Synthesis and Biological Evaluation of Nitric Oxide-releasing Derivatives of Capsaicin as Analgesia Drugs

Liang Ge, jingjie Wang[#], Xiaoyan Zhang, Huibin Zhang, Hai Qian*, Wenlong Huang and Jinpei Zhou*

School of Pharmacy, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China Received May 10, 2010: Revised September 14, 2010: Accepted September 20, 2010

Abstract: TRPV1 is a ligand-gated non-selective cation channel that is considered to be an important pain integrator. Capsaicin, the prototypical TRPV1 agonist, has a clear therapeutic potential. In this letter, for lowering its pungency, a series of nitric oxide-releasing derivatives of capsaicin were designed and synthesized, including 10 compounds which were the direct combination of capsaicin and dihydro capsaicin with various nitric oxide donors. Preliminary biological tests suggested the compounds had both TRPV1 agonist activity and nitric oxide release activity. Compound B₂, B₅, B₈ had better analgesic activity than capsaicin. Based on these results, Compound B₂, B₅, B₈ can be considered as lead candidates for the further development of analgesic drugs.

Keywords: Analgesia Drugs, Nitric Oxide-Releasing, Capsaicin Derivatives, TRPV1 Agonist.

INTRODUCTION

Pain is a complex perceptual experience that can have a profound impact on the quality of a person's life [1]. Currently, due to its complicated pathological mechanism, all marketed drugs against pain have their deficiencies [2].Transient receptor vanilloid type-1 (TRPV1), formerly known as the vanilloid receptor (VR1), is a ligand-gated non-selective cation channel that is considered to be an important pain integrator [3]. It has been shown to be important in both nociception and the inflammatory response, and hence has rapidly become a significant therapeutic target [4].

Capsaicin, the prototypical TRPV1 agonist, which is responsible for the piquancy of hot-chilli peppers, is a versatile natural compound, the biological use of which is covered by more than 900 patents [5]. Its effect, traditionally referred to as desensitization, has a clear therapeutic potential. In fact, capsaicin-containing creams have been in clinical use for decades to relieve painful conditions such as diabetic neuropathy. Though the highly pungency limited its use, capsaicin has great value for further research [6].

Nitric oxide (NO) is naturally generated from L-arginine by the action of NO synthase (NOS) and a key signaling molecule involved in regulating the numerous physiologic and pathologic processes [7]. NO can increase gastric blood flow and inhibit neutrophil adherence as well as protect the gastric mucosa against damage induced by irritants [8]. In particular, the NO-naproxen derivative has displayed an enhanced analgesic activity [9].

In this letter, according to the molecular structure of capsaicin, intended for lowering its pungency, a series of nitric oxide-releasing derivatives of capsaicin were designed.

E-mail: gianhai24@163.com; Tel: +86-(0)25- 85230904;

Fax: +86-(0)25-83271480; E-mail: jpzhou668@163.com

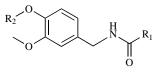
[#]Contributed equally to the first author.

Capsaicin and dihydro capsaicin were combined with the NO donors, to form a new class of potent TRPV1 agonist. As a result, 10 capsaicin derivatives were synthesized and their activities were evaluated.

METHODS

Evaluation of TRPV1 Agonist Activity

The TRPV1 agonist activity assays were performed using the method reported by the reference [6]. Human embryonic kidney (HEK)-293 cells overexpressing the human TRPV1 were grown as monolayers in minimum essential medium supplemented with nonessential amino acids, 10% fetal calf serum, and 0.2 mM glutamine and maintained under 5% CO₂ at 37°C. The effect of the compounds on [Ca²⁺]i was determined by using Fura-2, a selective intracellular fluorescent probe for Ca^{2+} . Prior to Ca^{2+} measurements the cells were seeded at a cell density of 20,000 cells/well 3-4 days from measurements to yield 90% confluence in 96-well plates. Acute intracellular increase in Ca²⁺ levels was measured in a fluorescence reader using the cell permeable fluores-cent probe Fura-2/AM, dissolved in DMSO to 2 mM. The cells were incubated in cell medium with 2µM Fura-2/AM for 30 min in 37 °C followed by two washings in Krebs-Ringer-Hepes (KRH) buffer, incubation in KRH buffer for 30 min in darkness. The ratio of 340 /380nm excitatory wavelengths was measured without interruption before (basal level) and during the 2 min exposure to the test compounds or capsaicin. All compounds used were diluted to homogenous solutions in KRH buffer in 10 µM. The ratio values after addition of the chemicals was gotten within the two minutes of registration.


