Subscriber access provided by Service des bibliothèques | Université de Sherbrooke

Employing Arynes for the Generation of Aryl Anion Equivalents and Subsequent Reaction with Aldehydes

Rahul N Gaykar, Anup Bhunia, and Akkattu T. Biju

J. Org. Chem., Just Accepted Manuscript • DOI: 10.1021/acs.joc.8b01549 • Publication Date (Web): 10 Jul 2018

Downloaded from http://pubs.acs.org on July 10, 2018

Just Accepted

Note

"Just Accepted" manuscripts have been peer-reviewed and accepted for publication. They are posted online prior to technical editing, formatting for publication and author proofing. The American Chemical Society provides "Just Accepted" as a service to the research community to expedite the dissemination of scientific material as soon as possible after acceptance. "Just Accepted" manuscripts appear in full in PDF format accompanied by an HTML abstract. "Just Accepted" manuscripts have been fully peer reviewed, but should not be considered the official version of record. They are citable by the Digital Object Identifier (DOI®). "Just Accepted" is an optional service offered to authors. Therefore, the "Just Accepted" Web site may not include all articles that will be published in the journal. After a manuscript is technically edited and formatted, it will be removed from the "Just Accepted" Web site and published as an ASAP article. Note that technical editing may introduce minor changes to the manuscript text and/or graphics which could affect content, and all legal disclaimers and ethical guidelines that apply to the journal pertain. ACS cannot be held responsible for errors or consequences arising from the use of information contained in these "Just Accepted" manuscripts.

is published by the American Chemical Society. 1155 Sixteenth Street N.W., Washington, DC 20036

Published by American Chemical Society. Copyright © American Chemical Society. However, no copyright claim is made to original U.S. Government works, or works produced by employees of any Commonwealth realm Crown government in the course of their duties.

Employing Arynes for the Generation of Aryl Anion Equivalents and Subsequent Reaction with Aldehydes

Rahul N. Gaykar,[†] Anup Bhunia,[‡] and Akkattu T. Biju*,[†]

 [†] Department of Organic Chemistry, Indian Institute of Science, Bangalore-560012, India
 [‡]Organic Chemistry Division, CSIR-National Chemical Laboratory (CSIR-NCL), Dr. Homi Bhabha Road, Pune 411008, India

E-mail: atbiju@iisc.ac.in

ABSTRACT: Arynes are highly reactive intermediates, which are utilized for the electrophilic arylation of various X-H bonds (X = O, N, S etc.). Herein, a new synthetic strategy is demonstrated, where arynes are converted into aryl anion equivalents by treating with phosphines and a base. The addition of phosphines to arynes form the phosphonium salts, which in the presence of a carbonate base generates the aryl anion equivalent. Subsequent addition of the aryl anions with aldehydes afforded the secondary alcohols.

Ever since the seminal discovery of 2-trimethylsilylaryl triflates as a precursor for the mild and convenient generation of arynes,¹ the chemistry of this highly reactive intermediate has witnessed a resurgence of interest in the last three decades.² The inherent strain in the C-C triple bond of aryne has been exploited in various pericyclic reactions,³ insertion reactions,⁴ multicomponent reactions,⁵ molecular rearrangements,⁶ and transition-metal-catalyzed reactions.⁷ Moreover arynes are widely employed for the electrophilic arylation of X-H bonds (X = O, N, S etc.)²¹ and even for the activated C-H bonds (Scheme 1a).⁸ Interestingly, however, the use of arynes for the generation of aryl anions, and thereby for the nucleophilic arylation reactions, to the best of our knowledge is not reported. This will be interesting as this method

will obviate the use of aryl organometallic reagents for the arylation reactions. Herein, we demonstrate the use of arynes for the generation of aryl anion equivalents and subsequent interception with aldehydes for the synthesis of secondary alcohols (Scheme 1b). For this, arynes are initially treated with phosphines for the in situ generation of phosphonium salts,⁹ which in the presence of a carbonate base generates the aryl anion equivalent. It may be noted in this context that the nucleophile-triggered generation of aryl anion intermediates from arynes followed by their interception with a third-component is known in the literature.^{2d}

Scheme 1. Transition-Metal-Free Arylation Using Arynes

We have recently reported the aryne multicomponent coupling triggered by phosphines using aldehydes/activated ketones as the third-component for the synthesis of stable pentacovalent phosphoranes based on the benzooxaphosphole system.¹⁰ In this reaction, the initial 1,3-zwitterionic intermediate generated from phosphine and aryne was intercepted with the carbonyl moiety in a formal [3+2] cycloaddition allowing the synthesis of phosphorous heterocycles.^{11,12} In this context, we envisioned that if the initially formed 1,3-diplole is protonated by water to generate the phosphonium salt, followed by the addition of a carbonate base to the phosphonium salt could eventually generate the aryl anion, which could intercept the aldehyde to form the secondary alcohol. Related aryl anion generation from tetraaryl phosphonium salt was recently uncovered by Xiao and co-workers^{13a} and McNally and co-workers.¹⁴

The present study was initiated by the treatment of PPh₃ with aryne generated from 2-(trimethylsilyl) aryl triflate $2a^1$ (using KF and 18-crown-6) for the in situ formation of the tetraphenyl phosphonium salt followed by the reaction with 4-chlorobenzaldehyde 1a in the presence of Cs₂CO₃.¹⁵ Interestingly, under these conditions, the reaction afforded the benzhydrol derivative 3a in 75% yield (Scheme 2).^{16,17} Notably, the benzooxaphosphole derivative (multicomponent adduct)¹⁰ was not observed under these conditions. The addition of water was necessary for the smooth formation of the phosphonium salt, and Cs₂CO₃ was found to be the best carbonate base source for the reaction (over other bases including SrCO₃ and K₂CO₃) probably due to the better solubility in THF. The high affinity between oxygen and phosphorus (for the release of Ph₃P=O) may be the driving force for the smooth generation of the aryl anion intermediate and subsequent interception with aldehyde.

Scheme 2. Nucleophilic Arylation of Aldehydes Using Arynes

With the optimized reaction conditions in hand, we then examined the scope and limitations of the present arylation method (Scheme 3). The in situ generated aryl anion was smoothly added to a range of aromatic aldehydes bearing halogens, electron-releasing, neutral and –withdrawing groups at the 4-position of the ring thereby affording diverse benzhydrol derivatives in moderate to good yield (**3a-3j**). This indicates that the electronic nature of the aldehydes did not significantly influence the outcome of this nucleophilic arylation. Moreover, this nucleophilic arylation was well tolerated by aldehydes having substituents at the 3-position, 2-position as well as di- and tri-substitution to furnish the desired products in moderate to good

yields (**3k-3t**). In addition, heterocyclic aldehydes are found to be good coupling partner for arylation using arynes to afford the aryl heteroaryl methanol derivatives in moderate yield (**3u**, **3v**). Interestingly, linear and branched aliphatic aldehydes and α , β -unsaturated aldehydes underwent smooth nucleophilic arylation thus expanding the scope of this reaction (**3w-3ab**). Notably, the reaction using geranial afforded the corresponding alcohol in 50% yield. The enolizable aldehydes did not undergo the aldol condensation or direct addition to arynes under the present reaction conditions.

Scheme 3. Substrate Scope of the Reaction^a

^a All reactions are performed on 0.25 mmol scale of **1** otherwise indicated. For details on experimental procedure, see the Supporting Information. ^b Reactions performed on 0.5 mmol scale.

Next, we focused our attention on tolerance of the present method with substituents on arynes as well as on phosphines. Performing the reaction under the standard conditions using aryne generated from 2b afforded the alcohol 3ac in 48% along with 3a in 11% (Scheme 4, eq 1). The alcohol 3ac was formed from the aryl anion generated from the sesamol-derived aryne (formed from 2b) and the generation of unsubstituted aryl anion from the phosphonium salt upon interception with 1a could result in the formation of 3a. The preferential formation of 3ac in this case could be due to the stabilization of the aryl anion generated from 2b due to the inductive effect of the two oxygen atoms. Moreover, when the reaction was carried out using aryne generated from 2c, the alcohol 3ad was formed in 8% and 3a in 28% (eq 2). In addition, employing the aryne generated from 2d in the present arylation reaction afforded the alcohol (generated from the aryne moiety) in traces, and the product 3a was formed in 66% (eq 3). The

Scheme 4. Variation of Arynes

low reactivity of the aryl anion generated from **2c** and **2d** may be due to the presence of electronreleasing groups, which makes the anion less stable and may readily abstract a proton from the trace water present in the medium.

