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The increasing global energy consumption based on fossil
resources and the entailed production of greenhouse gases
demands for new strategies of carbon management. Addi-
tionally, the depletion of the world-wide oil, gas, and coal
reserves stresses the need for alternative carbon sources for
the production of fuels and chemicals. In this context, the
sustainable use of carbon dioxide as carbon resource has been
envisaged by chemists and chemical engineers for decades,
and the field has seen a highly dynamic development
recently.[1–3] The effective hydrogenation of carbon dioxide
to methanol could contribute particularly strongly to the
development of a low-carbon economy, where methanol
serves as energy vector and offers a versatile entry into the
chemical supply chain.[4]

The current production of methanol is based on syngas
(CO/H2) derived from fossil resources using heterogeneous
catalysts at elevated temperatures and pressure.[4, 5] Small
amounts of CO2 are added to the feedstock stream to balance
the C/H ratio. The direct hydrogenation of only carbon
dioxide to methanol using heterogeneous catalysts has been
demonstrated and is investigated intensively for larger scale
implementation.[6, 7] In sharp contrast, the conversion of CO2

with H2 into CH3OH using a single molecularly defined
homogeneous catalyst remains as yet elusive. Catalytic
reduction of CO2 to the methanol stage has been achieved
only with stoichiometric amounts of reducing agents, such as
boranes or silanes.[8] In their seminal work on ruthenium(II)
pincer complexes, Milstein et al. developed the first homoge-
neous catalysts that are able to hydrogenate carbonic acid
derivatives and formates to methanol.[9] Based on these

findings, indirect routes from carbon dioxide to methanol via
a stepwise conversion of such intermediates were proposed.
The principle feasibility of this approach was demonstrated
recently by Huff and Sanford, where the hydrogenation of
carbon dioxide to methanol could be accomplished in
a cascade reaction with different homogeneous catalyst via
formic acid and methyl formate intermediates.[10] The multi-
component catalytic system required a complex mixture of
three different catalysts and partial incompatibility made
a spatial separation of reaction steps essential resulting in
a maximum turnover number (TON) of 21 equivalents of
methanol per ruthenium center.

Herein, we describe the homogenously catalyzed hydro-
genation of CO2 to methanol using a homogeneous transition-
metal catalyst system based on a single ruthenium phosphine
complex. The starting point for our investigation was
a recently established robust multifunctional ruthenium
system, which provided an excellent catalyst for the hydro-
genation of carboxylic acids and their derivatives to the
corresponding alcohols.[11–13] It comprises an in situ system
1 composed of [Ru(acac)3] and the tridentate ligand Triphos
(Triphos = 1,1,1-tris(diphenylphosphinomethyl)ethane) in
the presence of additional organic acid (Scheme 1).[11a]

Mechanistic investigations suggested that species of type 3
comprising the facially coordinated tripodal ligand facilitate
hydride transfer and protonolysis as key steps for the addition
of hydrogen to the carboxylate functional group.[11b] In the

Scheme 1. Precursor complexes 1 and 2 used in combination with
organic acids in the hydrogenation of formate ester and CO2 to
methanol and proposal for a tentative active species 3 (S = solvent or
substrate).
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present study, the ruthenium(II)-complex [(Triphos)Ru-
(TMM)] 2 (TMM = trimethylenemethane) was also used as
isolated direct precursor to such species in the presence of
hydrogen and organic acids.[14] In a first set of experiments,
both catalyst systems were tested in the hydrogenation of
formate ester to liberate methanol (Table 1).

The hydrogenation of ethyl formate occurred smoothly at
140 8C and moderate H2 pressures using the catalyst system
1 and full conversion corresponding to a TON of 75 was
obtained (Table 1, entry 1). Methyl formate was hydrogen-
ated in an analogous manner giving only methanol as product
with a TON of 74 (Table 1, entry 2). Using the isolated
precursor complex 2 lead to TONs of 5 without and 77 with
the acidic additive, further supporting structures of type 3 as
active species in this catalytic transformation (Table 1,
entries 3 and 4).