Evaluation of Nitric Oxide Release Activity

The nitric oxide release activity *in vitro* were determined by Greiss assay. Briefly, MDA-MB-231 cells (5×106 /well) were treated in triplicate with 100 μ M of one of the compounds for 24h. The cells were harvested lyzed. The cell

© 2011 Bentham Science Publishers Ltd.

^{*}Address correspondence to these authors at the School of Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China; Tel: +86-(0)25-83271302; Fax: +86-(0)25-83271297;

Table 1. The Structures of the Target Compounds B₁-B₁₀

Compound	R ₁	\mathbf{R}_2	
B ₁	355	PhO ₂ S	
B ₂	Jr.	PhO ₂ S O O N	
B ₃	ž	$\xrightarrow{\text{PhO}_2S} \xrightarrow{O} \xrightarrow{O} \xrightarrow{O} \xrightarrow{O} \xrightarrow{O} \xrightarrow{O} \xrightarrow{O} O$	
B4	325	$\xrightarrow{\text{PhO}_2S} (A, A) = (A, A)$	
B ₅	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	$\begin{array}{c} PhO_2S \\ O \\ $	
B ₆		$\begin{array}{c} PhO_2S \\ O \\ $	
B ₇	325	O ₂ NO	
B ₈		O ₂ NO	
B9	je standard sta	O2NO	
B ₁₀		O ₂ NO	

lysates were mixed with Griess for 30-300 min, followed by measuring at 540 nm. The cells treated with diluent were used as negative controls for the background levels of nitrate/nitrite production, while with sodium nitrate at different concentrations was used as positive controls for the standard curve [10]. According to the determined levels of nitrate/nitrite formed from individual compounds in the cells, the nitric oxide release activity of the compounds was obtained.

Evaluation of Analgesic Activity

According to the method of tail-immersion test [10], analgesic activity was carried out in 14 groups (buprofen group, capsaicin group, dihydro capsaicin group, ten compounds synthesized groups and blank group) with 112 mice (half male and half female mice, 8 mice for each group). Ibuprofen, capsaicin, dihydro capsaicin and ten compounds synthesized were dissolved by 0.5% CMC-Na aqueous solution. The Compounds (30 mg/kg) was orally administered by gastric intubation once a day for 4 days (ibuprofen, capsaicin, dihydro capsaicin and vehicle administered as control). In the last day, baseline latency of each mouse in each group was determined twice, 5 min apart and averaged to give a single pre-drug latency. The pre-drug latency is presented as the mean (\pm SE) latency in second. Determine the post-drug latency of pain response of the mice at 30min after administration, according to the method mentioned above. Analgesia data are expressed as the increased percentage of pain threshold.

Increased percentage of pain threshold (%) = [(Post-drug latency- pre-drug latency)/ pre-drug latency]*100.

In the equation, pre-drug latency and post-drug latency are represented the mean value of each group.

RESULTS AND DISCUSSION

Synthesis

We designed and synthesized a series of nitric oxidereleasing derivatives of capsaicin, including 10 compounds which were the direct combination of capsaicin and dihydro capsaicin with various NO donors. The target compounds were shown in the Table **1**.

