

z 4 4

T(K) 298 298

D.(gem™?) 1.54 1.87

A (MoKa) (A) 0.71073 0.71073
p(mm') 0.96 6.7

Scan type w-20 w26

26 vange (°) 7.0-45.0 3.0-50.0
F(000) 1480 1752

Unique refiections 5565 5645

Observed reflections * 4493 3883

No. parameters n 372

R® 0.0395 0.0452

R.© 0.0461 0.0444
Goodness-of-fit 146 1.22

Residual density: min., max. (e A% -047,080 -092, 146

2F>3a(F)].
PR=Zw|F,—FIL(F,).
© Ru={[Zwl Fy— F. P/ [Ew(Fo )12

Fig. 1. Stereoview of the complex [Pd(psp)C11ClO,.
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Table 2

Atomic coordinates { X 10*) and equivalent isotropic coefficients for [ Pd(psp)Cl}ClO, and [Pt(asa)C1]ClO;

[Pd(psp)CICIO, [Pt(asa)CI]CIO,
x b z B? x ¥y z B,*

Pd 2170(1) 3689(1) 6050(1) a0(1) Pt 2089(1) 3738(1) 952(1) 46(1)
P(D) 1810(1) 2623(1) 5034(1) 38(1) As(1) 1761(1) 2622(1) ~51(1) 44(1)
C(2) 2589(3) 2722(3) 4249(3) 54(2) c(2 2565(9) 2127(7) -900(6) 62(5)
C(3) 2473(5) 3563(3) 3802(3) 70(2) (3 2564(12) 3549(7) —-1252(7) 90(6)
C(4) 3027(5) 4267(4) 4287(3) 85(2) Cc(4) 2981(12) 4255(9) -761(7) 106(7)
S(5) 2427(1) 4685(1) 5117(1) 76(1) S(5) 2323(4) 4665(2) -9(2) 103(2)
C(6) 3596(8) 5368(5) 5525(4) 149(5) C(6) 3461(22) 5384(13) 412(10) 316(23)
C(7A) 4161(6) 5406(5) 6443(4) 88(4) C(7A) 4083(22) 5477(16) 1282(14) 160(22)
C(7B) 3141(15) 5897(8) 6107(5) 133(15) C(7B) 3436(36) 5968(17) 1062(14) 96(22)
C(8) 3413(5) 5569(3) 6980(3) 88(3) Cc(8) 3465(12) 5681(8) 1895(8) 87(6)
P(9) 2645(1) 4643(1) TIT3(1) 51(1) As(9) 2609(1) 4711(1) 2093(1) 54¢1)
Cl(10) 1622(1) 2767(1) 6957(1) 54(1) CI(10) 1564(2) 2844(2) 1878(2) 61(1)
ci(i) 3880(1) 6838(1) 3638(1) 65(1) Ci(11) -3938(3) 3129(2) 1295(2) 70(1)
0(12) 4030(4) 7548(3) 3169(3) 107(2) o(12) ~4108(8) 2459(5) 1802(6) 105(4)
0113) 3534(4) 6154(3) 3090(3) 118(2) 0(13) - 3605(9) 3841(6) 1791(6) 121(5)
0(14) 3065(4) 7018(4) 4046(3) 148(3) 0o(14) ~3104(9) 2904(8) 929(7) 151(7)
o(15) 4875(4) 6636(3) 4227(3) 130(2) o(15) ~4905(9) 3293(7) 702(6) 147(6)
C(11A) 367(3) 2543(2) 4472(2) a1(1) C(11A) 236(8) 2480(5) —633(6) 45(4)
C(12A) 24(4) 2334(3) 3626(3) 59(2) C(124) —553(9) 2549(7) -195(7) 66(5)
C(13A) —1089(4) 2204(3) 3246(3) 68(2) C(134) ~1632(10) 2382(7) - 579(8; 76(6)
C(14A) ~ 1855(4) 2276(3) 3684(3) 70(2) C(14A) ~1941(10) 2178(7) ~ 1406(9) 73(5)
C(15A) -1529(4) 2486(4) 4520(3) 76(2) C(15A) ~1187(10) 2100(7) - 1839(7) 67(5)
C(16A) -431(3) 2626(3) 4910(3) 58(2) C(16A) ~T74(9) 2259(7) — 1459(6) 66(5)
C(11B) 2189(3) 1568(3) 5456(2) 46(1) C(11B) 2196(8) 1526(6) 439(6) 47(4)
C(12B) 1568(4) 863(3) 5124(3) 60(2) C(12B) 1657(10) 825(7) 115(7) 65(5)
C(13B) 1888(5) 69(3) 5448(4) 78(2) C(13B) 1963(12) 66(8) 457(9) 87(6)
C(14B) 2800(5) -30(4) 6113(4) 85(3) C(14B) 2885(14) 19(9) 1138(10) 103(8)
C(15B) 3411(5) 661(4) 6442(3) 87(3) C(15B) 3438(13) 704(10) 1435(9) 99(7)
C(16B) 3122(4) 1463(3) 6114(3) 67(2 C(16B) 3107(10) 1452(8) 1102(7) 75(5)
C(914) 1523(4) 5091(3) 7534(3) 58(2) C(91A) 3616(8) 4188(6) 3037(6) 54(4)
C(92A) 529(5) 4677(3) 7401 (4) 79(2) C(92A) 3716(10) 4451(7) 3845(7) 70(5)
C(93A) ~318(5) 5013(4) 7702¢4) 96(3) C(93A) 4480(11) 4076(10) 4500(8) 87(6)
C(94A) —-176(7) 5759(5) 8127(4) 103(4) C(94A) 5127(12) 3442(10) 4336(11) 103(3)
C(95A) BU(TY 6181(4) 8255(4) 103(3) C(95A) 5021(10) 3164(9) 3521(11) 90(7)
C(96A) 1625(5) 5857(3) 7964(3) 83(2) C(96A) 4269(10) 3531(T) 2877(8) 76(6)
C(91B) 3591(3) 4147(3) R063(3) 54(2) C(91B) 1442(11) 5185(7) 2519(7) 68(5)
C(92B) 3716(4) 4407(3) 8881(3) 65(2) C(92B) 484(12) 4772(8) 2434(8) 82(6)
C(93B) 4514(5) 4036(4) 9526(3) 90(3) C(93B) ~314(12) 5092(9) 2765(9) 100(7)
C(94B) 5164(5) 3399(5) 9366(4) 99(3) C(94B) - 192¢15) 5821(11) 3182(9) 105(9)
C(95B) 5045(4) 3122(4) 8554(4) 89(3) C(95B) 786(18) 6244(10) 3285(9) 117(9)
C(963) 4269(4) 3496(3) 7914(3) 71(2) C(96B) 1604(13) 5933(8) 2956(8) 94(7)