Ruthenium–phosphine transition-metal complexes are
well-established for the hydrogenation of CO2 to formic
acid and its derivatives.[15] Interestingly, the addition of
hydrogen to CO2 with rhodium–phosphine catalysts has
been rationalized on the basis of a similar hydride-transfer/
protonolysis sequence, as suggested for the carboxylate
reduction with 3.[16] Furthermore, the insertion of CO2 into
the Ru�H hydride bond of Ru(P3) complexes has been
described.[17] Encouraged by the combination of the results in
Table 1 with these findings, the hydrogenation of carbon
dioxide to methanol with catalyst systems 1 and 2 was
approached. Ethanol was used as the alcohol component to
tentatively stabilize the formate intermediate as ester, thus
allowing any formed methanol to be directly identified in
solution.Using 1 together with 2 equiv Triphos in ethanol/
THF with 10 bar of CO2 and 30 bar of H2 at 140 8C for 24 h
resulted in the formation of only very low quantities of
methanol (Table 2, entry 1). However, with methanesulfonic
acid (1.5 equiv) as additive, methanol was obtained with
a TON of 52 (Table 2, entry 2). A slightly higher TON of 63
could even be achieved with 2 as compared to the in situ
system 1. Again, formation of methanol occurred with
complex 2 in the presence of 1.5 equiv of MSA with much
higher activity than without acid (Table 2, entries 3 and 4). In
the corresponding NMR spectra (Table 2, entry 4), small
amounts of formic acid, methyl formate, and ethyl formate

could be detected, supporting the assumption of formate
esters as intermediates. We note, however, that a stepwise
reduction of CO2 to methanol via the formate anion in the
coordination sphere of the metal cannot be ruled out at this
stage.

A series of control experiments confirmed the origin of
the observed methanol from ruthenium-catalyzed CO2 hydro-
genation. No methanol was formed in the absence of CO2

(Table 2, entry 6). Also the presence of acid alone did not lead
to any detectably formation of CO2 reduction products as
expected (Table 2, entry 5). Most significantly, the formation
of methanol from CO2 was also unambiguously confirmed
using deuterium-labeled MeOH as alcohol component
(Table 2, entry 7) and experiments with 13CD3OD (see the
Supporting Information). The incorporation of 1H and 12C
from the gaseous reagents was clearly evident in the NMR
spectroscopic analysis of the methanol in the reaction
mixture. These experiments also confirm the technically
important possibility of catalytic “breeding” of MeOH;
however, the TON of 24 was slightly lower than in the case
of ethanol as additive.

Using the in situ system from entry 2 of Table 2 as
a starting point, a first screening of reaction variables was
carried out to identify key parameters for future optimization

Table 1: Catalytic hydrogenation of formate esters.[a]

Entry Cat. Acid[b] R pH2
[c]

[bar]
TON[d]

1 1[e] MSA Et 50 75
2 1[e] MSA Me 50 74
3 2 – Et 30 5
4 2 MSA Et 30 77

[a] Reaction conditions: ruthenium complex (25 mmol), substrate
(2.5 mmol), THF (2 mL), 140 8C, 24 h. [b] 38 mmol (1.5 equiv) methane-
sulfonic acid (MSA). [c] At room temperature. [d] TON =mol MeOH/
mol catalyst. [e] 50 mmol (2 equiv) Triphos.

Table 2: Hydrogenation of carbon dioxide to methanol.[a]

Entry Cat. Acid[b] Additive[c] pH2

[bar]
pCO2

[bar]
TON[d]

1 1[e] – EtOH 30 10 2
2 1[e] MSA EtOH 30 10 52
3 2 – EtOH 30 10 8
4 2 MSA EtOH 30 10 63
5 – MSA EtOH 30 10 0
6 1[e] MSA EtOH 30 – 0
7 1[e] MSA [D4]MeOH 30 10 24

[a] Reaction conditions: catalyst (25 mmol), THF (1.5 mL), 140 8C, 24 h.
[b] 38 mmol (1.5 equiv) methanesulfonic acid. [c] 10 mmol.
[d] TON= mmol MeOH/mmol catalyst. [e] 50 mmol (2 equiv) Triphos.

