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ABSTRACT: Arynes are highly reactive intermediates, which are utilized for the electrophilic 

arylation of various X-H bonds (X = O, N, S etc.). Herein, a new synthetic strategy is 

demonstrated, where arynes are converted into aryl anion equivalents by treating with 

phosphines and a base. The addition of phosphines to arynes form the phosphonium salts, which 

in the presence of a carbonate base generates the aryl anion equivalent. Subsequent addition of 

the aryl anions with aldehydes afforded the secondary alcohols.  

Ever since the seminal discovery of 2-trimethylsilylaryl triflates as a precursor for the 

mild and convenient generation of arynes,
1
 the chemistry of this highly reactive intermediate has 

witnessed a resurgence of interest in the last three decades.
2
 The inherent strain in the C-C triple 

bond of aryne has been exploited in various pericyclic reactions,
3
 insertion reactions,

4
 

multicomponent reactions,
5
 molecular rearrangements,

6
 and transition-metal-catalyzed 

reactions.
7
 Moreover arynes are widely employed for the electrophilic arylation of X-H bonds (X 

= O, N, S etc.)
2l

 and even for the activated C-H bonds (Scheme 1a).
8
 Interestingly, however, the 

use of arynes for the generation of aryl anions, and thereby for the nucleophilic arylation 

reactions, to the best of our knowledge is not reported. This will be interesting as this method 
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2 

 

will obviate the use of aryl organometallic reagents for the arylation reactions. Herein, we 

demonstrate the use of arynes for the generation of aryl anion equivalents and subsequent 

interception with aldehydes for the synthesis of secondary alcohols (Scheme 1b). For this, arynes 

are initially treated with phosphines for the in situ generation of phosphonium salts,
9
 which in the 

presence of a carbonate base generates the aryl anion equivalent. It may be noted in this context 

that the nucleophile-triggered generation of aryl anion intermediates from arynes followed by 

their interception with a third-component is known in the literature.
2d

  

Scheme 1. Transition-Metal-Free Arylation Using Arynes 

 

We have recently reported the aryne multicomponent coupling triggered by phosphines 

using aldehydes/activated ketones as the third-component for the synthesis of stable 

pentacovalent phosphoranes based on the benzooxaphosphole system.
10

 In this reaction, the 

initial 1,3-zwitterionic intermediate generated from phosphine and aryne was intercepted with 

the carbonyl moiety in a formal [3+2] cycloaddition allowing the synthesis of phosphorous 

heterocycles.
11,12

 In this context, we envisioned that if the initially formed 1,3-diplole is 

protonated by water to generate the phosphonium salt, followed by the addition of a carbonate 

base to the phosphonium salt could eventually generate the aryl anion, which could intercept the 

aldehyde to form the secondary alcohol. Related aryl anion generation from tetraaryl 

phosphonium salt was recently uncovered by Xiao and co-workers
13a

 and McNally and co-

workers.
14 
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The present study was initiated by the treatment of PPh3 with aryne generated from 2-

(trimethylsilyl) aryl triflate 2a
1
 (using KF and 18-crown-6) for the in situ formation of the 

tetraphenyl phosphonium salt followed by the reaction with 4-chlorobenzaldehyde 1a in the 

presence of Cs2CO3.
15

 Interestingly, under these conditions, the reaction afforded the benzhydrol 

derivative 3a in 75% yield (Scheme 2).
16,17

 Notably, the benzooxaphosphole derivative 

(multicomponent adduct)
10

 was not observed under these conditions. The addition of water was 

necessary for the smooth formation of the phosphonium salt, and Cs2CO3 was found to be the 

best carbonate base source for the reaction (over other bases including SrCO3 and K2CO3) 

probably due to the better solubility in THF. The high affinity between oxygen and phosphorus 

(for the release of Ph3P=O) may be the driving force for the smooth generation of the aryl anion 

intermediate and subsequent interception with aldehyde.   

Scheme 2. Nucleophilic Arylation of Aldehydes Using Arynes 

 

 

With the optimized reaction conditions in hand, we then examined the scope and 

limitations of the present arylation method (Scheme 3). The in situ generated aryl anion was 

smoothly added to a range of aromatic aldehydes bearing halogens, electron-releasing, neutral 

and –withdrawing groups at the 4-position of the ring thereby affording diverse benzhydrol 

derivatives in moderate to good yield (3a-3j). This indicates that the electronic nature of the 

aldehydes did not significantly influence the outcome of this nucleophilic arylation. Moreover, 

this nucleophilic arylation was well tolerated by aldehydes having substituents at the 3-position, 

2-position as well as di- and tri-substitution to furnish the desired products in moderate to good 
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yields (3k-3t). In addition, heterocyclic aldehydes are found to be good coupling partner for 

arylation using arynes to afford the aryl heteroaryl methanol derivatives in moderate yield (3u, 

3v). Interestingly, linear and branched aliphatic aldehydes and α,β-unsaturated aldehydes 

underwent smooth nucleophilic arylation thus expanding the scope of this reaction (3w-3ab). 

Notably, the reaction using geranial afforded the corresponding alcohol in 50% yield. The 

enolizable aldehydes did not undergo the aldol condensation or direct addition to arynes under 

the present reaction conditions.     

Scheme 3. Substrate Scope of the Reaction
a
  

+

TMS

TfO

PPh3 (3.0 equiv), H2O (2.2 equiv)

KF (4.0 equiv), 18-crown 6 (4.0 equiv)