By, =(1/3) X (trace of the orthogonalized U;,).

complexes is very similar. Palladium(II) and platinum(II)
atoms are normally four coordinated in asquare-planar geom-
etry and these two complexes are no exceptions. Both psp
and asa coordinate to the central metal ion as a tridentate
ligand to form two six-membered chelate rings. The trans
position to the sulfur atom is occupied by a chloride atom.
The metal ion deviates from the coordination least-squares
plane by about 0.01 and 0.03A in [Pd(psp)Cl]* and
[Pt(asa)Cl]* respectively. The geometry of the ClIO; ion
shows no disorder probably due to the formation of C-H---O
hydrogen bonds which will be discussed later in the text.
Listed in Tables 3 and 4 are selected bond lengths and angles
of the two complexes. Long Pd-P ( ~2.33 A) and Pi-As

(~2.40 A) distances indicate high trans effect of phosphine
and arsine. But the Pt—As distance is shorter than that in the
complex [PtC1(CH;) (PEt;) (AsPh,)] (2.423 A) in which
the arsine is trans to the phosphine [7], indicating that the
trans effect of arsine is weaker than thai of phosphine.
Perhaps the most interesting feature is that both of the
compounds exhibit chair-skew boat disorder in one of the
six-membered chelate rings, with the skew-boat form in 68%
occupancy in [Pd(psp)C1]CIO, and 65% in [Pt(asa)Cl]-
ClO,; whereas the other chelate ring adopts a definite chair
conformation. The chair conformation of the M-E1-C2-C3-
C4-85 and M-S5-C6-C7B-C8-E9 rings are confirmed by
the characteristic +g, —g alternate torsional angles
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Fig. 2. ORTEP drawing of the complex cation [Pt(asa)Cl] *.

