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Abstract: Novel phenylnaphthyl phosphines were prepared and
applied to the Pd-catalyzed intramolecular amidation. Both ligands
gave good to excellent yields in the synthesis of five-, six-, and
seven-membered rings from halo-amides and carbamates. 
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Transition-metal catalyzed carbon–heteroatom bond for-
mation is a powerful tool for the synthesis of highly com-
plex molecules.1 Furthermore, transition metal catalyzed
reactions are compatible with many functional groups,
which enables the total synthesis of nitrogen-containing
natural products2 and the construction of heterocycles in
drug development.3 

Since Buchwald reported the pioneering Pd-catalyzed C–
N bond formation,4 biphenyl phosphines 14a and 24b are
recognized as effective ligands for these reactions
(Figure 1). On the other hand, binaphthyl phosphines,
BINAP 3,5 and MOP 4,6 have also played a key role in the
development of efficient Pd-mediated catalytic systems.

Figure 1 Biphenyl and binaphthyl phosphines used in Pd-catalyzed
C–N bond formation.

However, even with these well-designed ligands, unsatis-
factory results were sometimes observed since the effi-
ciency of such reactions strongly depends on the fine
electronic and structural properties of the ligands, there-
fore, novel phosphine ligands are required.

Recently, we reported the efficient preparation of 1-meth-
oxy-8-phenylnaphthalene derivatives and the preliminary
investigation of their optical behavior.7,8 We envision that
phenylnaphthyl phosphine derivatives 6 and 11, which are
readily prepared by our method, would be excellent
ligands for Pd-mediated C–N bond formation. Herein, the
preparation of novel phenylnaphthyl phosphines 6 and 11
and their applications to Pd-catalyzed intramolecular
amidations are described.

As shown in Scheme 1, phosphine 6 was prepared in 80%
yield from 57 by treatment with HSiCl3.

9 Once phosphine
6 was synthesized, we focused our attention on the analo-
gous phosphine 11, which should exhibits different elec-
tronic and steric properties to 6 (Scheme 2). 

Scheme 1 Preparation of phenylnaphthyl phosphine 6.

We selected 1,8-diiodonathphalene (7), which has suffi-
cient reactivity to undergo cross-coupling reactions, as the
starting material for 11. Upon treating 7 and 2-methoxy-
phenylboronic acid (8) with 5.0 mol% of Pd(PPh3)4 and
Cs2CO3, the selective Suzuki–Miyaura cross-coupling10

proceeded smoothly to afford biaryl iodide 9 in good
yield. Successive treatment with n-BuLi and diphe-
nylphosphinic chloride afforded phosphine oxide 10 in
62% yield. Finally, HSiCl3 reduction of 10 provided the
desired phosphine 11.11

The potential of 6 and 11 as ligands was evaluated by the
Pd-mediated intramolecular amidation of aryl bromide
12, which was reported by Buchwald.12 As shown in
Table 1, the cyclization was successful when phosphine 6
was employed. Although the reaction did not proceed

1

3

PtBu2

2

PCy2

Me2N

PPh2

PPh2

4

PPh2

OMe

OMePh2P

6

HSiCl3, Et3N

xylene, 120 °C

5

OMePh2(O)P

80%

D
ow

nl
oa

de
d 

by
: U

ni
ve

rs
ity

 o
f F

lo
rid

a.
 C

op
yr

ig
ht

ed
 m

at
er

ia
l.



116 Y. Kitamura et al. LETTER

Synlett 2006, No. 1, 115–117 © Thieme Stuttgart · New York

smoothly using Buchwald conditions12a (Table 1, entry 1),
using Cs2CO3 instead of K2CO3 improves the yield of 13
to 44% (Table 1, entry 2). Furthermore, changing the sol-
vent from toluene to 1,4-dioxane results in an 80% yield
of 13 after 3.5 hours (Table 1, entry 3). The combination
of 5.0 mol% 6 and 6.0 mol% Pd(OAc)2 gave the best re-
sult (Table 1, entry 4).13 These results prove the outstand-
ing ability of 6 as a ligand giving a reaction about ten
times shorter than that previously reported.14 

