

THE SYNTHESIS OF PALLADIUM-GOLD AND PLATINUM-GOLD BIMETALLIC COMPLEXES BASED UPON TRIPOD TRIDENTATE PHOSPHINE AND ARSINE LIGANDS

ANDREW F. CHIFFEY, JOHN EVANS and WILLIAM LEVASON*

Department of Chemistry, University of Southampton, Southampton SO17 1BJ, U.K.

(Received 8 August 1995; accepted 11 August 1995)

Abstract—The planar complexes $MLCl_2$ [M = Pd or Pt; L = MeC(CH₂PPh₂)₃, MeC (CH₂AsPh₂)₃, MeC(CH₂AsMe₂)₃, MeC(CH₂SMe)₃ or MeC(CH₂SeMe)₃] have been prepared. In all cases spectroscopic data show that the tripod ligands are coordinated as *cis* bidentates. The complexes of MeC(CH₂PPh₂)₃ and MeC(CH₂AsPh₂)₃ react with AuCl(SMe₂) in CH₂Cl₂ to form bimetallics MLAuCl₃ with the gold coordinated to the third donor group. All five tridentates react with Au(SMe₂)Cl or Au(tetrahydrothiophen)Cl to form L(AuCl₃ complexes.

Coordination complexes containing two different metal centres are of interest as possible precursors to bimetallic catalysts. We have recently reported¹ several palladium–gold and platinum–gold bimetallics based upon bis(diphenylarsino)methane of types *trans*-[M(Ph₂AsCH₂AsPh₂AuX)₂X₂], *trans*-[Pd(Ph₂AsCH₂AsPh₂AuX₃)₂X₂] and *trans*-[Pt(Ph₂ AsCH₂AsPh₂AuX₃)₂X₄] (M = Pd or Pt, X = Cl or Br), which have M:Au ratios of 1:2. Here, we report some examples based upon tripodal tridentate ligands MeC(CH₂EPh₂)₃ [E = P (ttp) or As (tta)], which have a 1:1 M:Au ratio.

EXPERIMENTAL

Physical measurements were made as described previously.² MeC(CH₂PPh₂)₃ (ttp) was obtained from Strem and used as-received. MeC (CH₂AsPh₂)₃ (tta) was obtained from sodium, AsPh₃ and MeC(CH₂Cl)₃ in liquid ammonia³ and recrystallized from ethanol. ¹H NMR (CDCl₃) : 0.95 (s, 1H), 2.31 (s, 2H), 7.1–7.4 (m, 10H). MeC (CH₂AsMe₂)₃ (ttam) was prepared from NaAsMe₂ and MeC(CH₂Cl)₃ in tetrahydrofuran.⁴ ¹H NMR (CDCl₃) : 0.95 (s, 6H), 1.05 (s, 1H), 1.70 (s, 2H);

lit.⁴ 0.95, 1.06, 1.71. MeC(CH₂SMe)₃⁵ and MeC (CH₂SeMe)₃⁶ were also made by literature methods. MeC(CH₂SMe)₃ ¹H NMR (CDCl₃): 1.10 (s, 1H), 2.15 (s, 3H), 2.65 (s, 2H); lit.⁵ 1.15, 2.1, 2.5. MeC (CH₂SeMe)₃ ¹H NMR (CDCl₃): 1.15 (s, 1H), 2.0 [s, 3H, ²J(¹H-⁷⁷Se) = 10 Hz], 2.75 (s, 2H, ²J(¹H-⁷⁷Se) = 9 Hz]; ⁷⁷Se{¹H}: δ 22.6; lit.⁶ 1.15, 2.0, 2.75, δ (⁷⁷Se) = 23.

The Pd^{II} and Pt^{II} complexes were made by the same general method, described below for Pd(ttp)Cl₂.