When the reaction was carried out under the standard conditions using tri-*p*-methoxyphenyl phosphine, the reaction furnished a mixture of secondary alcohols **3a** and **3af** in 24% and 19% yield respectively (Scheme 5, eq 4). The formation of **3a** in slightly higher yield may be due to the better leaving group ability of the phenyl group over the *p*-methoxyphenyl group in the initially formed phosphonium salt. Disappointingly, the attempted reaction with the tri-*p*-trifluoromethylphenyl phosphine as the nucleophilic trigger did not afford the expected products **3ag** and **3a** (eq 5). This may be due to the less nucleophilicity of the phosphine for the formation of the tetraaryl phosphonium salt.

Scheme 5. Variation of Phosphines

To demonstrate the role of water in the generation of the tetraaryl phosphonium salt and the aryl anion generation thereof, a reaction was performed in the absence of water. This reaction did not afford the expected alcohol product **3a**, but resulted in the formation of the benzooxaphosphole **4a** in 49% yield (Scheme 6).^{10a} In this case, the initially formed 1,3-zwitterion from phosphine and aryne instead of protonation underwent a formal [3+2] annulation with the aldehyde moiety leading to the formation of **4a**.

Scheme 6. Reaction in the Absence of H₂O

A proposed mechanism of this nucleophilic arylation using arynes is shown in Scheme 7. The reaction proceeds via the generation of aryne from 2a using the fluoride source. Nucleophilic addition of phosphine to aryne forms the 1,3-zwitterionic intermediate 5, which gets protonated in the presence of H_2O to form the tetraaryl phosphonium triflate 6. In the absence of H_2O , the intermediate 5 undergoes a formal [3+2] annulation with aldehyde to form the benzoxaphosphole derivative. The phosphonium could be converted into the alcohol in two pathways. In pathway 1, the nucleophilic attack of Cs_2CO_3 on the phosphonium cation generates a trigonal bipyramidal tetraaryloxy phosphorane intermediate 7, where the carbonate and the aryl moiety are in the axial position. Simultaneous decarboxylation and nucleophilic attack of the generated any moiety (via the elimination of $Ph_3P=O$) on the aldehyde followed by protonation could generate the alcohol 3. Alternatively, the decomposition of Cs_2CO_3 in presence of H_2O could generate CsOH (pathway 2). The addition of CsOH to the salt 6 could generate the pentavalent phosphorus intermediate 8, which upon deprotonation in the presence of base generates the oxyanionic phosphorane intermediate 9. The elimination of aryl anion from 9 (via the elimination of $Ph_3P=O$) followed by addition to aldehyde and a subsequent protonation could generate the alcohol **3**. It is reasonable to believe that the elimination of stable Ph₃P=O may be the driving force for the generation of aryl anion either from intermediates 7 or 9. Although the addition of carbonate to 6 generating the intermediate 7 is preferred, the CsOH addition to 6 leading to intermediate 8 cannot be ruled out at this stage because of the presence of H_2O in the reaction medium. Moreover, the reactions performed using substituted arvnes (Scheme 4, eqs 1-3), and with phosphine derivative (Scheme 5, eq 4) indicate that the aryl group migration in the

present reaction could be either from the aryne source or from the aryl group attached to the phosphorus.

Scheme 7. Proposed Mechanism of the Reaction

This nucleophilic arylation using arynes was not limited to aldehydes as the electrophiles, but instead activated ketones such as isatins can easily be arylated using this method resulting in the formation tertiary alcohols. For instance, treatment of *N*-methyl isatin **10a** with aryne generated from **2a** under the present reaction conditions afforded the oxindole derivative **11a** in 73% yield (Scheme 8).¹⁸ The reaction afforded moderate yield of desired product with *N*-benzyl isatin and 5-methoxy isatin as substrates under identical reaction conditions.

Scheme 8. Nucleophilic Arylation of Isatins Using Arynes^a

^a See the Supporting Information for details

In conclusion, we have demonstrated the nucleophilic arylation of aldehydes/isatins by the action of a carbonate base on in situ generated tetraaryl phosphonium salts formed by the addition of phosphines to arynes. Although arynes are widely used for the electrophilic arylation of various element-element bonds, the present method utilizes arynes as aryl anion equivalents for the nucleophilic arylation reactions. The reaction tolerates various functional groups and the desired secondary/tertiary alcohols are formed in moderate to good yields.

Experimental Section

General Information:

Unless otherwise specified, all reactions were carried out under an atmosphere of argon in flamedried reaction vessels with Teflon screw caps. Reaction temperatures are reported as the temperature of the bath surrounding the reaction vessel. 30 °C corresponds to the room temperature of the lab, when the experiments were carried out. THF was freshly purified by distillation over Na-benzophenone and was transferred under argon. 18-Crown-6 was recrystallized from dry CH₃CN, and KF was dried by heating at 110 °C for 12 h and left to cool under argon. The aldehydes were purchased from commercial sources and were purified either by distillation (for liquids) or washing with NaHCO₃ after dissolving in ether or dichloromethane (for solids), prior to use. Phosphines were purchased from commercial sources and used as received. The 2-(trimethylsilyl)phenyl trifluoromethanesulfonate **2a** and the other symmetric and unsymmetric aryne precursors were synthesized following literature procedure.^{1b,19} ¹H and ¹³C NMR spectra were recorded in CDCl₃ as solvent. Chemical shifts (δ) are given in ppm. The residual solvent signals were used as references and the chemical shifts converted to the TMS scale (CDCl₃: δ H = 7.26 ppm, δ C = 77.16 ppm). HRMS measurements were carried out using

ESI method and ion-trap mass analyzer. Infrared (IR) spectra were recorded on an FT-IR spectrometer as thin films using NaCl plates.

General Procedure for the Reaction involving Phosphine, Aryne and Aldehydes: To a flamedried screw-capped test tube equipped with a magnetic stir bar was added the phosphine (0.197 g, 0.75 mmol), KF (0.058 g, 1.0 mmol) and 18-crown-6 (0.264 g, 1.0 mmol). Then the screwcapped tube was evacuated and backfilled with argon. The mixture was dissolved in THF (4.0 mL) under argon atmosphere and subsequently cooled the reaction mixture to 0 °C and kept stirring for five minutes. To the stirring solution, aryne precursor **2a** (1.0 mmol) was added and continued stirring for another five minutes followed by addition of the water (0.010 g, 10.0 μ L, 0.55 mmol). Then the reaction mixture was stirred at 0 °C for 30 minutes. Then aldehyde **1** (0.25 mmol) was added followed by subsequent addition of Cs₂CO₃ (0.326 g, 1.0 mmol) at 0 °C. Then the reaction mixture was slowly warmed to rt and kept stirring for 24 h at 65 °C. After 24 h, the reaction was quenched using 3N HCl (0.25 ml) and subsequent work-up in CH₂Cl₂ (3 x 30 mL). The organic layer dried over Na₂SO₄ and solvent was evaporated, and the crude residue was purified by column chromatography on silica gel (230-400 mesh) (Petroleum ether/EtOAc = 85/15) to afford the corresponding benzhydrol derivatives **3** in moderate to good yields.

General Procedure for the Reaction Involving Phosphine, Aryne and Isatins: To a flamedried screw-capped test tube equipped with a magnetic stir bar was added the phosphine (0.197 g, 0.75 mmol), KF (0.058 g, 1.0 mmol) and 18-crown-6 (0.264 g, 1.0 mmol). Then the screwcapped tube was evacuated and backfilled with argon. The mixture was dissolved in THF (4.0 mL) under argon atmosphere and subsequently cooled the reaction mixture to 0 °C and kept stirring for five minutes. To the stirring solution aryne precursor **2a** (1 mmol) was added and continued stirring for another five minutes followed by addition of the water (0.010 g, 10.0 μ L,

The Journal of Organic Chemistry

0.55 mmol). Then the reaction mixture was stirred at 0 °C for 30 minutes. Then isatin **10** (0.25 mmol) was added followed by the subsequent addition of Cs_2CO_3 (0.326 g, 1.0 mmol) at 0 °C. Then the reaction mixture was slowly warmed to rt and kept stirring for 24 h at 65 °C. After 24 h, the reaction was quenched using 3N HCl (3 mL) and subsequent work-up in CH₂Cl₂ (3 x 30 mL). The organic layer dried over Na₂SO₄ and solvent was evaporated, and the crude residue was purified by column chromatography on silica gel (230-400 mesh) (Petroleum ether/EtOAc = 85/15) to afford the corresponding benzhydrol derivatives **11** in moderate to good yields.