Cs2CO3 (4.0 equiv), THF, 0 °C - 65 °C

24 h, then HCl, (75%)
1 2a 3

O

HR

OH

R

OH

R1

R1 = Cl, 3a, 75%

R1 = Br, 3b, 60%

R1 = F, 3c, 67%

R1 = H, 3d, 54%

R1 = Me, 3e, 69%

R1 = OMe, 3f, 69%b

R1 = Ph, 3g, 77%

R1 = CN, 3h, 58%

R1 = CO2Me, 3i, 79%

R1 = CF3, 3j, 68%

OH

R2

OHR3

R2 = Br, 3k, 56%

R2 = NO2, 3l, 51%

R3 = Me, 3m, 67%

R3 = Cl, 3n, 62%b

OH OH OH

3o, 66%b 3p, 68%b 3q, 64%

OH OH OH

3r, 60%b 3s, 73% 3t, 63%

OH OH OH

3u, 44%b 3v, 32% 3w, 53%

OH

OMe

MeO MeO

MeO

Cl

Cl

MeO

MeO

OMe

S
S

Me
Ph

3x, 47%

OH OH OH

3y, 75%b 3z, 50%b 3aa, 63%b 3ab, 50%

Ph Ph

Ph

HO

 

a
 All reactions are performed on 0.25 mmol scale of 1 otherwise indicated. For details on experimental 

procedure, see the Supporting Information. 
b
 Reactions performed on 0.5 mmol scale. 
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Next, we focused our attention on tolerance of the present method with substituents on 

arynes as well as on phosphines. Performing the reaction under the standard conditions using 

aryne generated from 2b afforded the alcohol 3ac in 48% along with 3a in 11% (Scheme 4, eq 

1). The alcohol 3ac was formed from the aryl anion generated from the sesamol-derived aryne 

(formed from 2b) and the generation of unsubstituted aryl anion from the phosphonium salt upon 

interception with 1a could result in the formation of 3a. The preferential formation of 3ac in this 

case could be due to the stabilization of the aryl anion generated from 2b due to the inductive 

effect of the two oxygen atoms. Moreover, when the reaction was carried out using aryne 

generated from 2c, the alcohol 3ad was formed in 8% and 3a in 28% (eq 2). In addition, 

employing the aryne generated from 2d in the present arylation reaction afforded the alcohol 

(generated from the aryne moiety) in traces, and the product 3a was formed in 66% (eq 3). The  

Scheme 4. Variation of Arynes 

 

low reactivity of the aryl anion generated from 2c and 2d may be due to the presence of electron-

releasing groups, which makes the anion less stable and may readily abstract a proton from the 

trace water present in the medium.  
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When the reaction was carried out under the standard conditions using tri-p-

methoxyphenyl phosphine, the reaction furnished a mixture of secondary alcohols 3a and 3af in 

24% and 19% yield respectively (Scheme 5, eq 4). The formation of 3a in slightly higher yield 

may be due to the better leaving group ability of the phenyl group over the p-methoxyphenyl 

group in the initially formed phosphonium salt. Disappointingly, the attempted reaction with the 

tri-p-trifluoromethylphenyl phosphine as the nucleophilic trigger did not afford the expected 

products 3ag and 3a (eq 5). This may be due to the less nucleophilicity of the phosphine for the 

formation of the tetraaryl phosphonium salt.  

Scheme 5. Variation of Phosphines 

 

 

To demonstrate the role of water in the generation of the tetraaryl phosphonium salt and 

the aryl anion generation thereof, a reaction was performed in the absence of water. This reaction 

did not afford the expected alcohol product 3a, but resulted in the formation of the 

benzooxaphosphole 4a in 49% yield (Scheme 6).
10a

 In this case, the initially formed 1,3-

zwitterion from phosphine and aryne instead of protonation underwent a formal [3+2] annulation 

with the aldehyde moiety leading to the formation of 4a.   

Scheme 6. Reaction in the Absence of H2O 
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7 

 

 

A proposed mechanism of this nucleophilic arylation using arynes is shown in Scheme 7. 

The reaction proceeds via the generation of aryne from 2a using the fluoride source. 

Nucleophilic addition of phosphine to aryne forms the 1,3-zwitterionic intermediate 5, which 

gets protonated in the presence of H2O to form the tetraaryl phosphonium triflate 6. In the 

absence of H2O, the intermediate 5 undergoes a formal [3+2] annulation with aldehyde to form 

the benzoxaphosphole derivative. The phosphonium could be converted into the alcohol in two 

pathways. In pathway 1, the nucleophilic attack of Cs2CO3 on the phosphonium cation generates 

a trigonal bipyramidal tetraaryloxy phosphorane intermediate 7, where the carbonate and the aryl 

moiety are in the axial position. Simultaneous decarboxylation and nucleophilic attack of the 

generated aryl moiety (via the elimination of Ph3P=O) on the aldehyde followed by protonation 

could generate the alcohol 3. Alternatively, the decomposition of Cs2CO3 in presence of H2O 

could generate CsOH (pathway 2). The addition of CsOH to the salt 6 could generate the 

pentavalent phosphorus intermediate 8, which upon deprotonation in the presence of base 

generates the oxyanionic phosphorane intermediate 9. The elimination of aryl anion from 9 (via 

the elimination of Ph3P=O) followed by addition to aldehyde and a subsequent protonation could 

generate the alcohol 3. It is reasonable to believe that the elimination of stable Ph3P=O may be 

the driving force for the generation of aryl anion either from intermediates 7 or 9. Although the 

addition of carbonate to 6 generating the intermediate 7 is preferred, the CsOH addition to 6 

leading to intermediate 8 cannot be ruled out at this stage because of the presence of H2O in the 

reaction medium. Moreover, the reactions performed using substituted arynes (Scheme 4, eqs 1-

3), and with phosphine derivative (Scheme 5, eq 4) indicate that the aryl group migration in the 
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8 

 

present reaction could be either from the aryne source or from the aryl group attached to the 

phosphorus. 

Scheme 7. Proposed Mechanism of the Reaction 

 

This nucleophilic arylation using arynes was not limited to aldehydes as the electrophiles, 

but instead activated ketones such as isatins can easily be arylated using this method resulting in 

the formation tertiary alcohols. For instance, treatment of N-methyl isatin 10a with aryne 

generated from 2a under the present reaction conditions afforded the oxindole derivative 11a in 

73% yield (Scheme 8).
18

 The reaction afforded moderate yield of desired product with N-benzyl 

isatin and 5-methoxy isatin as substrates under identical reaction conditions.   

Scheme 8. Nucleophilic Arylation of Isatins Using Arynes
a
  

 

a
 See the Supporting Information for details 
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9 

 

In conclusion, we have demonstrated the nucleophilic arylation of aldehydes/isatins by 

the action of a carbonate base on in situ generated tetraaryl phosphonium salts formed by the 

addition of phosphines to arynes. Although arynes are widely used for the electrophilic arylation 

of various element-element bonds, the present method utilizes arynes as aryl anion equivalents 

for the nucleophilic arylation reactions. The reaction tolerates various functional groups and the 

desired secondary/tertiary alcohols are formed in moderate to good yields.  