Although 11 possesses similar functional groups to 6, cy-
clization did not occur (Table 1, entry 5).16 This dramatic
difference in the reactivity might be due to the steric bulk-
iness of the phenyl moiety of 11, in a 1,8-relationship to
the diphenylphosphino group on the naphthyl ring. Such a
steric effect could make oxidative addition of the Pd(0)-11
complex to aryl bromide 12 difficult. We also looked at
the reactivity of ligand 14,15 which is similar to 11 in that
both lack a methoxy group on the naphthyl ring, however
ligand 14 provided 13 in 45% yield (Table 1, entry 6).
This difference in reactivity suggests that the methoxy

group plays an important role in the superior catalytic
activity of the Pd(0)-6 complex. The electron donating
ability of the methoxy group might facilitate the p-coordi-
nation of the naphthyl moiety to Pd(0) and lead to stabili-
zation of the catalytically active low-coordinate Pd
species.17 

Both ligands 6 and 11 were then applied to the synthesis
of six- and seven-membered rings (Table 2). Lactam con-
struction proceeded smoothly using ligands 6, 11, and 14,
providing 17 in excellent yields (Table 2, entries 1–3). It
is noteworthy that ligand 11, which was ineffective for the
formation of a five-membered ring (Table 1, entry 5),
gave an excellent result here.

Ligand 6 resulted in a seven-membered lactam, and al-
though only 3.0 mol% of Pd(OAc)2 was required, a longer
reaction time under reflux conditions was necessary
(Table 2, entry 5). The reactivities of ligands 6, 11, and 14
in this reaction were similar to those observed in the for-
mation of five-membered rings (Table 1, entries 4–6).18

Scheme 2 Preparation of phenylnaphthyl phosphine 11. Reagents
and conditions: a) Pd(PPh3)4 (5.0 mol%), Cs2CO3, toluene–EtOH–
H2O (3:2:2), 100 °C, 66%; b) n-BuLi, Et2O, –78 °C; c) Ph2P(O)Cl,
Et2O, –78 to 50 °C, 62% (two steps); d) HSiCl3, Et3N, xylene, 120 °C,
34%.

I I MeO

B(OH)2
IMeO

P(O)Ph2MeO PPh2MeO

11

7

8

9

10

a

db, c

Table 1 Five-Membered Ring Formation of Amide 12

Entry Pd (mol%) Ligand Base Solvent Time (h) Yield (%)

1 3.3 6 K2CO3 Toluene 36 11

2 3.0 6 Cs2CO3 Toluene 3.5 44

3 3.0 6 Cs2CO3 1,4-Dioxane 3.5 80

4 6.0 6 Cs2CO3 1,4-Dioxane 3.5 85

5 6.0 11 Cs2CO3 1,4-Dioxane 3.5 trace

6 6.0 14 Cs2CO3 1,4-Dioxane 3.5 45
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base (1.5 equiv)
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  6  R = PPh2, R' = OMe
11  R = OMe, R' = PPh2

14  R = PPh2, R' = H
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Ligand:

Table 2 Cyclization of Amides 15 and 16

Entry n Pd (mol%) Ligand Conditions Yield (%)

1 2 6.0 6 100 °C, 3.5 h 91

2 2 6.0 11 100 °C, 3.5 h 85

3 2 6.0 14 100 °C, 3.5 h 95

4 3 6.0 6 100 °C, 3.5 h 7

5 3 3.0 6 reflux, 48 h 51

6 3 3.0 11 reflux, 48 h trace

7 3 3.0 14 reflux, 48 h 34
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To construct indoline and quinoline derivatives, we un-
dertook the cyclization of 19 and 20. As shown in Table 3,
cyclization was successful with ligands 6 and 11. 

In conclusion, our newly prepared phenylnaphthyl phos-
phines 6 and 11 have sufficient activity as ligands for Pd-
catalyzed intramolecular amidations. These ligands are
easy to use and stable under several conditions.

Further tuning of the ligand structure taking advantage of
the methoxy group, as well as applications of 6 and 11 to
other transition-metal catalyzed reactions are currently
underway.
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Table 3 Cyclization of Carbamate Derivatives 19 and 20

Entry n Ligand Yield (%)

1 1 6 69

2 1 11 51

3 2 6 89

4 2 11 79
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n n
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19: n = 1
20: n = 2

21: n = 1
22: n = 2

Cs2CO3 (1.0 equiv)
1,4-dioxane

100 °C, 3.5 h

Figure 2 Substrates for eight- to ten-membered lactam 
formation. 
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