(4-Chlorophenyl)(phenyl)methanol (3a):²⁰ Pale yellow solid, 0.041 g in 0.25 mmol scale, 75% yield. R_f (Pet. ether /EtOAc = 80/20): 0.53; ¹H NMR (400 MHz, CDCl₃) δ 7.31-7.20 (m, 9H), 5.69 (s,1H), 2.46 (s, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 143.5, 142.3, 133.3, 128.7, 128.7, 128.0, 127.9, 126.6, 75.6. HRMS (ESI) calculated [M-OH] ⁺ for C₁₃H₁₀Cl: 201.0466, found: 201.0468. FTIR (cm⁻¹) 3597, 3411, 3020, 2884, 2402, 1594, 1489, 1216, 1180, 1018, 925.

(4-Bromophenyl)(phenyl)methanol (3b):²¹ Pale yellow solid, 0.039 g in 0.25 mmol scale, 60% yield. R_f (Pet. ether /EtOAc = 80/20): 0.53; ¹H NMR (400 MHz, CDCl₃) δ 7.48 (d, J = 8.2 Hz, 2H), 7.36-2.26 (m, 7H), 5.79 (s, 1H), 2.40 (s, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 143.5, 142.9, 131.6, 128.8, 128.3, 128.0, 126.6, 121.5, 75.7. HRMS (ESI) calculated [M-OH] ⁺ for C₁₃H₁₀Br: 244.9960, found: 244.9965. FTIR (cm⁻¹) 3600, 3400, 3020, 2402, 1593, 1486, 1410, 1216, 1019, 926.

(4-Fluorophenyl)(phenyl)methanol (3c):²² Pale yellow solid, 0.034 g in 0.25 mmol scale, 67% yield. R_f (Pet. ether /EtOAc = 80/20): 0.56; ¹H NMR (400 MHz, CDCl₃) δ 7.38-7.28 (m, 7H), 7.04 (t, J = 8.7 Hz, 2H), 5.84 (s, 1H), 2.32 (bs, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 162.3 (d, J = 246.7 Hz), 143.8, 139.7 (d, J = 2.9 Hz), 128.7, 128.4 (d, J = 8.6 Hz), 127.9, 126.6, 115.4 (d, J

= 21.4 Hz), 75.7. **HRMS (ESI)** calculated [M-OH] ⁺ for $C_{13}H_{10}F$: 185.0761, found: 185.0760. **FTIR (cm⁻¹)** 3412, 1601, 1505, 1219, 1167, 1025, 925, 854.

Diphenylmethanol (3d):²³ Yellow solid, 0.025 g in 0.25 mmol scale, 54% yield. R_f (Pet. ether /EtOAc = 80/20): 0.61; ¹H NMR (400 MHz, CDCl₃) δ 7.42-7.41 (m, 4H), 7.39-7.36 (m, 4H), 7.32-7.29 (m, 2H), 5.86 (s, 1H), 2.38 (bs, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 143.9, 128.6, 127.7, 126.7, 76.4. HRMS (ESI) calculated [M-OH] ⁺ for C₁₃H₁₁: 167.0855, found: 167.0853. FTIR (cm⁻¹) 3597, 3414, 3020, 2402, 1597, 1489, 1446, 1216, 1026, 924.

Phenyl(p-tolyl)methanol (3e):²¹ Yellow solid, 0.034 g in 0.25 mmol scale, 69% yield. R_f (Pet. ether /EtOAc = 80/20): 0.57; ¹H NMR (400 MHz, CDCl₃) δ 7.38 (d, J = 7.2 Hz, 2H), 7.33 (t, J = 7.2 Hz, 2H), 7.26 (d, J = 8.0 Hz, 3H), 7.15 (d, J = 7.9 Hz, 2H), 5.81 (s, 1H), 2.33 (s, 3H), 2.17 (bs, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 144.1, 141.1, 137.4, 129.3, 128.6, 127.6, 126.7, 126.6, 76.2, 21.2. HRMS (ESI) calculated [M-OH] ⁺ for C₁₄H₁₃: 181.1012, found: 181.1015. FTIR (cm⁻¹) 3596, 3411, 3019, 2924, 1614, 1504, 1216, 1372, 1029, 926.

(4-Methoxyphenyl)(phenyl)methanol(3f):²² Yellow solid, 0.074 g in 0. 5 mmol scale, 69% yield. R_f (Pet. ether /EtOAc = 80/20): 0.38; ¹H NMR (400 MHz, CDCl₃) δ 7.39-7.34 (m, 4H), 7.31-7.29 (m, 3H), 6.89 (d, J= 8.3 Hz, 2H), 5.80 (s, 1H), 3.81 (s, 3H), 2.46 (s, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 159.1, 144.1, 136.3, 128.5, 128.0, 127.5, 126.5, 113.9, 75.8, 55.4. HRMS (ESI) calculated [M-OH] ⁺ for C₁₄H₁₃O: 197.0961, found: 197.0964. FTIR (cm⁻¹) 3415, 3062, 2954, 2838, 1610, 1508, 1454, 1300, 1176, 1031, 923.

[1,1'-Biphenyl]-4-yl(phenyl)methanol (3g):²¹ Yellow solid, 0.050 g in 0.25 mmol scale, 77% yield). *R*_f (Pet. ether /EtOAc = 80/20): 0.50; ¹H NMR (400 MHz, CDCl₃) δ 7.63-7.60 (m, 4H), 7.49-7.45 (m, 6H), 7.42-7.39 (m, 3H), 7.35-7.31 (m, 1H), 5.89 (s, 1H), 2.52 (s, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 143.9, 142.9, 140.9, 140.5, 128.9, 128.7, 127.7, 127.4, 127.3, 127.2, 127.1,

126.7, 76.1. **HRMS (ESI)** calculated [M-OH] ⁺ for C₁₉H₁₅: 243.1168, found: 243.1172. **FTIR** (cm⁻¹) 3596, 3412, 3020, 2402, 1597, 1486, 1371, 1216, 1032, 923.

4-(Hydroxy(phenyl)methyl)benzonitrile (3h):²⁴ Yellow solid, 0.030 g in 0.25 mmol scale, 58% yield. $R_{\rm f}$ (Pet. ether /EtOAc = 80/20): 0.35; ¹H NMR (400 MHz, CDCl₃) δ 7.64 (d, J = 7.5 Hz, 2H), 7.54 (d, J = 7.9 Hz, 2H), 7.40-7.32 (m, 5H), 5.88 (s, 1H), 2.53 (bs, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 149.0, 142.9, 132.4, 129.0, 128.4, 127.1, 126.8, 119.0, 111.2, 75.7. HRMS (ESI) calculated [M-OH] ⁺ for C₁₄H₁₀N: 192.0808, found: 192.0806. FTIR (cm⁻¹) 3435, 2231, 111, 1716, 1495, 1275, 1033, 922, 806, 757.

Methyl 4-(hydroxy(phenyl)methyl)benzoate (3i):²¹ Yellow solid, 0.048 g in 0.25 mmol scale, 79% yield. R_f (Pet. ether /EtOAc = 80/20): 0.34; ¹H NMR (400 MHz, CDCl₃) δ 7.99 (d, J = 8.2Hz, 2H), 7.46 (d, J = 8.1 Hz, 2H), 7.35-7.27 (m, 5H), 5.87 (s, 1H), 3.89 (s, 3H), 2.46 (s, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 167.1, 148.8, 143.4, 129.9, 129.4, 128.8, 128.1, 126.8, 126.5, 76.0, 52.2. HRMS (ESI) calculated [M-OH] ⁺ for C₁₅H₁₃O₂: 225.0910, found: 225.0908. FTIR (cm⁻¹) 3430, 3020, 1715, 1610, 1442, 1374, 1283, 1184, 1026, 926.

Phenyl(4-(trifluoromethyl)phenyl)methanol (3j):²⁵ Yellow solid, 0.043 g in 0.25 mmol scale, 68% yield). R_f (Pet. ether /EtOAc = 95/05): 0.53; ¹H NMR (400 MHz, CDCl₃) δ 7.61 (d, J = 8.0 Hz, 2H), 7.52 (d, J = 8.0 Hz, 2H), 7.37-7.27 (m, 5H), 5.87 (s, 1H), 2.40 (bs, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 147.6, 143.3, 129.8 (d, J = 32.2 Hz), 128.9, 128.2, 126.8, 126.8, 125.0 (q, J = 3.4 Hz), 75.9. HRMS (ESI) calculated [M-OH] ⁺ for C₁₄H₁₀F₃: 235.0729, found: 235.0727. FTIR (cm⁻¹) 3597, 3397, 3021, 2926, 2403, 1617, 1489, 1325, 1125, 923.