{Table 5) [8]. However, the boat form of the M—-S5-C6~
C7A-C8-E9 ring is highly distorted. Usually, the chair con-
formation is the most stable form for a six-membered chelate
ring [9]. The existence of skew-boat conformation in one of
the two six-membered chelate rings indicates forces other
than those associated with crystal packing. The presence of
the perchlorate ion is probably the influential factor that dic-
tates different environments in the two chelate ;ings. A detail
examination of the stereo arrangement of the complex cation
and the perchlorate ion indicates the presence of C-H---O
hydrogen bonds between H4, H6 of the ligand and oxygen
atoms of the perchlorate ion. The distances of C4-013, C6-

Fig. 3. C-H---O hydrogen bonds between C6-H and the perchlorate ion in
the two conformers of [Pd(psp)C1]CIO,.

014 and C6-015, which are 3.716, 3.508 and 3.598 A in
[Pd(psp)CIICIO, and 3.673, 3483 and 3593A in
fPt(asa)C1]ClO, respectively, fail within the range of C-
H:--O hydrogen bond formation of 3.30-3.80 A [10,11].
Only one C4-H4---O13 hydrogen bond is formed as only
one of the C4-H4 bonds points directly at O13. The formation
of C6-H6---O hydrogen bonds depends on the directions of
C6-H6 bonds which are changeable according to the confor-
mation of the chelate ring_ In the chair—chair (cc) form, caly
one of the C6-H bonds points to the centre of 014 and O15;
while in the chair—skew boat (cb) form, both of the C6-H
bonds can form hydrogen bond with Q14 and O1S5 respec-
tively as shown in Fig. 3.

Since a C-H---O hydrogen bond was first described by
Sutor [ 12}, it has played a significant role in molecufar pack-
ing in crystals [13]. Usually, the energy of the C-H---O
hydrogen bond (4-8 kJ mol ") is just in the range where it

Table 3

Selected bond lengths (A) and bond angles (°) for {Pd(psp)CI}CIO,
Pd-P(1) 2333(1)
Pd-S(5) 2280(1)
Pd-P(9) 2338(1)
Pd-CI{10) 2316(1)
P(1)-C(2) 1.820(5)
P(1)-C(11A) 1.805(4)
P(1)-C(11B) 1.817(4)
C(2)-C(3) 1.506(6)
C(3)-C(4) 14317
P(1)-Pd-S(5) 926(1)
8(5)-Pd-P(9) 924(1)
S$(5)-Pd-Cl(10) 170.7(1)
Pd-P(1)-C(2) 1143(1)
C(2)-P(1)-C(11A) 107.0(2)
C(2)-P(1)-C(11B) 102.5(2)
P(1)-C(2)-C(3) 115.0(3)
C(3)-C(4)-8(5) 117.2(5)
Pd-S(5)-C(6) 1139(2)
8(5)-C(6)-C(TA) 121.6(6)
C(6)-C(TA)-C(8) 1143(6)
C(TA)-C(8)-P(9) 114.5(5)
Pd-P(9)-C(8) 114.4(2)
C(8)-P(9)-C(91A) 103.6(2)
C(8)-P(9)-C(S1B) 103.1(2)
0(12)-CI(11)-0(13) 108.7(3)
0(13)-CI(11)-0(14) 109.1(3)
0(13)-CI(11)-0(15) 109.9(3)