Biological Activity

The new compounds were tested for TRPV1 agonist activity, nitric oxide release activity and analgesic activity. The results of primary pharmacological test are as followed: In the TRPV1 agonist high throughput screening model (Table 2), all the compounds enhance Ca^{2+} inflow, among which compound show better than capsaicin. The NO release activity *in vitro* was determined by Greiss assay (Table 2). The result showed that these compounds all have NO release. In the model of mouse tail-immersion test (Table 3), compound B₂, B₃, B₄, B₅, B₆, B₇, B₈, B₉ can significantly inhibit

SYNTHESIS EXPERIMENTAL SECTION

All reagents were of commercial quality and were used as received. Solvents were dried and purified by using standard techniques. Reactions were monitored by TLC. Melting points were uncorrected. ¹H NMR spectra were recorded on a Brucker ACF-300 MHz spectrometer with TMS as the internal standard in CDCl₃. Mass Spectra were made with HP1100 analyzer. Element analyses were performed on Carlo Erba 1106 instrument.

General Procedure for the Preparation of B₁-B₁₀

(a) Capsaicin or dihydro capsaicin 0.50g (1.64mmol), NaOH 0.26g(6.5mmol) and different derivatives of furazan (1.97mmol), dissolved in 35ml dry CH₂Cl₂.The mixture was stirred at 30-35 °C for 0.5 h. Added 0.47g (2.3mmol)DCC/5ml CH₂Cl₂ solution under ice bath and the mixture was stirred at 30-35 °C. The reaction was monitored by TLC and filtrated. The filtrate was concentrated under reduced pressure to give a residue which was partitioned between ethyl acetate and water. The ethyl acetate extract was washed with saturated brine, dried over Na₂SO₄. After evaporation of solvent, the crude product was subjected to silica gel column, and chromatographed with eluent (petroleum ether /ethyl acetate 1:2) to yield the desired product B1, B2.

(b) Capsaicin or dihydro capsaicin 0.50g (1.64mmol), DMAP 0.02g(0.16mmol) and different derivatives of furazan (1.97mmol), dissolved in 35ml dry CH_2Cl_2 . The mixture was stirred at 30-35 °C for 0.5 h. The reaction was monitored by TLC and filtrated. The filtrate was concentrated under reduced pressure to give a residue which was partitioned be-

Table 2. The TRPV1 Agonist Activity and the Nitric Oxide Release Activity of the Synthesized Compounds

Compound	R340/R380*	NO(+/-)**
blank	0.999	-
capsaicin	1.885	-
dihydro capsaicin	1.996	-
B_1	1.771	+
B_2	1.683	+
B ₃	1.711	+
B_4	1.695	+
B5	1.546	+
B ₆	1.584	+
B ₇	1.772	+
B_8	1.554	+
B ₉	2.103	+
B ₁₀	1.953	+

*The ratio of 340 /380nm excitatory wavelengths which means the intracellular increase in Ca2+ levels.

**The "+/-" means whether there is nitric oxide releasing.

Compound	Increased of Pain Threshold (%)	Compound	Increased of Pain Threshold (%)
blank	20.19	B_4	147.93*
ibuprofen	78.66**	B ₅	259.97**
capsaicin	258.74**	B_6	162.33*
dihydro capsaicin	94.07**	\mathbf{B}_7	195.90**
B_1	66.05	B_8	282.96**
B_2	307.17**	B ₉	58.34*
\mathbf{B}_3	157.16*	B_{10}	74.47*

Table 3. The Analgesic Activity of the Synthesized Compounds

*Statistically significant between pre-drug latency and the post-drug latency in the same group by paired t-test, P<0.05.

**Statistically significant between pre-drug latency and the post-drug latency in the same group by paired t-test, P<0.01.

tween ethyl acetate and water. The ethyl acetate extract was washed with saturated brine, dried over Na_2SO_4 . After evaporation of solvent, the crude product was subjected to silica gel column, and chromatographed with eluent (petroleum ether /ethyl acetate 1:1) to yield the desired product B3-B6.