(3-Bromophenyl)(phenyl)methanol (3k):²⁶ Yellow solid, 0.037 g in 0.25 mmol scale, 56% yield. R_f (Pet. ether /EtOAc = 80/20): 0.60; ¹H NMR (400 MHz, CDCl₃) δ 7.59 (s, 1H), 7.43-7.30 (m, 7H), 7.24-7.20 (m, 1H), 5.80 (s, 1H), 2.30 (bs, 1H).¹³C NMR (100 MHz, CDCl₃) δ

146.1, 143.3, 130.7, 130.2, 129.6, 128.8, 128.6, 128.1, 127.7, 126.7, 125.2, 122.8, 75.7. **HRMS** (ESI) calculated [M-OH] ⁺ for C₁₃H₁₀Br: 244.9960, found: 244.9958. FTIR (cm⁻¹) 3383, 1584, 1217, 1179, 1078, 1029, 913, 758.

(3-Nitrophenyl)(phenyl)methanol (31):²⁷ Yellow solid, 0.029 g in 0.25 mmol scale, 51% yield. R_f (Pet. ether /EtOAc = 95/05): 0.51; ¹H NMR (400 MHz, CDCl₃) δ 8.29 (s, 1H), 8.11 (d, J = 8.0 Hz, 1H), 7.71 (d, J = 7.6 Hz, 1H), 7.49 (t, J = 8.0 Hz, 1H), 7.37-7.30 (m, 5H), 5.91 (s, 1H), 2.56 (s, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 148.3, 145.9, 142.9, 132.6, 129.5, 129.1, 128.5, 126.8, 122.6, 121.4, 75.5. HRMS (ESI) calculated [M+Na] ⁺ for C₁₃H₁₁NO₃Na: 252.0637, found: 252.0635. FTIR (cm⁻¹) 3554, 3376, 3068, 2925, 1714, 1528, 1350, 1187, 1032.

Phenyl(*o*-tolyl)methanol (3m):²⁶ Viscous yellow oil, 0.033 g in 0.25 mmol scale, 67% yield. R_f (Pet. ether /EtOAc = 80/20): 0.63; ¹H NMR (400 MHz, CDCl₃) δ 7.56 (d, J = 7.6 Hz, 1H), 7.37-7.36 (m, 4H), 7.32-7.17 (m, 4H), 6.02 (s, 1H), 2.28 (s, 3H), 2.20 (bs, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 143.0, 141.6, 135.5, 130.7, 128.6, 127.7, 127.7, 127.2, 126.4, 126.3, 73.5, 19.5. HRMS (ESI) calculated [M-OH] ⁺ for C₁₄H₁₃: 181.1012, found: 181.1010. FTIR (cm⁻¹) 3369, 1812, 1593, 1483, 1455, 1377, 1258, 1179, 1020, 919, 755.

(2-Chlorophenyl)(phenyl)methanol (3n):²⁸ Yellow solid, 0.067 g, in 0.5 mmol scale, 62% yield. R_f (Pet. ether /EtOAc = 80/20): 0.60; ¹H NMR (400 MHz, CDCl₃) δ 7.63 (d, J = 7.3 Hz, 1H), 7.43-7.41 (m, 2H), 7.38-7.31 (m, 5H), 7.27-7.23 (m, 1H), 6.24 (s, 1H), 2.53 (s, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 142.3, 141.1, 132.6, 129.7, 128.9, 128.6, 128.1, 127.9, 127.2, 127.0, 72.8. HRMS (ESI) calculated [M-OH] ⁺ for C₁₃H₁₀Cl: 201.0466, found: 201.0469. FTIR (cm⁻¹) 3365, 3064, 3030, 2919, 1955, 1584, 1445, 1391, 1184, 1024, 951.

(2,3-Dimethoxyphenyl)(phenyl)methanol (30):²⁹ Yellow solid, 0.080 g in 0.5 mmol scale, 66% yield. R_f (Pet. ether /EtOAc = 80/20): 0.48; ¹H NMR (400 MHz, CDCl₃) δ 7.42 (d, J = 7.5 Hz,

 2H), 7.35 (t, J = 7.5 Hz, 2H), 7.27 (t, J = 7.0 Hz, 1H), 7.09 (t, J = 7.8 Hz, 1H), 7.00 (d, J = 7.5 Hz, 1H), 6.90 (d, J = 8.0 Hz, 1H), 6.04 (s, 1H), 3.87 (s, 3H), 3.62 (s, 3H), 3.18 (bs, 1H). ¹³C **NMR (100 MHz, CDCl₃)** δ 152.7, 146.4, 144.1, 137.7, 128.3, 127.2, 126.4, 124.1, 119.8, 112.0, 72.39, 60.5, 55.8. **HRMS (ESI)** calculated [M-OH] ⁺ for C₁₅H₁₅O₂: 227.1067, found: 227.1064. **FTIR (cm⁻¹)** 3419, 3017, 2937, 2839, 2403, 1590, 1478, 1270, 1080, 921.

(3,4-Dimethoxyphenyl)(phenyl)methanol (3p):³⁰ Yellow oil, 0.083 g in 0.5 mmol scale, 68% yield. R_f (Pet. ether /EtOAc = 80/20): 0.26; ¹H NMR (400 MHz, CDCl₃) δ 7.38-7.27 (m, 5H), 6.92 (bs, 1H), 6.88 (d, J = 7.8 Hz, 1H), 6.82 (d, J = 8.2 Hz, 1H), 5.78 (s, 1H), 3.85 (s, 3H), 3.84 (s, 3H), 2.43 (s, 1H).¹³C NMR (100 MHz, CDCl₃) δ 149.1, 148.5, 144.0, 136.6, 128.5, 127.6, 126.5, 119.0, 111.0, 109.8, 76.0, 56.0, 55.9. HRMS (ESI) calculated [M-OH] ⁺ for C₁₅H₁₅O₂: 227.1067, found: 227.1064. FTIR (cm⁻¹) 3597, 3419, 3019, 2963, 2840, 1596, 1513, 1456, 1259, 1029, 927.

(3,4-Dichlorophenyl)(phenyl)methanol (3q):³¹ Yellow oil (0.040 g, 64% yield). R_f (Pet. ether /EtOAc = 80/20): 0.53; ¹H NMR (400 MHz, CDCl₃) δ 7.50 (s, 1H), 7.40-7.31 (m, 6H), 7.19 (d, J = 8.0 Hz, 1H), 5.75 (s, 1H), 2.49 (s, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 144.0, 143.0, 132.6, 131.5, 130.5, 128.9, 128.5, 128.3, 126.7, 125.9, 75.2. HRMS (ESI) calculated [M-OH] ⁺ for C₁₃H₉Cl₂: 235.0076, found: 235.0074. FTIR (cm⁻¹) 3587, 3379, 3020, 2881, 1593, 1464, 1391, 1216, 1185, 1030, 891.

Naphthalen-2-yl(phenyl)methanol (3r):²⁰ Yellow solid, (0.070 g in 0.25 mmol scale, 60% yield. R_f (Pet. ether /EtOAc = 80/20): 0.50; ¹H NMR (400 MHz, CDCl₃) δ 7.91 (s, 1H), 7.86-7.81 (m, 3H), 7.54-7.49 (m, 2H), 7.46-7.44 (m, 3H), 7.37 (t, J = 7.3 Hz, 2H), 7.31 (t, J = 7.0 Hz, 1H), 5.98 (s, 1H), 2.60 (s, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 143.7, 141.2, 133.3, 133.0, 128.6, 128.4, 128.2, 127.8, 127.8, 126.8, 126.3, 126.1, 125.1, 124.9, 76.4. HRMS (ESI)

calculated [M-OH] ⁺ for C₁₇H₁₃: 217.1012, found: 217.1010. **FTIR (cm⁻¹)** 3384, 3057, 2874, 1951, 1597, 1497, 1366, 1160, 1028, 957.