C(4)-8(5) 1.848(6)
S(5)-C(6) 1.759(8)
C(6)-C(7A) 1.496(8)
C(6)-C(7B) 1494(16)
C(7A)-C(8) 1471(10)
C(78)-C(8) 1.484(11)
C(8)-P(9) 1L.821(6)
P(9)-C(91A) 1.809(5)
P(9)-C(91B) 1.805(4)
P(1)-Pd-P(9) 173.5(1)
P(1)-Pd-CI(10) 88.8(1)
P(9)-Pd-Cl(10) 8$7.0(H
Pd-P(1)-C(11A) 113.5(1)
Pd-P(1)-C(11B) 113.7(1)
C(11A)-P(1)-C(11B) 104.9(2)
C(2)-C(3)<€4) 1159(4)
Pd-S(5)-C(4) 1143(2)
C(4)-8(5)>-C(6) 92.3(3)
§(5)-C(6)-C(78) 99.5(8)
C(6)-C(7B)-C(8) 113.6(10)
C(7B)-C(8)-P(9) 1169(T)
Pd-P(9)-C(91A) H1.0(1)
Pd-P(9)-C(91B) 110.0(2)
C(91A)-P(9)-C(91B) 107.6(2)
0(12)-CK11)-0(14) 109.1(3)
0(12)-CK 11)-0(15) 110.0(3)
0(14)-CK11}-0(15) 110.8(3)
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Table 4
Selected bond lengths (A ) and bond angles (°) for [Pt(asa)CI)CIO,

Pi-As(1) 2.402(1)
P-S(5) 2.249(4)
P-As(9) 2404(1)
P-C1(10) 2.314(3)
As(1)-C(2) 1.940(12)
As(1)-C(11A) 1.926(9)
As(1)-C(11B) 1.950(10)
G2)-C(3) 1.439(16)
C(3)-C(4) 1412(17)
As(1)-Pt-S(5) 91.9(1)
$(5)-P-As(9) 23.4(1)
S(5)-P-Cl{ 10) 17L.1(1)
Pt-As(1)-C(2) 114.0(3)
C(2)-As(1)-C(11A) 106.6(4)
C(2)-As(1)-C(11B) 103.7(5)
As(1)-C(2)-C(3) 115.3(9)
C(3)-C(4)-5(5) 121.6(12)
Pt-8(5)-C(6) 112.1(6)
$(5)-C(6)-C(7A) 127.5(18)
C(6)-C(7A)-C(8) 1174(21)
C(7A)-C(8)-As(9) 110.5(12)
P-As(9)-C(8) 115.5(4)
C(8)-As(9)-C(91A) 101.8(5)
C(8)-As(9)-C(91B) 104.5(6)

C(4)-8(5) 1.787(15)
§(5)-C(6) 1.829(24)
C(6)-C(7A) 1.458(26)
C(6)-C(7B) 1431(33)
C(7A)-C(8) 1.465(31)
C(7B)-C(8) 1.445(28)
C(8)-As(9) 1.964(14)
As(9)-C(91A) 1.930(9)
As(9)-C(91B) 1.940(14)
As(1)-Pt-As(9) 171.2¢1)
As(1)-Pt-CI(10) 88.2(1)
As(9)-Pi-CI(10) 87.0(1)
Pi-As(1)-C(11A) 114.0(3)
Pt-As(1)-C(11B) 113.7(3)
C(11A)-As(1)-C(11B) 103.8¢4)
C(2)-C(3)-C4) 122.5(10)
P1-5(5)~C(4) 114.8(5)
C(4)-8(5)-C(6) 92.2(9)
8(5)-C(6)-C(7B) 122.1(25)
C(6)-C(7B)-C(8) 120.6(21)
C(7B)-C(8)-As(9) 122.0(15)
Pi-As(9)-C(91A) 110.1(3)
P1-As(9)-C(91B) 1174(3)

Table 5
Torsiona) angles (°) around the six-membered chelate rings

Atoms M=Pd,E=P M=Pt, E=As
M-E(1)-C(2)-C(3) —544(4) ~443(7)
E(1)-C(2)-C(3)-C{4) 73.6(6) 60(1)
C(2)-C(3)-C(4)-8(5) ~73.5(6) -68(1)
C(3)-C{4)-8(5)-M 54.8(5) 56.6(9)
C(4)-5(5)-M-P(1) -327(2) -358(4)
S(5)-M-P(1}-C(2) 33.7(2) 324(3)
M-S(5)-C(6)-C(7A) -153(9) -7(2)
§(5)-C(6)-C(7A)-C(8) -53(1) -57(2)
C(6)-C(7A)-C(8)-E(9) 81.1(8) 71(2)
C(7A)-C(8)-E(9)-M -349(6) —=26(1)
C(8)-E(9)-M-S(5) -185(3) -19.8(4)
E(9)-M-8(5)-C(6) 40.1(4) 33.6(8)
M-§(5)-C(6)-C(7B) —74.1(5) ~63(2)