Experimental Section 

General Information:  

Unless otherwise specified, all reactions were carried out under an atmosphere of argon in flame-

dried reaction vessels with Teflon screw caps. Reaction temperatures are reported as the 

temperature of the bath surrounding the reaction vessel. 30 °C corresponds to the room 

temperature of the lab, when the experiments were carried out. THF was freshly purified by 

distillation over Na-benzophenone and was transferred under argon. 18-Crown-6 was 

recrystallized from dry CH3CN, and KF was dried by heating at 110 °C for 12 h and left to cool 

under argon. The aldehydes were purchased from commercial sources and were purified either 

by distillation (for liquids) or washing with NaHCO3 after dissolving in ether or dichloromethane 

(for solids), prior to use. Phosphines were purchased from commercial sources and used as 

received. The 2-(trimethylsilyl)phenyl trifluoromethanesulfonate 2a and the other symmetric and 

unsymmetric aryne precursors were synthesized following literature procedure.
1b,19

  
1
H and 

13
C 

NMR spectra were recorded in CDCl3 as solvent. Chemical shifts (δ) are given in ppm. The 

residual solvent signals were used as references and the chemical shifts converted to the TMS 

scale (CDCl3: δH = 7.26 ppm, δC = 77.16 ppm). HRMS measurements were carried out using 
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10 

 

ESI method and ion-trap mass analyzer. Infrared (IR) spectra were recorded on an FT-IR 

spectrometer as thin films using NaCl plates. 

General Procedure for the Reaction involving Phosphine, Aryne and Aldehydes: To a flame-

dried screw-capped test tube equipped with a magnetic stir bar was added the phosphine (0.197 

g, 0.75 mmol), KF (0.058 g, 1.0 mmol) and 18-crown-6 (0.264 g, 1.0 mmol). Then the screw-

capped tube was evacuated and backfilled with argon. The mixture was dissolved in THF (4.0 

mL) under argon atmosphere and subsequently cooled the reaction mixture to 0 °C and kept 

stirring for five minutes. To the stirring solution, aryne precursor 2a (1.0 mmol) was added and 

continued stirring for another five minutes followed by addition of the water (0.010 g, 10.0 µL, 

0.55 mmol). Then the reaction mixture was stirred at 0 °C for 30 minutes. Then aldehyde 1 (0.25 

mmol) was added followed by subsequent addition of Cs2CO3 (0.326 g, 1.0 mmol) at 0 °C. Then 

the reaction mixture was slowly warmed to rt and kept stirring for 24 h at 65 °C. After 24 h, the 

reaction was quenched using 3N HCl (0.25 ml) and subsequent work-up in CH2Cl2 (3 x 30 mL). 

The organic layer dried over Na2SO4 and solvent was evaporated, and the crude residue was 

purified by column chromatography on silica gel (230-400 mesh) (Petroleum ether/EtOAc = 

85/15) to afford the corresponding benzhydrol derivatives 3 in moderate to good yields. 

General Procedure for the Reaction Involving Phosphine, Aryne and Isatins: To a flame-

dried screw-capped test tube equipped with a magnetic stir bar was added the phosphine (0.197 

g, 0.75 mmol), KF (0.058 g, 1.0 mmol) and 18-crown-6 (0.264 g, 1.0 mmol). Then the screw-

capped tube was evacuated and backfilled with argon. The mixture was dissolved in THF (4.0 

mL) under argon atmosphere and subsequently cooled the reaction mixture to 0 °C and kept 

stirring for five minutes. To the stirring solution aryne precursor 2a (1 mmol) was added and 

continued stirring for another five minutes followed by addition of the water (0.010 g, 10.0 µL, 
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0.55 mmol). Then the reaction mixture was stirred at 0 °C for 30 minutes. Then isatin 10 (0.25 

mmol) was added followed by the subsequent addition of Cs2CO3 (0.326 g, 1.0 mmol) at 0 °C. 

Then the reaction mixture was slowly warmed to rt and kept stirring for 24 h at 65 °C. After 24 

h, the reaction was quenched using 3N HCl (3 mL) and subsequent work-up in CH2Cl2 (3 x 30 

mL). The organic layer dried over Na2SO4 and solvent was evaporated, and the crude residue 

was purified by column chromatography on silica gel (230-400 mesh) (Petroleum ether/EtOAc = 

85/15) to afford the corresponding benzhydrol derivatives 11 in moderate to good yields. 

(4-Chlorophenyl)(phenyl)methanol (3a):
20

 Pale yellow solid, 0.041 g in 0.25 mmol scale, 75% 

yield. Rf (Pet. ether /EtOAc = 80/20): 0.53; 
1
H NMR (400 MHz, CDCl3) δ 7.31-7.20 (m, 9H), 

5.69 (s,1H), 2.46 (s, 1H). 
13

C NMR (100 MHz, CDCl3) δ 143.5, 142.3, 133.3, 128.7, 128.7, 

128.0, 127.9, 126.6, 75.6. HRMS (ESI) calculated [M-OH]
 +

 for C13H10Cl: 201.0466, found: 

201.0468. FTIR (cm
-1
) 3597, 3411, 3020, 2884, 2402, 1594, 1489, 1216, 1180, 1018, 925. 

(4-Bromophenyl)(phenyl)methanol (3b):
21

 Pale yellow solid, 0.039 g in 0.25 mmol scale, 60% 

yield. Rf (Pet. ether /EtOAc = 80/20): 0.53; 
1
H NMR (400 MHz, CDCl3) δ 7.48 (d, J = 8.2 Hz, 

2H), 7.36-2.26 (m, 7H), 5.79 (s, 1H), 2.40 (s, 1H). 
13

C NMR (100 MHz, CDCl3) δ 143.5, 142.9, 

131.6, 128.8, 128.3, 128.0, 126.6, 121.5, 75.7. HRMS (ESI) calculated [M-OH]
 +

 for C13H10Br: 

244.9960, found: 244.9965. FTIR (cm
-1
) 3600, 3400, 3020, 2402, 1593, 1486, 1410, 1216, 1019, 

926. 