(c) Capsaicin or dihydro capsaicin 1.0g (3.3mmol), chloroacetic acid 0.37g(3.96mmol)and DMAP 0.04g(0.33mmol), dissolved in 50ml dry CH₂Cl₂ .The mixture was stirred at 30-35 °C for 0.5 h, added 0.94g DCC/10ml CH₂Cl₂ with the ice bath and reacted over night. The filtrate was concentrated under reduced pressure and dissolved in 30ml dry acetone with KI 0.85g.The reaction was under refluxing and in the darkness for 2 h. Then added ethyl acetate, washed with water, and dried over MgSO₄. After evaporation of solvent, the solid dissolved in 25ml dry CH₃CN and reacted with AgNO₃ 0.84g under refluxing and in the darkness for 48 h. Added CH₂Cl₂ and 2N HCl after evaporation of CH₃CN. The filtrate was washed with water, dried over Na₂SO₄. After evaporation of solvent, the crude product was subjected to silica gel column, and chromatographed with eluent(petroleum ether / acetone 3:1) to yield the desired product B7, B8.

(d) Capsaicin or dihydro capsaicin 1.0g (3.3mmol), 1,4dibromo butane 1.16ml(9.9mmol) and K₂CO₃ 0.9g(6.6mmol), dissolved in 50ml dry ethyl acetate .The reaction was under refluxing and in the darkness for 24 h. The filtrate was washed with water, dried over Na₂SO₄. After evaporation of solvent, the solid and AgNO₃ 0.59g (3.45mmol), dissolved in 25ml dry CH₃CN, under refluxing and in the darkness for 3 h. The reaction was monitored by TLC and filtrated. After evaporation of CH₃CN, added CH₂Cl₂ and filtrated. After evaporation of solvent, the crude product was subjected to silica gel column, and chromatographed with eluent(petroleum ether / acetone 3:1) to yield the desired product B9, B10.

Spectra Data

N-[[3-methoxy-4-(3-benzenesulfonyl-1,2,5-oxadiazole-2-oxide-4-yloxy)-phenyl]-methyl]-8-methyl-non-6-enoyl-amine(B_1)

Yield 41.5%; white crystal 0.36g; m.p. 134-136°C; IR(KBr,v):3308, 1649, 1624, 1542, 1509, 1452, 1165, 600cm⁻¹; ¹HNMR(CDCl₃,300Hz,δ*ppm*): 7.64-8.20(m, 5H, Ar-H), 6.87-7.24(m, 3H, Ar-H), 5.75(bs, 1H, N-H), 5.37(m, 2H, CH=CH), 4.46(t, 2H, J=5.3Hz, ArCH₂NH), 3.70(s, 3H, OCH₃), 2.24(m, 3H, NHCOCH₂,CH(CH₃)₂), 2.0(m, 2H, CH₂CH=CH), 1.38-1.71(m, 4H, CH₂CH₂CH₂CH=CH), 0.96(d, 6H, J=6.7Hz, CH(CH₃)₂); MS(ESI, m/z) : 552.2(M+Na⁺, base peak); Anal. Calcd. for C₂₆H₃₁N₃O₇S:C 58.96, H 5.90, N 7.93; Found C 58.91, H 5.89, N 7.89.

N-[[3-methoxy-4-(3-benzenesulfonyl-1,2,5-oxadiazole-2oxide-4-yloxy)-phenyl]-methyl]-8-methyl-nonanoylamine (*B*₂)

Yield 35.6%; white crystal 0.31g; m.p. 124-126°C;IR(KBr,v) : 3309, 1649, 1625, 1542, 1510, 1452, 1164, 600cm⁻¹; ¹HNMR(CDCl₃, 300Hz, δppm): 7.64-8.19(m, 5H, Ar-H), 6.90-7.25(m, 3H, Ar-H), 5.76(bs, 1H, N-H), 4.47(d, 2H, *J*=6.0Hz, ArCH₂NH), 3.70(s, 3H, OCH₃), 2.24(t, 2H, *J*=7.6Hz, NHCOCH₂), 1.17-1.70(m, 11H, CH₂CH₂CH₂ CH₂CH₂CH(CH₃)₂), 0.87(d, 6H, *J*=6.7Hz, CH(CH₃)₂); (ESI,m/z): 554.1(M+Na⁺, base peak); Anal. Calcd. for C₂₆H₃₃N₃O₇S:C 58.74, H 6.26, N 7.90; Found C 58.69, H 6.23, N 7.89.