Phenyl(pyren-1-yl)methanol (3s):³² Yellow solid, 0.056 g in 0.25 mmol scale, 73% yield. R_f (Pet. ether /EtOAc = 80/20): 0.54; ¹H NMR (400 MHz, CDCl₃) δ 8.32 (d, J = 9.2 Hz, 1H), 8.20-8.16 (m, 4H), 8.07-8.0 (m, 4H), 7.48 (d, J = 7.3 Hz, 2H), 7.37-7.28 (m, 3H), 6.87 (s, 1H), 2.62 (bs, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 143.7, 136.7, 131.4, 131.1, 130.7, 128.7, 128.2, 127.9, 127.7, 127.6, 127.1, 126.1, 125.5, 125.3, 125.1, 125.0, 124.9, 124.8, 123.2, 73.7. HRMS (ESI) calculated [M-OH] ⁺ for C₂₃H₁₅: 291.1168, found: 291.1163. FTIR (cm⁻¹) 3421, 1724, 1595, 1522, 1424, 1216, 1045, 923, 846, 765.

Phenyl(3,4,5-trimethoxyphenyl)methanol (3t):³³ Yellow solid, 0.043 g in 0.25 mmol scale, 63% yield. R_f (Pet. ether /EtOAc = 80/20): 0.26; ¹H NMR (400 MHz, CDCl₃) δ 7.41-7.34 (m, 4H), 7.31-7.27 (m, 1H), 6.62 (s, 2H), 5.77 (s, 1H), 3.83 (s, 9H), 3.79 (bs, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 153.3, 143.7, 139.6, 137.2, 128.6, 127.7, 126.6, 103.5, 76.3, 60.9, 56.1. HRMS (ESI) calculated [M-OH] ⁺ for C₁₆H₁₇O₃: 257.1172, found: 257.1167. FTIR (cm⁻¹) 3490, 1889, 1592, 1501, 1458, 1331, 1231, 1129, 1057, 921, 819.

Phenyl(thiophen-2-yl)methanol (3u):³⁴ Viscous yellow oil, 0.042 g in 0.5 mmol scale, 44% yield. R_f (Pet. Ether /EtOAc = 80/20): 0.61; ¹H NMR (400 MHz, CDCl₃) δ 7.48-7.28 (m, 6H), 6.98-6.91 (m, 2H), 6.06 (s, 1H), 2.62 (bs, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 148.2, 143.2, 128.6, 128.1, 126.8, 126.4, 125.5, 125.0, 72.5. HRMS (ESI) calculated [M-OH] ⁺ for C₁₁H₉S: 173.0419, found: 173.0417. FTIR (cm⁻¹) 3376, 1594, 1442, 1216, 1038, 759, 703, 703.

Phenyl(thiophen-3-yl)methanol (3v):³⁵ Viscous yellow oil, 0.015 g in 0.25 mmol scale, 32% yield. R_f (Pet. ether/EtOAc = 80/20): 0.22; ¹H NMR (400 MHz, CDCl₃) δ 7.43-7.36 (m, 4H), 7.33-7.28 (m, 2H), 7.21 (s, 1H), 7.03 (d, J = 4.9 Hz, 1H), 5.91 (s, 1H), 2.31 (bs, 1H). ¹³C NMR

(**100 MHz, CDCl₃**) δ 145.4, 143.5, 128.7, 127.9, 126.6, 126.5, 126.4, 121.8, 73.0. **HRMS (ESI)** calculated [M-OH] ⁺ for C₁₁H₉S: 173.0419, found: 173.0418. **FTIR (cm⁻¹)** 3391, 1647, 1592, 1485, 1452, 1412, 1279, 1224, 1149, 839, 766.

1-Phenylpropan-1-ol (3w):²³ Yellow oil, 0.018 g in 0.25 mmol scale, 53% yield. R_f (Pet. ether /EtOAc = 80/20): 0.48; ¹H NMR (400 MHz, CDCl₃) δ 7.40-7.35 (m, 4H), 7.32-7.28 (m, 1H), 4.62 (t, J = 6.6 Hz, 1H), 1.94 (s, 1H), 1.89-1.74 (m, 2H), 0.94 (t, J = 7.3 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 144.7, 128.5, 127.6, 126.1, 76.2, 32.0, 10.3. HRMS (ESI) calculated [M-OH] ⁺ for C₉H₁₁: 119.0855, found: 119.0857. FTIR (cm⁻¹) 3601, 3412, 3018, 2969, 2930, 1597, 1456, 1217, 1090, 972.

1,3-Diphenylpropan-1-ol (3x):²¹ Yellow solid, 0.025 g in 0.25 mmol scale, 47% yield. R_f (Pet. ether /EtOAc = 80/20): 0.60; ¹H NMR (400 MHz, CDCl₃) δ 7.38-7.37 (m, 4H), 7.32-7.29 (m, 3H), 7.22-7.21 (m, 3H), 4.70 (dd, ¹*J* = 5.7 Hz, ²*J* = 7.4 Hz, 1H), 2.81-2.65 (m, 2H), 2.20-2.02 (m, 2H), 1.95 (bs, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 144.7, 141.9, 128.6, 128.6, 128.5, 127.8, 126.1, 126.0, 74.0, 40.6, 32.2. HRMS (ESI) calculated [M+Na] ⁺ for C₁₅H₁₆ONa: 235.1093, found: 235.1092. FTIR (cm⁻¹) 3389, 3019, 2930, 1612, 1491, 1451, 1374, 1318, 1216, 1050, 922.

Cyclohexyl(phenyl)methanol (3y):²⁴ Colorless oil, 0.071 g in 0.5 mmol scale, 75% yield. R_f (Pet. ether /EtOAc = 80/20): 0.61; ¹H NMR (400 MHz, CDCl₃) δ 7.38-7.28 (m, 5H), 4.38 (d, J = 7.2 Hz, 1H), 2.02-1.99 (m, 1H), 1.88 (s, 1H), 1.80-1.77 (m, 1H), 1.67-1.60 (m, 3H), 1.41-1.38 (m, 1H), 1.27-1.02 (m, 4H), 0.99-0.93 (m, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 143.8, 128.3, 127.5, 126.8, 79.5, 45.1, 29.4, 29.0, 26.6, 26.2, 26.1. HRMS (ESI) calculated [M-OH] ⁺ for C₁₃H₁₇: 173.1325, found: 173.1324. FTIR (cm⁻¹) 3606, 3419, 3019, 2929, 2856, 1587, 1368, 1216, 1067, 922.

1,3-Diphenylprop-2-en-1-ol (3z):³⁶ Yellow solid (0.053 g, 50% yield). R_f (Pet. ether /EtOAc = 80/20): 0.56; ¹H NMR (400 MHz, CDCl₃) δ 7.48-7.47 (m, 2H), 7.43-7.40 (m, 4H), 7.37-7.28 (m, 5H) 6.74 (d, J = 16.0 Hz, 1H), 6.45 (dd, $J_1 = 6.5$ Hz, $J_2 = 15.6$ Hz, 1H), 5.42 (d, J = 6.2 Hz, 1H), 2.27 (bs,1H). ¹³C NMR (100 MHz, CDCl₃) δ 142.9, 136.7, 131.7, 130.6, 128.7, 128.7, 127.9, 126.7, 126.5, 75.2. HRMS (ESI) calculated [M-OH] ⁺ for C₁₅H₁₃: 193.1012, found: 193.1010. FTIR (cm⁻¹) 3422, 1598, 1487, 1216, 1036, 971, 767.

1,3,3-Triphenylprop-2-en-1-ol (3aa):³⁷ Yellow solid, 0.082 g in 0.5 mmol scale, 63% yield. R_f (Pet. ether /EtOAc = 95/05): 0.53; ¹H NMR (400 MHz, CDCl₃) δ 7.39-7.29 (m, 7H), 7.23 (s, 8H), 6.27 (d, J = 9.4, 1H), 5.24 (d, J = 9.4, 1H), 2.25 (s, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 143.5, 143.5, 141.6, 139.2, 130.2, 129.9, 128.7, 128.4, 128.3, 127.8, 127.7, 127.7, 126.3, 71.7. HRMS (ESI) calculated [M-OH] ⁺ for C₁₇H₁₇OS: 269.1325, found: 269.1327. FTIR (cm⁻¹) 3557, 3328, 3057, 3027, 2924, 1596, 1492, 1446, 1362, 1072, 1006.