(4-Fluorophenyl)(phenyl)methanol (3c):
22

 Pale yellow solid, 0.034 g in 0.25 mmol scale, 67% 

yield. Rf (Pet. ether /EtOAc = 80/20): 0.56; 
1
H NMR (400 MHz, CDCl3) δ 7.38-7.28 (m, 7H), 

7.04 (t, J = 8.7 Hz, 2H), 5.84 (s, 1H), 2.32 (bs, 1H). 
13

C NMR (100 MHz, CDCl3) δ 162.3 (d, J 

= 246.7 Hz), 143.8, 139.7 (d, J = 2.9 Hz), 128.7, 128.4 (d, J = 8.6 Hz), 127.9, 126.6, 115.4 (d, J 
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12 

 

= 21.4 Hz), 75.7. HRMS (ESI) calculated [M-OH]
 +

 for C13H10F: 185.0761, found: 185.0760. 

FTIR (cm
-1
) 3412, 1601, 1505, 1219, 1167, 1025, 925, 854. 

Diphenylmethanol (3d):
23

 Yellow solid, 0.025 g in 0.25 mmol scale, 54% yield. Rf (Pet. ether 

/EtOAc = 80/20): 0.61; 
1
H NMR (400 MHz, CDCl3) δ 7.42-7.41 (m, 4H), 7.39-7.36 (m, 4H), 

7.32-7.29 (m, 2H), 5.86 (s, 1H), 2.38 (bs, 1H). 
13

C NMR (100 MHz, CDCl3) δ 143.9, 128.6, 

127.7, 126.7, 76.4. HRMS (ESI) calculated [M-OH]
 +

 for C13H11: 167.0855, found: 167.0853. 

FTIR (cm
-1
) 3597, 3414, 3020, 2402, 1597, 1489, 1446, 1216, 1026, 924. 

Phenyl(p-tolyl)methanol (3e):
21

 Yellow solid, 0.034 g in 0.25 mmol scale, 69% yield. Rf (Pet. 

ether /EtOAc = 80/20): 0.57; 
1
H NMR (400 MHz, CDCl3) δ 7.38 (d, J = 7.2 Hz, 2H), 7.33 (t, J 

= 7.2 Hz, 2H), 7.26 (d, J = 8.0 Hz, 3H), 7.15 (d, J = 7.9 Hz, 2H), 5.81 (s, 1H), 2.33 (s, 3H), 2.17 

(bs, 1H). 
13

C NMR (100 MHz, CDCl3) δ 144.1, 141.1, 137.4, 129.3, 128.6, 127.6, 126.7, 126.6, 

76.2, 21.2. HRMS (ESI) calculated [M-OH]
 +

 for C14H13: 181.1012, found: 181.1015. FTIR 

(cm
-1
) 3596, 3411, 3019, 2924, 1614, 1504, 1216, 1372, 1029, 926. 

(4-Methoxyphenyl)(phenyl)methanol(3f):
22

 Yellow solid, 0.074 g in 0. 5 mmol scale, 69% 

yield. Rf (Pet. ether /EtOAc = 80/20): 0.38; 
1
H NMR (400 MHz, CDCl3) δ 7.39-7.34 (m, 4H), 

7.31-7.29 (m, 3H), 6.89 (d, J= 8.3 Hz, 2H), 5.80 (s, 1H), 3.81 (s, 3H), 2.46 (s, 1H). 
13

C NMR 

(100 MHz, CDCl3) δ 159.1, 144.1, 136.3, 128.5, 128.0, 127.5, 126.5, 113.9, 75.8, 55.4. HRMS 

(ESI) calculated [M-OH]
 +

 for C14H13O: 197.0961, found: 197.0964. FTIR (cm
-1
) 3415, 3062, 

2954, 2838, 1610, 1508, 1454, 1300, 1176, 1031, 923. 

[1,1'-Biphenyl]-4-yl(phenyl)methanol (3g):
21 

Yellow solid, 0.050 g in 0.25 mmol scale, 77% 

yield). Rf (Pet. ether /EtOAc = 80/20): 0.50; 
1
H NMR (400 MHz, CDCl3) δ 7.63-7.60 (m, 4H), 

7.49-7.45 (m, 6H), 7.42-7.39 (m, 3H), 7.35-7.31 (m, 1H), 5.89 (s, 1H), 2.52 (s, 1H). 
13

C NMR 

(100 MHz, CDCl3) δ 143.9, 142.9, 140.9, 140.5, 128.9, 128.7, 127.7, 127.4, 127.3, 127.2, 127.1, 
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126.7, 76.1. HRMS (ESI) calculated [M-OH]
 +

 for C19H15: 243.1168, found: 243.1172. FTIR 

(cm
-1
) 3596, 3412, 3020, 2402, 1597, 1486, 1371, 1216, 1032, 923. 

4-(Hydroxy(phenyl)methyl)benzonitrile (3h):
24

 Yellow solid, 0.030 g in 0.25 mmol scale, 58% 

yield. Rf (Pet. ether /EtOAc = 80/20): 0.35; 
1
H NMR (400 MHz, CDCl3) δ 7.64 (d, J = 7.5 Hz, 

2H), 7.54 (d, J = 7.9 Hz, 2H), 7.40-7.32 (m, 5H), 5.88 (s, 1H), 2.53 (bs, 1H). 
13

C NMR (100 

MHz, CDCl3) δ 149.0, 142.9, 132.4, 129.0, 128.4, 127.1, 126.8, 119.0, 111.2, 75.7. HRMS 

(ESI) calculated [M-OH]
 +

 for C14H10N: 192.0808, found: 192.0806. FTIR (cm
-1
) 3435, 2231, 

111, 1716, 1495, 1275, 1033, 922, 806, 757. 

Methyl 4-(hydroxy(phenyl)methyl)benzoate (3i):
21

 Yellow solid, 0.048 g in 0.25 mmol scale, 

79% yield. Rf (Pet. ether /EtOAc = 80/20): 0.34; 
1
H NMR (400 MHz, CDCl3) δ 7.99 (d, J = 8.2 

Hz, 2H), 7.46 (d, J = 8.1 Hz, 2H), 7.35-7.27 (m, 5H), 5.87 (s, 1H), 3.89 (s, 3H), 2.46 (s, 1H). 
13

C 

NMR (100 MHz, CDCl3) δ 167.1, 148.8, 143.4, 129.9, 129.4, 128.8, 128.1, 126.8, 126.5, 76.0, 

52.2. HRMS (ESI) calculated [M-OH]
 +

 for C15H13O2: 225.0910, found: 225.0908. FTIR (cm
-1
) 

3430, 3020, 1715, 1610, 1442, 1374, 1283, 1184, 1026, 926. 