3- [[2-(3- Benzenesulfonyl-1,2,5-oxadiazole-2-oxide-4yloxy)ethyl]oxyformyl] propionic acid 2-methoxy-4-[(8methyl-non-6-enoylamino)methyl] phenyl ester(B₃)

Yield 90.9%; white crystal 1.0 g; m.p. 88-89°C; IR(KBr,v) : 3263, 1762, 1748, 1641, 1619, 1555, 1510, 1450, 1360, 1140, 600cm⁻¹; ¹HNMR(CDCl₃,300Hz, δppm): 7.59-8.05(m, 5H, Ar-H), 6.81-6.97(m, 3H, Ar-H), 5.70(bs, 1H, N-H), 5.35(m, 2H, CH=CH), 4.54-4.63(m, 4H, OCH₂CH₂O), 4.41(d, 2H, *J*=5.5Hz, ArCH₂NH), 3.81(s, 3H, OCH₃), 2.96(t, 2H, *J*=6.7Hz, CH₂COOAr), 2.81(t, 2H, *J*=6.7Hz, CH₂COO), 2.22(m, 3H, CH₂CONH,CH(CH₃)₂), 1.99(m, 2H, CH₂CH=CH), 1.40-1.69(m, 4H, CH₂CH₂CH₂ CH=CH), 0.90(d, 6H, *J*=6.7Hz, CH(CH₃)₂); MS(ESI,m/z): 696.1(M+Na⁺, base peak);Anal. Calcd. for C₃₂H₃₉N₃SO₁₁:C 57.06, H 5.79, N 6.24 ; Found C 56.97, H 5.79, N 6.28.

3-[[2-(3-Benzenesulfonyl-1,2,5-oxadiazole-2-oxide-4yloxy)ethyl]oxyformyl] propionic acid 2-methoxy-4-[(8methyl-nonanoylamino)methyl] phenyl ester(B₄)

Yield 80.9%; white crystal 0.89g; m.p. 91-92°**C**;IR(KBr,ν):3314, 1754, 1734, 1626, 1556, 1512, 1464, 1143, 601cm⁻¹; ¹HNMR(CDCl₃,300Hz,δ*ppm*): 7.73-8.07(m,5H,Ar-H), 6.81-6.97(m, 3H, Ar-H), 5.74(bs, 1H, N-H), 4.63(t, 2H, *J*=3.1Hz, OCH₂), 4.54(t, 2H, *J*=4.6Hz, CH₂O), 4.41(d, 2H, *J*=5.6Hz, ArCH₂NH), 3.81(s, 3H, OCH₃), 2.96(t, 2H, *J*=6.7Hz, CH₂COOAr), 2.80(t, 2H, *J*=6.7Hz, CH₂COO), 2.21(t,2H, *J*=7.6Hz, CH₂CONH), 1.13-1.69(m, 11H, CH₂CH₂CH₂CH₂CH₂CH₂CH(CH₃)₂), 0.85(d, 6H, *J*=6.7Hz, CH(CH₃)₂); MS(ESI,m/z): 698.2(M+Na⁺, basepeak); Anal.Calcd. for $C_{32}H_{41}N_3SO_{11}$:C 56.89, H 6.07, N 6.22; Found C 56.70, H 6.22, N 6.17.