5(5)-C(6)-C(7B)-C(8) 94(1) 67(3)
C(6)-C(7B)-C(8)-E(9) —76(1) —42(3)
C(7B)-C(8)-E(9)-M LT 23(2)

can compete with conformational forces [11]. The two dif-
ferent manners of forming C~H---O hydrogen bonds make
the energy of the (cb) form close to that of the (cc) form,
From the occupations of (cb) and (cc) sites, the equilibrium
constants for the cc=cb interconversion can be deduced
which allows values of AG°, —19Kkimol™' and
—1.5kimol™! in the complexes [Pd{psp)Cl]CIO, and
[Pt(asa)Cl]ClO, respectively, for the conformational inter-
conversion to be calculated. During the cc = cb interconver-
sion, the C(7) atom moves 1.47 A in {Pd(psp)C11CIO, and
1.12 A in [Pt(asa)C1]CIO,. There is less movement of the
C(7) atom in [Pt(asa)Cl]ClO, because the longer Pt-As

and As—C bonds force the chelate rings of [Pt(asa)Cl1]ClO,
to adopt a flatter conformation than in the case of
[Pd(psp)T1]CIO,,

4, Supplementary material

Tables listing complete bond distances, bond angles and
anisotropic parameters for [ Pd(psp)Cl]ClO, and [Pt(asa)-
CI]CIO, are available from the authors on request.

Acknowledgements

We acknowledge the financial support from the National
University of Singapore and a research scholarship to C.R.
Cheng.

References

[1] F.A. Cotton and B. Hong, Prog. Inorg. Chem., 40 (1992) 179,

[2] P.J. Blower and J.R. Dilworth, Coord. Chem. Rev., 76 (1987) 121;
JR, Dilworth and J. Hu, Adv. Inorg. Chem., 40 (1994) 411,

{3] PH. Leung, J.W.L. Martin and S.B. Wild, Inorg. Chem., 25 (1986)
3396: S.Y.M. Chooi, T.S.A. Hor, P.H. Leung and K.F. Mok, Inorg.
Chem., 31 (1992) 1494; P H. Leung, A.C. Willisand $.B. Wild, Jnorg.
Chem., 31 (1992) 1406,

[4] CR. Cheng, P.H. Leung and K.F. Mok, Polyhedron, 15 (1996) 1401.

[5] $.Y.M. Chooi, P.H. Leung and K.F. Mok, Inorg. Chim. Acta, 205
(1993) 24s.



C.R. Cheng et al. / Inorganica Chimica Acta 260 (1997) 137-143 143

[6] P.E. Garrou, Inorg. Chem., 14 (1975) 1435; P.E. Garrou, Chem. Rev., 197 J.R. Gollogly and C J. Hawkins, Inorg. Chem., }1 (1972) 156.
81 (1981) 229; K.D. Tau and D.W. Meek, Inorg. Chem., 18 (1979) [§0] R. Taylor and O. Kennard, J. Am. Chem. Soc., 104 ( 1982) 5063.
3574, [11] G.R. Desiraju, Acc. Chem. Res., 24 (1991) 290.
[71 A.B. Goel, S. Goel and D. Vanderveer, Polyhedron, 3 (1984) [12] DJ. Sutor, J. Ckem. Soc., (1963) 1105.
373 [13] P.Seiler, G.R. Weisman, E.D. Glenclening, F. Weinhold, V.B. Johnson
[8] S.T. Liu, HE. Wang, L M. Yiin, §.C. Tsai, K.J. Liu, ¥.M. Wang, M.C. and J.D. Dunitz, Angew. Chem., Int. Ed. Engl., 26 {1987) 1175;

Cheng, S.M. Peng, Organometallics, 12 (1593) 2277. P. Seiler and J.D. Dunitz, Helv. Chim. Acta, 72, (1987) 1125,