Phenyl(4-(trifluoromethyl)phenyl)methanol (3j):
25

 Yellow solid, 0.043 g in 0.25 mmol scale, 

68% yield). Rf (Pet. ether /EtOAc = 95/05): 0.53; 
1
H NMR (400 MHz, CDCl3) δ 7.61 (d, J = 8.0 

Hz, 2H), 7.52 (d, J = 8.0 Hz, 2H), 7.37-7.27 (m, 5H), 5.87 (s, 1H), 2.40 (bs, 1H). 
13

C NMR (100 

MHz, CDCl3) δ 147.6, 143.3, 129.8 (d, J = 32.2 Hz), 128.9, 128.2, 126.8, 126.8, 125.0 (q, J = 

3.4 Hz), 75.9. HRMS (ESI) calculated [M-OH]
 +

 for C14H10F3: 235.0729, found: 235.0727. 

FTIR (cm
-1
) 3597, 3397, 3021, 2926, 2403, 1617, 1489, 1325, 1125, 923. 

(3-Bromophenyl)(phenyl)methanol (3k):
26

 Yellow solid, 0.037 g in 0.25 mmol scale, 56% 

yield. Rf (Pet. ether /EtOAc = 80/20): 0.60; 
1
H NMR (400 MHz, CDCl3) δ 7.59 (s, 1H), 7.43-

7.30 (m, 7H), 7.24-7.20 (m, 1H), 5.80 (s, 1H), 2.30 (bs, 1H).
13

C NMR (100 MHz, CDCl3) δ 
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146.1, 143.3, 130.7, 130.2, 129.6, 128.8, 128.6, 128.1, 127.7, 126.7, 125.2, 122.8, 75.7. HRMS 

(ESI) calculated [M-OH]
 +

 for C13H10Br: 244.9960, found: 244.9958. FTIR (cm
-1
) 3383, 1584, 

1217, 1179, 1078, 1029, 913, 758. 

(3-Nitrophenyl)(phenyl)methanol (3l):
27

 Yellow solid, 0.029 g in 0.25 mmol scale, 51% yield. 

Rf (Pet. ether /EtOAc = 95/05): 0.51; 
1
H NMR (400 MHz, CDCl3) δ 8.29 (s, 1H), 8.11 (d, J = 

8.0 Hz, 1H), 7.71 (d, J = 7.6 Hz, 1H), 7.49 (t, J = 8.0 Hz, 1H), 7.37-7.30 (m, 5H), 5.91 (s, 1H), 

2.56 (s, 1H). 
13

C NMR (100 MHz, CDCl3) δ 148.3, 145.9, 142.9, 132.6, 129.5, 129.1, 128.5, 

126.8, 122.6, 121.4, 75.5. HRMS (ESI) calculated [M+Na]
 +

 for C13H11NO3Na: 252.0637, 

found: 252.0635. FTIR (cm
-1
) 3554, 3376, 3068, 2925, 1714, 1528, 1350, 1187, 1032. 

Phenyl(o-tolyl)methanol (3m):
26 

Viscous yellow oil, 0.033 g in 0.25 mmol scale, 67% yield. Rf 

(Pet. ether /EtOAc = 80/20): 0.63; 
1
H NMR (400 MHz, CDCl3) δ 7.56 (d, J = 7.6 Hz, 1H), 7.37-

7.36 (m, 4H), 7.32-7.17 (m, 4H), 6.02 (s, 1H), 2.28 (s, 3H), 2.20 (bs, 1H). 
13

C NMR (100 MHz, 

CDCl3) δ 143.0, 141.6, 135.5, 130.7, 128.6, 127.7, 127.7, 127.2, 126.4, 126.3, 73.5, 19.5. 

HRMS (ESI) calculated [M-OH]
 +

 for C14H13: 181.1012, found: 181.1010. FTIR (cm
-1
) 3369, 

1812, 1593, 1483, 1455, 1377, 1258, 1179, 1020, 919, 755. 

(2-Chlorophenyl)(phenyl)methanol (3n):
28

 Yellow solid, 0.067 g, in 0.5 mmol scale, 62% 

yield. Rf (Pet. ether /EtOAc = 80/20): 0.60; 
1
H NMR (400 MHz, CDCl3) δ 7.63 (d, J = 7.3 Hz, 

1H), 7.43-7.41 (m, 2H), 7.38-7.31 (m, 5H), 7.27-7.23 (m, 1H), 6.24 (s, 1H), 2.53 (s, 1H). 
13

C 

NMR (100 MHz, CDCl3) δ 142.3, 141.1, 132.6, 129.7, 128.9, 128.6, 128.1, 127.9, 127.2, 127.0, 

72.8. HRMS (ESI) calculated [M-OH]
 +

 for C13H10Cl: 201.0466, found: 201.0469. FTIR (cm
-1
) 

3365, 3064, 3030, 2919, 1955, 1584, 1445, 1391, 1184, 1024, 951. 

(2,3-Dimethoxyphenyl)(phenyl)methanol (3o):
29

 Yellow solid, 0.080 g in 0.5 mmol scale, 66% 

yield. Rf (Pet. ether /EtOAc = 80/20): 0.48; 
1
H NMR (400 MHz, CDCl3) δ 7.42 (d, J = 7.5 Hz, 
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2H), 7.35 (t, J = 7.5 Hz, 2H), 7.27 (t, J = 7.0 Hz, 1H), 7.09 (t, J = 7.8 Hz, 1H), 7.00 (d, J = 7.5 

Hz, 1H), 6.90 (d, J = 8.0 Hz, 1H), 6.04 (s, 1H), 3.87 (s, 3H), 3.62 (s, 3H), 3.18 (bs, 1H). 
13

C 

NMR (100 MHz, CDCl3) δ 152.7, 146.4, 144.1, 137.7, 128.3, 127.2, 126.4, 124.1, 119.8, 112.0, 

72.39, 60.5, 55.8. HRMS (ESI) calculated [M-OH]
 +

 for C15H15O2: 227.1067, found: 227.1064. 