3,7-Dimethyl-1-phenylocta-2,6-dien-1-ol (3ab): Viscous yellow oil, 0.029 g in 0.25 mmol scale, 50% yield. R_f (Pet. ether /EtOAc = 80/20): 0.66; ¹H NMR (400 MHz, CDCl₃) δ 7.42 (d, J = 7.4 Hz, 2H), 7.34 (t, J = 7.1 Hz, 2H), 7.30-7.23 (m, 1H), 6.64 (d, J = 16.1 Hz, 1H), 6.32 (d, J = 16.1 Hz, 1H), 5.18-5.15 (m, 1H), 2.16-2.05 (m, 2H), 1.70-1.68 (m, 6H), 1.62-1.60 (m, 2H), 1.41 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 137.2, 136.8, 132.3, 128.7, 127.5, 127.3, 126.5, 124.5, 73.7, 42.7, 28.6, 25.9, 23.1, 17.9. HRMS (ESI) calculated [M-OH] ⁺ for C₁₆H₂₁: 213.1638, found: 213.1635. FTIR (cm⁻¹) 3444, 1665, 1589, 1460, 1370, 1260, 1215, 1114, 1052, 974, 765. Benzo[d][1,3]dioxol-5-yl(phenyl)methanol (3ac):³⁸ Yellow oil, 0.031 g in 0.25 mmol scale, 48% yield. R_f (Pet. ether /EtOAc = 80/20): 0.41; ¹H NMR (400 MHz, CDCl₃) δ 7.31-7.26 (m, 4H), 6.80-6.74 (m, 3H), 5.92 (s, 2H), 5.68 (s, 1H), 2.49 (s, 1H). ¹³C NMR (100 MHz, CDCl₃) δ

148.0, 147.3, 142.3, 137.7, 133.3, 128.7, 127.8, 120.2, 108.3, 107.2, 101.2, 75.4. **FTIR (cm⁻¹)** 3359, 2956, 2893, 2778, 1603, 1489, 1245, 1038, 929.

(4-Chlorophenyl)(4-methoxyphenyl)methanol (3af):³⁹ Yellow oil, 0.012 g in 0.25 mmol scale, 19% yield. R_f (Pet. ether /EtOAc = 80/20): 0.49; ¹H NMR (400 MHz, CDCl₃) δ 7.30 (s, 4H), 7.25 (d, J = 8.7 Hz, 2H), 6.87 (d, J = 8.7 Hz, 2H), 5.77 (s, 1H), 3.79 (s, 3H), 2.25 (s, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 159.4, 142.6, 135.9, 133.2, 128.7, 128.1, 127.9, 114.1, 75.3, 55.4. HRMS (ESI) calculated [M-OH]⁺ for C₁₄H₁₂ClO: 231.0571, found: 231.0578. FTIR (cm⁻¹) 3394, 3002, 2928, 2838, 1609, 1511, 1248, 1173, 1032.

Hydroxy-1-methyl-3-phenylindolin-2-one (11a):⁴⁰ Pale brown solid, 0.043 g in 0.25 mmol scale, 73% yield. R_f (Pet. ether /EtOAc = 60/40): 0.36; ¹H NMR (400 MHz, CDCl₃) δ 7.40-7.28 (m, 7H), 7.10 (t, J = 7.5 Hz, 1H), 6.91 (d, J = 7.6 Hz, 1H), 3.92 (s, 1H), 3.24 (m, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 177.7, 143.6, 140.3, 131.8, 129.9, 128.6, 128.3, 125.5, 125.0, 123.7, 108.8, 78.1, 26.6. HRMS (ESI) calculated [M+H] ⁺ for C₁₅H₁₄O₂N: 240.1019, found: 240.1020. FTIR (cm⁻¹) 3684, 3386, 3020, 2402, 1718, 1614, 1477, 1369, 1092, 930.

1-Benzyl-3-hydroxy-3-phenylindolin-2-one (11b):⁴¹ Pale brown solid, 0.040 g in 0.25 mmol scale, 51% yield. R_f (Pet. ether /EtOAc = 60/40): 0.53; ¹H NMR (400 MHz, CDCl₃) δ 7.44-7.42 (m, 2H), 7.36-7.22 (m, 10H), 7.06 (t, J = 7.3 Hz, 1H), 6.80 (d, J = 7.8 Hz, 1H), 5.05 (d, J = 15.6 Hz, 1H), 4.82 (d, J = 15.6 Hz, 1H), 3.89 (bs, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 177.8, 142.7, 140.3, 135.5, 131.8, 129.8, 129.0, 128.8, 128.4, 127.9, 127.4, 125.5, 125.1, 123.7, 109.9, 78.1, 44.1. HRMS (ESI) calculated [M+H]⁺ for C₂₁H₁₈O₂N: 316.1332, found: 316.1333. FTIR (cm⁻¹) 3387, 3020, 2402, 1718, 1613, 1479, 1367, 1216, 1075, 930.

3-Hydroxy-5-methoxy-1-methyl-3-phenylindolin-2-one (11c):⁴² Pale brown solid, 0.037 g in 0.25 mmol scale, 55% yield. R_f (Pet. ether /EtOAc = 60/40): 0.23; ¹H NMR (400 MHz, CDCl₃) δ 7.39-7.28 (m, 5H), 6.90-6.86 (m, 2H), 6.81 (d, J = 8.3 Hz, 1H), 3.75 (s, 3H), 3.20 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 177.6, 156.7, 140.3, 136.8, 133.1, 128.6, 128.3, 125.4, 114.7, 111.8, 109.3, 78.5, 55.9, 26.7. HRMS (ESI) calculated [M+Na] ⁺ for C₁₆H₁₅O₃NNa: 292.0944, found: 292.0947. FTIR (cm⁻¹) 3380, 3020, 2402, 1713, 1609, 1495, 1434, 1366, 1161, 1103, 933.

Supporting Information

Details on mechanistic experiments, optimization studies, and the copies of ¹H and ¹³C NMR spectra of all products. The Supporting Information is available free of charge on the ACS Publications website.

Acknowledgement

Generous financial support from the Science and Engineering Research Board-DST, Government of India (File Number: EMR/2016/007021) is kindly acknowledged. RNG would like to thank IISc for the fellowship. We thank Mr. Manikandan Thangaraj for the experimental support.

REFERENCES

- (a) Himeshima, Y.; Sonoda, T.; Kobayashi, H. Fluoride-Induced 1,2-Elimination of *O*-Trimethylsilylphenyl Triflate to Benzyne Under Mild Conditions. *Chem. Lett.* 1983, 1211-1214.
 See also: (b) Peña, D.; Cobas, A.; Pérez, D.; Guitián, E. An Efficient Procedure for the Synthesis of *Ortho*-Trialkylsilylaryl Triflates: Easy Access to Precursors of Functionalized Arynes. *Synthesis* 2002, 1454-1458.
- For selected reviews on aryne chemistry, see: (a) Shi, J.; Li, Y.; Li, Y. Aryne Multifunctionalization with Benzdiyne and Benztriyne Equivalents. *Chem. Soc. Rev.* 2017, *46*, 1707-1719. (b) García-López, J.-A.; Greaney, M. F. Synthesis of Biaryls using Aryne Intermediates. *Chem. Soc. Rev.*

2016, 45, 6766-6798. (c) Bhojgude, S. S.; Bhunia, A.; Biju, A. T. Employing Arynes in Diels–Alder Reactions and Transition-Metal-Free Multicomponent Coupling and Arylation Reactions. *Acc. Chem. Res.* 2016, 49, 1658-1670. (d) Dubrovskiy, A. V.; Markina, N. A.; Larock, R. C. Use of Benzynes for The Synthesis of Heterocycles. *Org. Biomol. Chem.* 2013, *11*, 191-218. (e) Tadross, P. M.; Stoltz, B. M. A Comprehensive History of Arynes in Natural Product Total Synthesis. *Chem. Rev.* 2012, *112*, 3550-3577. (f) Gampe, C. M.; Carreira, E. M. Arynes and Cyclohexyne in Natural Product Synthesis. *Angew. Chem. Int. Ed.* 2012, *51*, 3766-3778. (g) Bhunia, A.; Yetra, S. R.; Biju, A. T. Recent Advances in Transition-Metal-Free Carbon–Carbon and Carbon–Heteroatom Bond-Forming Reactions Using Arynes. *Chem. Soc. Rev.* 2012, *41*, 3140-3152.