3-[[6-(3-benzenesulfonyl-1,2,5-oxadiazole-2-oxide-4yloxy)hexyl]oxyformyl] propionic acid 2-methoxy-4-[(8methyl-non-6-enoylamino)methyl] phenyl ester (B_5)

Yield 74.6%; white crystal 0.89g; m.p. 73-75°C;IR(KBr,v):3316, 1765, 1759, 1638, 1621, 1556, 1451, 1377, 1145, 605cm⁻¹; ¹HNMR(CDCl₃,300Hz,δppm): 7.60-8.06(m,5H,Ar-H), 6.82-7.0(m,3H, Ar-H), 5.74(bs,1H,N-H), 4.40(m,4H,OCH2C₄H₈CH₂O), 5.35(m,2H,CH=CH), 4.13(t,2H, J=3.3Hz, ArCH₂NH), 3.80(s,3H,OCH₃), 2.92(t,2H, J=6.9Hz, CH₂COOAr), 2.76(t, 2H, J=6.9Hz, CH₂COO), 2.21(m, 3H, CH₂CONH, CH(CH₃)₂), 2.05(m, 2H, CH₂CH=CH), 1.26-1.69(m, 12H, CH₂CH₂CH₂ CH=CH, OCH₂CH₂CH₂CH₂CH₂CH₂O), 0.89(d,6H, J=6.6Hz, $CH(CH_3)_2$; MS(ESI,m/z): 752.3(M+Na⁺, base peak); Anal. C₃₆H₄₇N₃SO₁₁: C 59.26, H 6.45, N 5.76; Found C 59.34, H 6.71, N 5.55

3-[[6-(3-benzenesulfonyl-1,2,5-oxadiazole-2-oxide-4yloxy)hexyl]oxyformyl] propionic acid 2-methoxy-4-[(8methyl-nonanoylamino)methyl] phenyl ester (B₆)

Yield 77.3%; white solid 0.92g; m.p. 45-47°C;IR(KBr, v):3311, 1761, 1733, 1644, 1618, 1557, 1511, 1455, 1167, 605cm⁻¹; ¹HNMR(CDCl₃,300Hz,δ*ppm*): 7.60-8.06(m, 5H, Ar-H), 6.82-7.0(m, 3H, Ar-H), 5.75(bs, 1H, N-H), 4.40(m, 4H, OCH₂CH₂CH₂CH₂CH₂CH₂O), 4.14(t, 2H, J=6.6Hz, ArCH₂NH), 3.81(s,3H,OCH₃), 2.93(t, 2H, J=6.6Hz, CH2COOAr), 2.76(t, 2H, J=6.9Hz, CH2COO), 2.20(t, 2H, J=7.5Hz, CH₂CONH), 1.15-1.87(m, 19H, CH₂CH₂CH₂CH₂CH₂CH(CH₃)₂, OCH₂CH₂ CH₂CH₂CH₂CH₂O), 0.85(d, 6H, J=6.6Hz, CH(CH₃)₂); MS(ESI, $732.3(M+H^{+});$ Calcd. m/z): Anal. for C36H49N3SO11:C 59.08, H 6.75, N 5.74; Found C 59.04, H 6.52, N 5.66.

1-Nitroxy-acetic acid 2-methoxy-4-[(8-methyl-non-6enoylamino)-methyl] phenyl ester(B_7)

Yield 44.7%; white crystal 0.6g; m.p.76-78°C; IR(KBr,v): 3312, 1779, 1641, 1514, 1464, 1278, 1212, 848cm⁻¹; ¹HNMR(CDCl₃,300Hz, δppm):6.84-7.27(m, 3H, Ar-H), 5.75(bs, 1H, N-H), 5.33(m, 2H, CH=CH), 5.17(s, 2H, OCOCH₂ONO₂), 4.43(d, 2H, *J*=5.7Hz, ArCH₂NH), 3.81(s, 3H, OCH₃), 2.22(m, 3H, CH₂CONH, CH(CH₃)₂), 1.98(m, 2H, CH₂CH=CH), 1.37-1.69(m, 4H, CH₂CH₂CH₂CH=CH), 0.95(d, 6H, *J*=6.7Hz, CH(CH₃)₂); MS(ESI, m/z): 447.1(M+K⁺, base peak); Anal. Calcd. for C₂₀H₂₈N₂O₇:C 58.82, H 6.86, N 6.86; Found C 58.65, H 7.13, N 6.52.