FTIR (cm
-1
) 3419, 3017, 2937, 2839, 2403, 1590, 1478, 1270, 1080, 921. 

(3,4-Dimethoxyphenyl)(phenyl)methanol (3p):
30

 Yellow oil, 0.083 g in 0.5 mmol scale, 68% 

yield. Rf (Pet. ether /EtOAc = 80/20): 0.26; 
1
H NMR (400 MHz, CDCl3) δ7.38-7.27 (m, 5H), 

6.92 (bs, 1H), 6.88 (d, J = 7.8 Hz, 1H), 6.82 (d, J = 8.2 Hz, 1H), 5.78 (s, 1H), 3.85 (s, 3H), 3.84 

(s, 3H), 2.43 (s, 1H).
13

C NMR (100 MHz, CDCl3) δ 149.1, 148.5, 144.0, 136.6, 128.5, 127.6, 

126.5, 119.0, 111.0, 109.8, 76.0, 56.0, 55.9. HRMS (ESI) calculated [M-OH]
 +

 for C15H15O2: 

227.1067, found: 227.1064. FTIR (cm
-1
) 3597, 3419, 3019, 2963, 2840, 1596, 1513, 1456, 1259, 

1029, 927. 

(3,4-Dichlorophenyl)(phenyl)methanol (3q):
31

 Yellow oil (0.040 g, 64% yield). Rf (Pet. ether 

/EtOAc = 80/20): 0.53; 
1
H NMR (400 MHz, CDCl3) δ 7.50 (s, 1H), 7.40-7.31 (m, 6H), 7.19 (d, 

J = 8.0 Hz, 1H), 5.75 (s, 1H), 2.49 (s, 1H). 
13

C NMR (100 MHz, CDCl3) δ 144.0, 143.0, 132.6, 

131.5, 130.5, 128.9, 128.5, 128.3, 126.7, 125.9, 75.2. HRMS (ESI) calculated [M-OH]
 +

 for 

C13H9Cl2: 235.0076, found: 235.0074. FTIR (cm
-1
) 3587, 3379, 3020, 2881, 1593, 1464, 1391, 

1216, 1185, 1030, 891. 

Naphthalen-2-yl(phenyl)methanol (3r):
20

 Yellow solid, (0.070 g in 0.25 mmol scale, 60% 

yield. Rf (Pet. ether /EtOAc = 80/20): 0.50; 
1
H NMR (400 MHz, CDCl3) δ 7.91 (s, 1H), 7.86-

7.81 (m, 3H), 7.54-7.49 (m, 2H), 7.46-7.44 (m, 3H), 7.37 (t, J = 7.3 Hz, 2H), 7.31 (t, J = 7.0 Hz, 

1H), 5.98 (s, 1H), 2.60 (s, 1H). 
13

C NMR (100 MHz, CDCl3) δ 143.7, 141.2, 133.3, 133.0, 

128.6, 128.4, 128.2, 127.8, 127.8, 126.8, 126.3, 126.1, 125.1, 124.9, 76.4. HRMS (ESI) 
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calculated [M-OH]
 +

 for C17H13: 217.1012, found: 217.1010. FTIR (cm
-1
) 3384, 3057, 2874, 

1951, 1597, 1497, 1366, 1160, 1028, 957. 

Phenyl(pyren-1-yl)methanol (3s):
32

 Yellow solid, 0.056 g in 0.25 mmol scale, 73% yield. Rf 

(Pet. ether /EtOAc = 80/20): 0.54; 
1
H NMR (400 MHz, CDCl3) δ 8.32 (d, J = 9.2 Hz, 1H), 8.20-

8.16 (m, 4H), 8.07-8.0 (m, 4H), 7.48 (d, J = 7.3 Hz, 2H), 7.37-7.28 (m, 3H), 6.87 (s, 1H), 2.62 

(bs, 1H). 
13

C NMR (100 MHz, CDCl3) δ 143.7, 136.7, 131.4, 131.1, 130.7, 128.7, 128.2, 127.9, 

127.7, 127.6, 127.1, 126.1, 125.5, 125.3, 125.1, 125.0, 124.9, 124.8, 123.2, 73.7. HRMS (ESI) 

calculated [M-OH]
 +

 for C23H15: 291.1168, found: 291.1163. FTIR (cm
-1
) 3421, 1724, 1595, 

1522, 1424, 1216, 1045, 923, 846, 765. 

Phenyl(3,4,5-trimethoxyphenyl)methanol (3t):
33

 Yellow solid, 0.043 g in 0.25 mmol scale, 

63% yield. Rf (Pet. ether /EtOAc = 80/20): 0.26; 
1
H NMR (400 MHz, CDCl3) δ 7.41-7.34 (m, 

4H), 7.31-7.27 (m, 1H), 6.62 (s, 2H), 5.77 (s, 1H), 3.83 (s, 9H), 3.79 (bs, 1H). 
13

C NMR (100 

MHz, CDCl3) δ 153.3, 143.7, 139.6, 137.2, 128.6, 127.7, 126.6, 103.5, 76.3, 60.9, 56.1. HRMS 

(ESI) calculated [M-OH]
 +

 for C16H17O3: 257.1172, found: 257.1167. FTIR (cm
-1
) 3490, 1889, 

1592, 1501, 1458, 1331, 1231, 1129, 1057, 921, 819. 

Phenyl(thiophen-2-yl)methanol (3u):
34

 Viscous yellow oil, 0.042 g in 0.5 mmol scale, 44% 

yield. Rf (Pet. Ether /EtOAc = 80/20): 0.61; 
1
H NMR (400 MHz, CDCl3) δ 7.48-7.28 (m, 6H), 

6.98-6.91 (m, 2H), 6.06 (s, 1H), 2.62 (bs, 1H). 
13

C NMR (100 MHz, CDCl3) δ 148.2, 143.2, 

128.6, 128.1, 126.8, 126.4, 125.5, 125.0, 72.5. HRMS (ESI) calculated [M-OH]
 +

 for C11H9S: 

173.0419, found: 173.0417. FTIR (cm
-1
) 3376, 1594, 1442, 1216, 1038, 759, 703, 703. 