- (a) Wenk, H. H.; Winkler, M.; Sander, W. One Century of Aryne Chemistry. *Angew. Chem. Int. Ed.* 2003, *42*, 502-528. (b) Pellissier, H.; Santelli, M. The Use of Arynes in Organic Synthesis. *Tetrahedron* 2003, *59*, 701-730.
- Peña, D.; Pérez, D.; Guitián, E. Insertion of Arynes into σ Bonds. *Angew. Chem. Int. Ed.* 2006, 45, 3579-3581, and references therein.
- (a) Bhojgude, S. S.; Biju, A. T. Arynes in Transition Metal Free Multicomponent Coupling Reactions. *Angew. Chem. Int. Ed.* 2012, *51*, 1520-1522, and references cited therein. See also: (b) Bhunia, A.; Biju, A. T. Employing Arynes in Transition-Metal-Free, *N*-Heterocycle-Initiated Multicomponent Reactions. *Synlett* 2014, 608-614.
- For a recent review, see: Roy, T.; Biju, A. T. Recent Advances in Molecular Rearrangements Involving Aryne Intermediates. *Chem. Commun.* 2018, *54*, 2580-2594.
- For a recent review, see: Feng, M.; Jiang, X. Reactions of Arynes Involving Transition-Metal Catalysis. *Synthesis* 2017, 49, 4414-4433.

- 8. (a) Dhokale, R. A.; Thakare, P. R.; Mhaske, S. B. Transition-Metal-Free *C*-Arylation at Room Temperature by Arynes. *Org. Lett.* 2012, *14*, 3994-3997. (b) Mohanan, K.; Coquerel, Y.; Rodriguez, J. Transition-Metal-Free α-Arylation of β-Keto Amides via an Interrupted Insertion Reaction of Arynes. *Org. Lett.* 2012, *14*, 4686-4689.
- (a) Rémond, E.; Tessier, A.; Leroux, F. R.; Bayardon, J.; Jugé, S. Efficient Synthesis of Quaternary and *P*-Stereogenic Phosphonium Triflates. *Org. Lett.* 2010, *12*, 1568-1571. For early reports, see:
 (b) Wittig, G.; Braun, H. Optisch aktive, vierfach ungleich ligierte Tetraarylphosphonium-Salze *Liebigs Ann. Chem.* 1971, *751*, 27-31. (c) Wittig, G.; Maturza, H. Quaternierung von Triarylphosphinen rnit Dehydroaromaten. *Liebigs Ann. Chem.* 1970, *732*, 97-106. (d) Wittig, G.; Benz, E. Uber das Verhalten von Dehydrobenzol gegenuber nucleophilen und elektrophilen Reagenzien. *Chem. Ber.* 1959, *92*, 1999-2013.
- 10. (a) Bhunia, A.; Kaicharla, T.; Porwal, D.; Gonnade, R. G.; Biju, A. T. Multicomponent Reactions Involving Phosphines, Arynes and Aldehydes. *Chem. Commun.* 2014, *50*, 11389-11392. (b) Bhunia, A.; Roy, T.; Gonnade, R. G.; Biju, A. T. Rapid Access to Benzoxaphospholes and their Spiro Analogues by a Three-Component Coupling Involving Arynes, Phosphines, and Activated Ketones. *Org. Lett.* 2014, *16*, 5132-5135. For the reaction of arynes with aldehydes without additional reagent, see: (c) Yoshida, H.; Watanabe, M.; Fukushima, H.; Ohshita, J.; Kunai, A. A 2:1 Coupling Reaction of Arynes with Aldehydes via *o*-Quinone Methides: Straightforward Synthesis of 9-Arylxanthenes. *Org. Lett.* 2004, *6*, 4049-4051.
- For selected recent reports on aryne chemistry, see: (a) Xu, H.; He, J.; Shi, J.; Tan, L.; Qiu, D.; Luo, X.; Li, Y. Domino Aryne Annulation via a Nucleophilic-Ene Process. *J. Am. Chem. Soc.* **2018**, *140*, 3555-3559. (b) Garg, P.; Singh, A. Unmasking Dipole Character of Acyl Ketene Dithioacetals via a Cascade Reaction with Arynes: Synthesis of Benzo[*b*]Thiophenes. *Org. Lett.*

, *20*, 1320-1323. (c) Shi, J.; Xu, H.; Qiu, D.; He, J.; Li, Y. Selective Aryne Formation via Grob Fragmentation from the [2+2] Cycloadducts of 3-Triflyloxyarynes. *J. Am. Chem. Soc.* **2017**, *139*, 623-626. (d) Gupta, E.; Kant, R.; Mohanan, K. Decarbethoxylative Arylation Employing Arynes: A Metal-Free Pathway to Arylfluoroamides. *Org. Lett.* **2017**, *19*, 6016-6019. (e) Ross, S. P.; Baire, B.; Hoye, T. R. Mechanistic Duality in Tertiary Amine Additions to Thermally Generated Hexadehydro-Diels–Alder Benzynes. *Org. Lett.* **2017**, *19*, 5705-5708. (f) Phatake, R. S.; Mullapudi, V.; Wakchaure, V. C.; Ramana, C. V. Fluoride-Mediated Dephosphonylation of α-Diazo-β-Carbonyl Phosphonates. *Org. Lett.* **2017**, *19*, 372-375.

For selected recent aryne three-component coupling developed from our group, see: (a) Bhojgude,
 S. S.; Roy, T.; Gonnade, R. G.; Biju, A. T. Substrate-Controlled Selectivity Switch in the Three-Component Coupling Involving Arynes, Aromatic Tertiary Amines, and CO₂. *Org. Lett.* 2016, *18* 5424-5427. (b) Bhojgude, S. S.; Baviskar, D. R.; Gonnade, R. G.; Biju, A. T. Three-Component Coupling Involving Arynes, Aromatic Tertiary Amines, and Aldehydes via Aryl-Aryl Amino Group Migration. *Org. Lett.* 2015, *17*, 6270-6273. (c) Roy, T.; Thangaraj, M.; Gonnade, R. G.; Biju, A. T. Synthesis of Functionalized Amino Epoxides by a Three-Component Coupling Involving Aziridines, Arynes and Aldehydes. *Chem. Commun.* 2016, *52*, 9044-9047.

(a) Deng, Z.; Lin, J.-H.; Xiao, J.-C. Nucleophilic Arylation with Tetraarylphosphonium Salts. *Nat. Commun.* 2016, *7*, 10337. For related reports on organometallic reagent-free synthesis of carbinols, see: (b) Das, M.; O'Shea, D. F. Bu₄N⁺ Alkoxide-Initiated/Autocatalytic Addition Reactions with Organotrimethylsilanes. *J. Org. Chem.* 2014, *79*, 5595-5607. (c) Suzawa, K.; Ueno, M.; Wheatley, A. E. H.; Kondo, Y. Phosphazene Base-Promoted Functionalization of Aryltrimethylsilanes. *Chem. Commun.* 2006, 4850-4852. (d) Effenberger, F.; Spiegler, W. Zum

Mechanismus basekatalysierter Carbodesilylierungen von Aryl□ und Heteroaryltrimethylsilanen. *Chem. Ber.* **1985**, *118*, 3872-3899.

- 14. (a) Koniarczyk, J. L.; Hesk, D.; Overgard, A.; Davies, I. W.; McNally, A. A General Strategy for Site-Selective Incorporation of Deuterium and Tritium into Pyridines, Diazines, and Pharmaceuticals. *J. Am. Chem. Soc.* 2018, *140*, 1990-1993. See also: (b) Hilton, M. C.; Dolewski, R. D.; McNally, A. Selective Functionalization of Pyridines via Heterocyclic Phosphonium Salts. *J. Am. Chem. Soc.* 2016, *138*, 13806-13809.
- For a review on Cs₂CO₃, see: Flessner, T.; Doye, S. Cesium Carbonate: A Powerful Inorganic Base in Organic Synthesis. *J. Prakt. Chem.* **1999**, *341*, 186-190.
- The benzhydrol formed did not undergo further arylation with arynes under the present conditions. For the arylation of phenols/alcohols, see: (a) Thangaraj, M.; Bhojgude, S. S.; Mane, M. V.; Biju, A. T. From Insertion to Multicomponent Coupling: Temperature Dependent Reactions of Arynes with Aliphatic Alcohols. *Chem. Commun.* 2016, *52*, 1665-1668. (b) Liu, Z.; Larock, R. C. Facile *O*-Arylation of Phenols and Carboxylic Acids. *Org. Lett.* 2004, *6*, 99-102. (c) Liu, Z.; Larock, R. C. Facile *N*-Arylation of Amines and Sulfonamides and *O*-Arylation of Phenols and Arenecarboxylic Acids. *J. Org. Chem.* 2006, *71*, 3198-3209.
- 17. For details, see the Supporting Information
- For the three-component coupling of arynes, phosphines and isatins leading to the synthesis of spirobenzoxaphospholes, see ref. 10b.
- Sato, Y.; Tamura, T.; Kinbara, A.; Morib, M. Synthesis of Biaryls Via Palladium-Catalyzed
 [2+2+2] Cocyclization of Arynes and Diynes: Application to the Synthesis of Arylnaphthalene
 Lignans. *Adv. Synth. Catal.* 2007, *349*, 647-661.