1-Nitroxy-acetic acid 2-methoxy-4-[(8-methyl-nonanoylamino)-methyl] phenyl ester(B_8)

Yield 32.3%; white crystal 0.43g; m.p. 78-80°C; IR(KBr,v): 3311, 1777, 1640, 1544, 1470, 1288, 1210, 845cm⁻¹; ¹HNMR(CDCl₃,300Hz, δppm):6.86-7.05(m, 3H, Ar-H), 5.73(bs, 1H, NH), 5.18(s, 2H, OCOCH₂ONO₂), 4.44(d, 2H, *J*=6.0Hz, ArCH₂NH), 3.84(s, 3H, OCH₃), 2.22(t,

2H, J=7.6Hz, CH₂CONH), 1.17-1.70(m, 11H, CH₂CH₂CH₂CH₂CH₂CH₂CH(CH₃)₂), 0.89(d, 6H, J=6.7Hz, CH(CH₃)₂); MS(ESI,m/z) :411.3(M+H⁺); Anal. Calcd. for C₂₀H₃₀N₂O₇:C 58.52, H 7.37, N 6.82; Found C 58.47, H 7.29, N 6.77.

$N-(3-methoxy-4-nitroxy-butyoxy-benzyl)-8-methyl-non-6-enoylanine(B_9)$

Yield 52%; white crystal 0.5g; m.p. 69-71°C; IR(KBr, v):3305, 1635, 1546, 1518, 1464, 1282, 1238, 1138cm⁻¹; ¹HNMR(CDCl₃,300Hz, δppm):6.81(m, 3H, Ar-H), 5.66(bs, 1H, NH), 5.34(m, 2H, CH=CH), 4.56(t, 2H, *J*=6.0Hz, OCH₂CH₂), 4.38(t, 2H, *J*=5.7Hz, CH₂CH₂ONO₂), 4.04(t, 2H, *J*=5.7Hz, ArCH₂NH), 3.84(s, 3H, OCH₃), 2.21(m, 3H, CH₂CONH,CH(CH₃)₂), 1.94(m, 4H, OCH₂CH₂CH₂CH₂CH₂ONO₂), 1.39-1.69(m, 6H, CH₂CH₂CH₂CH=CH), 0.95(d, 6H, *J*=6.7Hz, CH(CH₃)₂); MS(ESI,m/z) : 445.2(M+Na⁺, base peak);Anal. Calcd. for C₂₂H₃₄N₂O₆:C 62.56, H 8.06, N 6.64 ; Found C 62.40, H8.43, N 6.46.

N-(3-methoxy-4-nitroxy-butyoxy-benzyl)-8-methyl $nonanoylanine(B_{10})$

Yield 69%; white crystal 0.72g; m.p. 73-74°C;IR(KBr,v):3307, 1635, 1544, 1518, 1466, 1297, 1237, 1138cm⁻¹; ¹HNMR(CDCl₃,300Hz, δppm):6.81(m, 3H, Ar-H), 5.65(bs, 1H, NH), 4.57(t, 2H, *J*=6.0Hz, OCH₂CH₂), 4.38(t, 2H, *J*=6.0Hz, CH₂CH₂ONO₂), 4.04(t, 2H, *J*=5.7Hz, ArCH₂NH), 3.85(s, 3H, OCH3), 2.21(t, 2H, *J*=7.6Hz, CH₂CONH), 1.94(m, 4H, OCH₂CH₂CH₂CH₂ONO₂), 1.13-1.66(m, 11H, CH₂CH₂CH₂CH₂CH₂CH(CH₃)₂), 0.86(d, 6H, *J*=6.7Hz, CH(CH₃)₂); MS(ESI,m/z):425.3(M+H⁺, base peak);Anal. Calcd. for C₂₂H₃₆N₂O₆:C 62.26,H 8.49,N 6.60;Found C 62.10, H8.84, N 6.41.