Phenyl(thiophen-3-yl)methanol (3v):
35

 Viscous yellow oil, 0.015 g in 0.25 mmol scale, 32% 

yield. Rf (Pet. ether/EtOAc = 80/20): 0.22; 
1
H NMR (400 MHz, CDCl3) δ 7.43-7.36 (m, 4H), 

7.33-7.28 (m, 2H), 7.21 (s, 1H), 7.03 (d, J = 4.9 Hz, 1H), 5.91 (s, 1H ), 2.31 (bs, 1H). 
13

C NMR 
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(100 MHz, CDCl3) δ 145.4, 143.5, 128.7, 127.9, 126.6, 126.5, 126.4, 121.8, 73.0. HRMS (ESI) 

calculated [M-OH]
 +

 for C11H9S: 173.0419, found: 173.0418. FTIR (cm
-1
) 3391, 1647, 1592, 

1485, 1452, 1412, 1279, 1224, 1149, 839, 766. 

1-Phenylpropan-1-ol (3w):
23

 Yellow oil, 0.018 g in 0.25 mmol scale, 53% yield. Rf (Pet. ether 

/EtOAc = 80/20): 0.48; 
1
H NMR (400 MHz, CDCl3) δ 7.40-7.35 (m, 4H), 7.32-7.28 (m, 1H), 

4.62 (t, J = 6.6 Hz, 1H), 1.94 (s, 1H), 1.89-1.74 (m, 2H), 0.94 (t, J = 7.3 Hz, 3H). 
13

C NMR (100 

MHz, CDCl3) δ 144.7, 128.5, 127.6, 126.1, 76.2, 32.0, 10.3. HRMS (ESI) calculated [M-OH]
 +

 

for C9H11: 119.0855, found: 119.0857. FTIR (cm
-1
) 3601, 3412, 3018, 2969, 2930, 1597, 1456, 

1217, 1090, 972. 

1,3-Diphenylpropan-1-ol (3x):
21

 Yellow solid, 0.025 g in 0.25 mmol scale, 47% yield. Rf (Pet. 

ether /EtOAc = 80/20): 0.60; 
1
H NMR (400 MHz, CDCl3) δ 7.38-7.37 (m, 4H), 7.32-7.29 (m, 

3H), 7.22-7.21 (m, 3H), 4.70 (dd, 
1
J = 5.7 Hz, 

2
J = 7.4 Hz, 1H), 2.81-2.65 (m, 2H), 2.20-2.02 (m, 

2H), 1.95 (bs, 1H). 
13

C NMR (100 MHz, CDCl3) δ 144.7, 141.9, 128.6, 128.6, 128.5, 127.8, 

126.1, 126.0, 74.0, 40.6, 32.2. HRMS (ESI) calculated [M+Na]
 +

 for C15H16ONa: 235.1093, 

found: 235.1092. FTIR (cm
-1
) 3389, 3019, 2930, 1612, 1491, 1451, 1374, 1318, 1216, 1050, 

922. 

Cyclohexyl(phenyl)methanol (3y):
24

 Colorless oil, 0.071 g in 0.5 mmol scale, 75% yield. Rf 

(Pet. ether /EtOAc = 80/20): 0.61; 
1
H NMR (400 MHz, CDCl3) δ 7.38-7.28 (m, 5H), 4.38 (d, J 

= 7.2 Hz, 1H), 2.02-1.99 (m, 1H), 1.88 (s, 1H), 1.80-1.77 (m, 1H), 1.67-1.60 (m, 3H), 1.41-1.38 

(m, 1H), 1.27-1.02 (m, 4H), 0.99-0.93 (m, 1H). 
13

C NMR (100 MHz, CDCl3) δ 143.8, 128.3, 

127.5, 126.8, 79.5, 45.1, 29.4, 29.0, 26.6, 26.2, 26.1. HRMS (ESI) calculated [M-OH]
 +

 for 

C13H17: 173.1325, found: 173.1324. FTIR (cm
-1
) 3606, 3419, 3019, 2929, 2856, 1587, 1368, 

1216, 1067, 922. 
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1,3-Diphenylprop-2-en-1-ol (3z):
36 

Yellow solid (0.053 g, 50% yield). Rf (Pet. ether /EtOAc = 

80/20): 0.56; 
1
H NMR (400 MHz, CDCl3) δ 7.48-7.47 (m, 2H), 7.43-7.40 (m, 4H), 7.37-7.28 

(m, 5H) 6.74 (d, J = 16.0 Hz, 1H), 6.45 (dd, J1 = 6.5 Hz, J2 = 15.6 Hz, 1H), 5.42 (d, J = 6.2 Hz, 

1H), 2.27 (bs,1H). 
13

C NMR (100 MHz, CDCl3) δ 142.9, 136.7, 131.7, 130.6, 128.7, 128.7, 

127.9, 126.7, 126.5, 75.2. HRMS (ESI) calculated [M-OH]
 +

 for C15H13: 193.1012, found: 

193.1010. FTIR (cm
-1
) 3422, 1598, 1487, 1216, 1036, 971, 767. 

1,3,3-Triphenylprop-2-en-1-ol (3aa):
37

 Yellow solid, 0.082 g in 0.5 mmol scale, 63% yield. Rf 

(Pet. ether /EtOAc = 95/05): 0.53; 
1
H NMR (400 MHz, CDCl3) δ 7.39-7.29 (m, 7H), 7.23 (s, 

8H), 6.27 (d, J = 9.4, 1H), 5.24 (d, J = 9.4, 1H), 2.25 (s, 1H). 
13

C NMR (100 MHz, CDCl3) δ 

143.5, 143.5, 141.6, 139.2, 130.2, 129.9, 128.7, 128.4, 128.3, 127.8, 127.7, 127.7, 126.3, 71.7. 

HRMS (ESI) calculated [M-OH]
 +

 for C17H17OS: 269.1325, found: 269.1327. FTIR (cm
-1
) 

3557, 3328, 3057, 3027, 2924, 1596, 1492, 1446, 1362, 1072, 1006. 