2
3
4
5
6
7
/
8
9
10
11
12
13
14
14
15
16
17
18
19
20
20
21
22
23
24
25
26
27
27
28
29
30
31
32
33
31
24
35
36
37
38
39
40
.0 ⊿1
40 40
42
43
44
45
46
47
48
10
49 50
50
51
52
53
54
55
56
50
5/
58
59
60

20). Karthikeyan,	J.;	Jeganmohan,	М.;	Cheng,	СН.	Cobalt-Cat	talyzed	Addition	Reaction	of
	Organoboroni	c A	cids with Alde	ehyde	s: Highl	y Enan	tioselective	Synthe	sis of Dia	rylmethan	ols.
	Chem. Eur. J.	201	0, 16, 8989-899	92.							

- 21. Zhou, F.; Li, C.-J. The Barbier–Grignard-Type Arylation of Aldehydes Using Unactivated Aryl Iodides in Water. *Nat. Commun.* **2014**, *5*, 4254.
- 22. Kobayashi, S.; Shibukawa, K.; Miyaguchi, Y.; Masuyama, A. Grignard Reactions in Cyclopentyl Methyl Ether. *Asian J. Org. Chem.* **2016**, *5*, 636-645.
- Wang, M.-H.; Chen, L.-Y. An Efficient Fecl₃-Mediated Approach for Reduction of Ketones through N-Heterocyclic Carbene Boranes. *Tetrahedron Lett.* 2017, *58*, 732-735.
- Kuriyama, M.; Shimazawa, R.; Shirai, R. Efficient 1,2-Addition of Aryl- And Alkenylboronic Acids to Aldehydes Catalyzed by the Palladium/Thioether-Imidazolinium Chloride System. J. Org. Chem. 2008, 73, 1597-1600.
- 25. Zou, T.; Pi, S. S.; Li, J. H. Fecl₃-Catalyzed 1,2-Addition Reactions of Aryl Aldehydes with Arylboronic Acids. *Org. Lett.* **2008**, *11*, 453-456.
- 26. Zheng, L.-S.; Jiang, K.-Z.; Deng, Y.; Bai, X.-F.; Gao, G.; Gu, F.-L.; Xu, L.-W. Synthesis of Ar-BINMOL Ligands by [1,2]-Wittig Rearrangement to Probe their Catalytic Activity in 1,2-Addition Reactions of Aldehydes with Grignard Reagents. *Eur. J. Org. Chem.* 2013, 748-755.
- Zheng, H.; Zhang, Q.; Chen, J.; Liu, M.; Cheng, S.; Ding, J.; Wu, H.; Su, W. Copper(II) Acetate-Catalyzed Addition of Arylboronic Acids to Aromatic Aldehydes. *J. Org. Chem.* 2009, 74, 943-945.
- Yang, J.; Chen, X.; Wang, Z. The Carbonyl Group Tuned Electron-Deficient Phosphorus Ligands and their Application in Rhodium Catalyzed Arylation to Aldehydes. *Tetrahedron Lett.* 2015, *56*, 5673-5675.

- Albrecht, M.; Mirtschin, S.; de Groot, M.; Janser, I.; Runsink, J.; Raabe, G.; Kogej, M.; Schalley, C. A.; Fröhlich, R. Hierarchical Assembly of Helicate-Type Dinuclear Titanium(Iv) Complexes. *J. Am. Chem. Soc.* 2005, *127*, 10371-10387.
- Vile, J.; Carta, M.; Bezzu, C. G.; McKeown, N. B. Tribenzotriquinacene-Based Polymers of Intrinsic Microporosity. *Polym. Chem.* 2011, *2*, 2257-2260.
- 31. Das, T.; Chakraborty, A.; Sarkar, A. Solvent Control of Product Diversity in Palladium-Catalyzed Addition of Arylboronic Acid to Aryl Aldehydes. *Tetrahedron Lett.* **2014**, *55*, 5174-5178.
- Kondo, S.-I.; Taguchi, Y.; Bie, Y. Solvent Dependent Intramolecular Excimer Emission of Di(1-Pyrenyl)Silane and Di(1-Pyrenyl) Methane Derivatives. *RSC Adv.* 2015, *5*, 5846-5849.
- Busetto, L.; Cassani, M. C.; Femoni, C.; Mancinelli, M.; Mazzanti, A.; Mazzoni, R.; Solinas, G. N-Heterocyclic Carbene-Amide Rhodium(I) Complexes: Structures, Dynamics, and Catalysis. *Organometallics* 2011, *30*, 5258-5272.
- 34. Li, J.; Liu, Q.; Shen, H.; Huang, R.; Zhang, X.; Xiong, Y.; Chen, C. Ethers as Hydrogen Sources in BF₃.OEt₂ Promoted Reduction of Diphenylmethyl Alcohols, Ethers and Esters to Hydrocarbons. *RSC Adv.* 2015, *5*, 85291-85295.
- 35. Yamamoto, T.; Furusawa, T.; Zhumagazin, A.; Yamakawa, T.; Oe, Y.; Ohta, T. Palladium-Catalyzed Arylation of Aldehydes with Bromo-Substituted 1,3-Diaryl-Imidazoline Carbene Ligand. *Tetrahedron* **2015**, *71*, 19-26.
- 36. Zheng, T.; Li, J.; Zhang, S.; Xue, B.; Sun, H.; Li, X.; Fuhr, O.; Fenske, D. Selective C–F and C–H Activation of Fluoroarenes by Fe(PMe₃)₄ and Catalytic Performance of Iron Hydride in Hydrosilylation of Carbonyl Compounds. *Organometallics*, **2016**, *35*, 3538-3545.

3
4
5
6
7
8
9
10
11
17
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
20
27 20
20
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
50

60

- 37. Capdevila, M. G.; Benfatti, F.; Zoli, L.; Stenta, M.; Cozzi, P. G. Merging Organocatalysis with an Indium(Iii)-Mediated Process: A Stereoselective α-Alkylation of Aldehydes With Allylic Alcohols. *Chem. Eur. J.* 2010, *16*, 11237-11241
- 38. Guay, D.; Hamel, P.; Blouin, M.; Brideau, C.; Chan, C. C.; Chauret, N.; Ducharme, Y.; Huang, Z.; Girard, M.; Jones, T. R.; Laliberté, F.; Masson, P.; McAuliffe, M.; Piechuta, H.; Silva, J.; Young, R. N.; Girard, Y. Discovery of L-791,943: A Potent, Selective, Non Emetic and Orally Active Phosphodiesterase-4 Inhibitor. *Bioorg. Med. Chem. Lett.* 2002, *12*, 1457-1461.
- Fisher, K. M.; Bolshan, Y. Brønsted Acid-Catalyzed Reactions of Trifluoroborate Salts with Benzhydryl Alcohols. J. Org. Chem. 2015, 80, 12676-12685.
- Babu, K.N.; Kinthada, L. K.; Ghosh, S.; Bisai, A. Highly Chemoselective Synthesis of Dimeric 2-Oxindoles with A C-3/C-5' Linkage via Friedel–Crafts Alkylations of 2-Oxindoles with 3-Hydroxy-2-Oxindoles. *Org. Biomol. Chem.* 2015, *13*, 10641-10665.
- Tan, J.; Kuang, Y.; Wang, Y.; Huang, Q.; Zhu, J.; Wang, Y. Axial Tri-*tert*-Butylphosphane Coordination to Rh₂(OAC)₄: Synthesis, Structure, and Catalytic Studies.*Organometallics* 2016, 35, 3139-3147.
- Piemontesi, C.; Wang, Q.; Zhu, J. Synthesis of 3,3-Disubstituted Oxindoles by One-Pot Integrated Brønsted Base-Catalyzed Trichloroacetimidation of 3-Hydroxyoxindoles and Brønsted Acid-Catalyzed Nucleophilic Substitution Reaction. *Org. Biomol. Chem.* 2013, *11*, 1533-1536.