CONCLUSION

In conclusion, we have synthesized a new series of nitric oxide-releasing derivatives of capsaicin and evaluated them for their TRPV1 agonist activity, nitric oxide release activity and analgesic activity. These compounds showed TRPV1 agonist activity as compared with capsaicin and their nitric oxide release activity was identified. Compare the analgesic activity of compounds, and we found that Among the compounds with furazan ring (B_3, B_4, B_5, B_6) , the length of the linker between furan ring and capsaicin core is related to the analgesic activity. The length of linker in B_5 or B_6 is longer than it in B_3 or B_4 . And the analgesic activity of B_5 or B_6 is better than B₃ or B₄. As a NO donor, 2-oxopropyl nitrate is better than butyl nitrate, because among the compounds with nitric acid ester portion (B_7, B_8, B_9, B_{10}) , the analgesic activity of compounds (B_7, B_8) with 2-oxopropyl nitrate portion is better than the compounds (B_9, B_{10}) with butyl nitrate portion. B_2 , B_5 , B_8 show better potent analgesic activity than capsaicin. Based on these results, some of these molecules and NO donors can be considered as lead candidates for the further development of nitric oxide-releasing derivatives of capsaicin as analgesic drugs.

ACKNOWLEDGEMENTS

The work was supported by the key project of Chinese Ministry of Education (No. 109086) and Specialized Research Fund for the Doctoral Program of Higher Education (No. 200803161010)

REFERENCES

- Norman, M. H.; Zhu, J.; Fotsch, C.; Bo, Y.; Chen, N.; Chakrabarti, P.; Doherty, E. M.; Gavva, N. R.; Nishimura, N.; Nixey, T.; Ognyanov, V. I.; Rzasa, R. M.; Stec, M.; Surapaneni, S.; Tamir, R.; Viswanadhan, V. N.; Treanor, J. J. Novel vanilloid receptor-1 antagonists: 1. Conformationally restricted analogues of transcinnamides. J. Med. Chem., 2007, 50(15), 3497-3514.
- [2] Korlipara, V. L. Transient receptor potential vanilloid 1 channel modulation: a novel approach to pain therapy. *Curr. Biol. Comp.*, 2008, 4110-4125.
- [3] Palazzo, E.; Rossi, F.; Maione, S. Role of TRPV1 receptors in descending modulation of pain. *Mol. Cell Endocrinol.*, 2008, 286(1-2 Suppl 1), S79-S83.
- [4] Conway, S. J. TRPing the switch on pain: an introduction to the chemistry and biology of capsaicin and TRPV1. *Chem. Soc. Rev.*, 2008, 37(8), 1530-1545.

- [5] Szallasi, A.; Cortright, D. N.; Blum, C. A.; Eid, S. R. The vanilloid receptor TRPV1: 10 years from channel cloning to antagonist proof-of-concept. *Nat. Rev. Drug Discov.*, 2007, 6(5), 357-372.
- [6] Qian, H.; Fu, Z.; Zhang, H.; Zhou, J.; Huang, W.; Jin, J.; Chen, W.; Dai, D. Synthesis and biological evaluation of capsaicin derivatives as analgesia drugs. *Lett. Drug Design Discov.*, **2010**, *7*, 122-127.
- [7] Ignarro, L. J. Signal transduction mechanisms involving nitric oxide. *Biochem. Pharmacol.*, **1991**, *41*(4), 485-490.
- [8] Cirino, G. Nitric oxide releasing drugs: from bench to bedside. *Dig. Liver Dis.*, 2003, 35(Suppl 2), S2-S8.
- [9] Davies, N. M.; Roseth, A. G.; Appleyard, C. B.; McKnight, W.; Del Soldato, P.; Calignano, A.; Cirino, G.; Wallace, J. L. NOnaproxen vs. naproxen: ulcerogenic, analgesic and antiinflammatory effects. *Aliment Pharmacol. Ther.*, **1997**, *11*(1), 69-79.
- [10] Tabarelli, Z.; Berlese, D. B.; Sauzem, P. D.; Mello, C. F.; Rubin, M. A. Antinociceptive effects of Cremophor EL orally administered to mice. *Braz. J. Med. Biol. Res.*, 2003, 36(1), 119-123.