3,7-Dimethyl-1-phenylocta-2,6-dien-1-ol (3ab): Viscous yellow oil, 0.029 g in 0.25 mmol 

scale, 50% yield. Rf  (Pet. ether /EtOAc = 80/20): 0.66; 
1
H NMR (400 MHz, CDCl3) δ 7.42 (d, J 

= 7.4 Hz, 2H), 7.34 (t, J = 7.1 Hz, 2H), 7.30-7.23 (m, 1H), 6.64 (d, J = 16.1 Hz, 1H), 6.32 (d, J = 

16.1 Hz, 1H), 5.18-5.15 (m, 1H), 2.16-2.05 (m, 2H), 1.70-1.68 (m, 6H), 1.62-1.60 (m, 2H), 1.41 

(s, 3H). 
13

C NMR (100 MHz, CDCl3) δ 137.2, 136.8, 132.3, 128.7, 127.5, 127.3, 126.5, 124.5, 

73.7, 42.7, 28.6, 25.9, 23.1, 17.9. HRMS (ESI) calculated [M-OH]
 +

 for C16H21: 213.1638, 

found: 213.1635. FTIR (cm
-1
) 3444, 1665, 1589, 1460, 1370, 1260, 1215, 1114, 1052, 974, 765. 

Benzo[d][1,3]dioxol-5-yl(phenyl)methanol (3ac):
38

 Yellow oil, 0.031 g in 0.25 mmol scale, 

48% yield. Rf  (Pet. ether /EtOAc = 80/20): 0.41; 
1
H NMR (400 MHz, CDCl3) δ 7.31-7.26 (m, 

4H), 6.80-6.74 (m, 3H), 5.92 (s, 2H), 5.68 (s, 1H), 2.49 (s, 1H). 
13

C NMR (100 MHz, CDCl3) δ 
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148.0, 147.3, 142.3, 137.7, 133.3, 128.7, 127.8, 120.2, 108.3, 107.2, 101.2, 75.4. FTIR (cm
-1
) 

3359, 2956, 2893, 2778, 1603, 1489, 1245, 1038, 929. 

(4-Chlorophenyl)(4-methoxyphenyl)methanol (3af):
39

 Yellow oil, 0.012 g in 0.25 mmol scale, 

19% yield. Rf (Pet. ether /EtOAc = 80/20): 0.49; 
1
H NMR (400 MHz, CDCl3) δ 7.30 (s, 4H), 

7.25 (d, J = 8.7 Hz, 2H), 6.87 (d, J = 8.7 Hz, 2H), 5.77 (s, 1H), 3.79 (s, 3H), 2.25 (s, 1H). 
13

C 

NMR (100 MHz, CDCl3) δ 159.4, 142.6, 135.9, 133.2, 128.7, 128.1, 127.9, 114.1, 75.3, 55.4. 

HRMS (ESI) calculated [M-OH]
+ 

for C14H12ClO: 231.0571, found: 231.0578. FTIR (cm
-1
) 

3394, 3002, 2928, 2838, 1609, 1511, 1248, 1173, 1032. 

Hydroxy-1-methyl-3-phenylindolin-2-one (11a):
40

 Pale brown solid, 0.043 g in 0.25 mmol 

scale, 73% yield. Rf (Pet. ether /EtOAc = 60/40): 0.36; 
1
H NMR (400 MHz, CDCl3) δ 7.40-7.28 

(m, 7H), 7.10 (t, J = 7.5 Hz, 1H), 6.91 (d, J = 7.6 Hz, 1H), 3.92 (s, 1H), 3.24 (m, 3H). 
13

C NMR 

(100 MHz, CDCl3) δ 177.7, 143.6, 140.3, 131.8, 129.9, 128.6, 128.3, 125.5, 125.0, 123.7, 108.8, 

78.1, 26.6. HRMS (ESI) calculated [M+H]
 +

 for C15H14O2N: 240.1019, found: 240.1020. FTIR 

(cm
-1
) 3684, 3386, 3020, 2402, 1718, 1614, 1477, 1369, 1092, 930. 

1-Benzyl-3-hydroxy-3-phenylindolin-2-one (11b):
41

 Pale brown solid, 0.040 g in 0.25 mmol 

scale, 51% yield. Rf (Pet. ether /EtOAc = 60/40): 0.53; 
1
H NMR (400 MHz, CDCl3) δ 7.44-7.42 

(m, 2H), 7.36-7.22 (m, 10H), 7.06 (t, J = 7.3 Hz, 1H), 6.80 (d, J = 7.8 Hz, 1H), 5.05 (d, J= 15.6 

Hz, 1H), 4.82 (d, J = 15.6 Hz, 1H), 3.89 (bs, 1H). 
13

C NMR (100 MHz, CDCl3) δ 177.8, 142.7, 

140.3, 135.5, 131.8, 129.8, 129.0, 128.8, 128.4, 127.9, 127.4, 125.5, 125.1, 123.7, 109.9, 78.1, 

44.1. HRMS (ESI) calculated [M+H]
 +

 for C21H18O2N: 316.1332, found: 316.1333. FTIR (cm
-1
) 

3387, 3020, 2402, 1718, 1613, 1479, 1367, 1216, 1075, 930. 
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3-Hydroxy-5-methoxy-1-methyl-3-phenylindolin-2-one (11c):
42

 Pale brown solid, 0.037 g in 

0.25 mmol scale, 55% yield. Rf (Pet. ether /EtOAc = 60/40): 0.23; 
1
H NMR (400 MHz, CDCl3) 

δ 7.39-7.28 (m, 5H), 6.90-6.86 (m, 2H), 6.81 (d, J = 8.3 Hz, 1H), 3.75 (s, 3H), 3.20 (s, 3H). 
13

C 

NMR (100 MHz, CDCl3) δ 177.6, 156.7, 140.3, 136.8, 133.1, 128.6, 128.3, 125.4, 114.7, 111.8, 

109.3, 78.5, 55.9, 26.7. HRMS (ESI) calculated [M+Na]
 +

 for C16H15O3NNa: 292.0944, found: 

292.0947. FTIR (cm
-1
) 3380, 3020, 2402, 1713, 1609, 1495, 1434, 1366, 1161, 1103, 933. 

Supporting Information 

Details on mechanistic experiments, optimization studies, and the copies of 
1
H and 

13
C NMR 

spectra of all products. The Supporting Information is available free of charge on the ACS 

Publications website. 
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