Table 3: Variation of reaction parameters in the catalytic hydrogenation
of carbon dioxide to methanol.[a]

Entry Cat. Acid (equiv)[b] t
[h]

pH2

[bar]
pCO2

[bar]
TON[c]

1 1[d] MSA (1.0) 24 30 10 39
2 1[d] MSA (3.0) 24 30 10 30
3 1[d] MSA (5.0) 24 30 10 25
4 1[d] p-TsOH (1.5) 24 30 10 43
5 1[d] MSA (1.5) 8 30 10 19
6 1[d] MSA (1.5) 72 30 10 65
7[e] 1[d] MSA (1.5) 24 30 10 46
8 1[d] MSA (1.5) 24 60 20 135
9 2 HNTf2 (1.0) 24 30 10 86
10 2 HNTf2 (1.5) 24 30 10 77
11 2 HNTf2 (3.0) 24 30 10 65
12 2 HNTf2 (1.0) 24 60 20 221

[a] Reaction conditions: catalyst (25 mmol), THF (1.5 mL), EtOH
(10 mmol), 140 8C. [b] Equivalents to catalyst. [c] TON= mmol MeOH/
mmol catalyst. [d] 2 equiv Triphos. [e] 20 mmol EtOH added.
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(Table 3). The TON increased from 19 after 8 h over 52 after
24 h to 65 after 72 h, demonstrating a significant catalytic
activity even after prolonged reaction times (Table 3,
entry 5, 6). Doubling the amount of ethanol in the reaction
mixture at constant total volume did not lead to an increased
methanol formation, indicating that ethyl formate formation
is not rate-limiting (Table 3, entry 7). Reduced TONs were
observed both at lower and higher ratios of MSA (Table 3,
entries 1–3), showing that only a slight excess of acid
(1.5 equiv) is required for catalyst activation.[13b] Replacing
MSA with p-toluenesulfonic acid resulted in a decreased
TON of 43, suggesting that the counterion introduced through
the acid may significantly affect the catalyst performance
(Table 3, entry 4). Variation of the ligand-to-metal ratio in the
in situ system 1 gave the best result using 2 equiv of Triphos
per [Ru(acac)3] (see the Supporting Information). Moreover,
raising the carbon dioxide pressure to 20 bar and the hydro-
gen pressure to 60 bar increased the TON to 135 (Table 3,
entry 8).

Using the isolated ruthenium complex 2 in combination
with one equivalent of the acid bis(trifluoromethane)sulfoni-
mide (HNTf2) resulted in an improved TON of 86 in
comparison to the experiment with MSA (Table 3, entry 9).
This result further corroborates the assumption of cationic
ruthenium complex 3 as catalytic active species and indicates
the enhancing effect of weakly coordinating anions. The
addition of 1.5 or 3 equivalents HNTf2 slightly reduced the
catalytic activity and a decreased TON of 77 and 65 could be
obtained (Table 3, entry 10 and 11). Most significantly, raising
the carbon dioxide pressure to 20 bar and the hydrogen
pressure to 60 bar in the reaction with 2 and 1 equiv HNTf2

resulted in a greatly increased TON of 221 (Table 3, entry 12),
which is now well in the range of even the most active
catalytic systems with reducing agents other than hydrogen.

In summary, the results of this study clearly demonstrate
the possibility to hydrogenate carbon dioxide to methanol
using a single homogeneous transition-metal catalyst under
relatively mild reaction conditions. Studies on the active
catalyst species and the detailed reaction mechanism are
currently underway in our laboratories and will provide
valuable information for rational tuning of catalyst activity.

Experimental Section
General procedure for the homogeneous hydrogenation of carbon
dioxide to methanol: Under an argon atmosphere, catalyst 2
(0.025 mmol), bis(trifluoromethane)sulfonimide (0.025 mmol), and
ethanol (10 mmol) were weighed into a Schlenk tube along with THF
(1.5 mL). The yellow solution was transferred via cannula to
a stainless steel autoclave under argon atmosphere. The autoclave
was pressurized with carbon dioxide to 20 bar and then hydrogen was
added up to a total pressure of 80 bar at room temperature. The
reaction mixture was stirred and heated to 140 8C in an oil bath. After
24 h, the autoclave was cooled to 0 8C and then carefully vented. The
resulting clear yellow solution was analyzed by 1H NMR and gas
chromatography. Turnover numbers (TONs) were found to be
reproducible within DTON =� 5 in two independent runs for selected
experiments.
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Hydrogenation of Carbon Dioxide to
Methanol by Using a Homogeneous
Ruthenium–Phosphine Catalyst

Simply efficient : The homogenously cat-
alyzed hydrogenation of CO2 to methanol
is achieved by using a ruthenium phos-
phine complex under relatively mild con-
ditions (see scheme; HNTf2 = bis(tri-

fluoromethane)sulfonimide). This is the
first example of CO2 hydrogenation to
methanol by using a single molecularly
defined catalyst.
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