$Pd(ttp)Cl_2$

A solution of Pd(MeCN)₂Cl₂ (0.05 g, 0.2 mmol) in CH₂Cl₂ (5 cm³) was added to ttp (0.13 g, 0.2 mmol) in CH₂Cl₂ (20 cm³) under nitrogen and the mixture stirred for 30 min. The solution was concentrated to *ca* 3 cm³ and diethyl ether (20 cm³) added slowly. The white precipitate was filtered off and dried *in vacuo*. Yield 0.14 g (91%). Found : C, 61.0; H, 5.0. C₄₁H₃₉Cl₂P₃Pd requires: C, 61.4; H, 4.9%. FAB MS (3-NOBA matrix) : *m/z* 800, calc. for C₄₁H₃₉³⁵Cl₂P₃¹⁰⁶Pd⁺ 800; *m/z* 765, calc. for C₄₁H₃₉³⁵ClP₃¹⁰⁶Pd⁺ 765. ¹H NMR (CDCl₃) : 0.51 (s, 3H), 2.0 (s, 2H), 2.45 (m, 4H), 7.1–7.5 (m, 30H). ³¹P{¹H} (CDCl₃ relative to 85% H₃PO₄) : δ –28.9, +17.2. IR (Nujol mull) : *v*(Pd—Cl) 308, 293 cm⁻¹.

^{*}Author to whom correspondence should be addressed.

UV-vis (CH₂Cl₂), $E_{\text{max}}/10^3$ cm⁻¹ ($\varepsilon_{\text{mol}}/\text{dm}^{-1}$ mol cm⁻¹) : 31.0 (4500), 37.7 (20,800).

Pt(ttp)Cl₂

Yield 85%. Found: C, 55.3; H, 4.6. $C_{41}H_{39}Cl_2P_3Pt$ requires: C, 55.3; H, 4.4%. FAB-MS: m/z 889, calc. for $C_{41}H_{39}{}^{35}Cl_2P_3{}^{95}Pt^+$ 889; m/z854, calc. for $C_{41}H_{39}{}^{35}ClP_3{}^{195}Pt^+$ 854. ¹H NMR (CDCl₃): 0.49 (s, 3H), 2.0 (s, 2H), 2.53 (m, 4H), 7.1–7.6 (m, 30H). ${}^{31}P{}^{1}H{}$: δ –28.8 (s), –1.3 [${}^{1}J({}^{195}Pt^{-31}P)$ = 3430 Hz]. ${}^{195}Pt$ (relative to PtCl₆^{2–} in water): δ –4607. IR: ν (Pt—Cl) 314, 294 cm⁻¹. UV–vis (CH₂Cl₂): 32.8 (1400), 36.5 (7600), 39.5 (17,400).

Pd(tta)Cl₂

Yield 81%. Found: C, 51.6; H, 3.5. $C_{41}H_{39}As_3$ Cl₂Pd requires: C, 52.7; H, 4.2%. ¹H NMR (CDCl₃): 0.84 (s, 3H), 2.11 (s, 2H), 2.35 (m, 4H), 7.2–7.5 (m, 30H). IR: v(Pd—Cl) 310, 295 cm⁻¹. UV–vis (CH₂Cl₂): 28.7 (5000), 36.8 (20,300).

Pt(tta)Cl₂

Yield 83%. Found: C, 47.3; H, 3.1. $C_{41}H_{39}As_3$ Cl₂Pt requires: C, 48.1; H, 3.8%. ¹H NMR (CDCl₃): 0.83 (s, 3H), 2.10 (s, 2H), 2.38 (m, 4H), 7.2–7.6 (m, 30H). ¹⁹⁵Pt: δ –4497. IR: v(Pt—Cl) 312, 299 cm⁻¹. UV–vis: 29.6 (2000), 33.7 (5800).

Pd(ttam)Cl₂

Yield 81%. Found: C, 22.5; H, 5.0. $C_{11}H_{27}As_3$ Cl₂Pd requires: C, 23.5; H, 4.8%. IR: ν (Pd—Cl) 315, 310 cm⁻¹. UV–vis (CH₂Cl₂): 29.1 (4900), 38.8 (17,500).

Pt(ttam) Cl₂

Yield 80%. Found: C, 20.7; H, 4.8. $C_{11}H_{27}As_3$ Cl₂Pt requires: C, 20.3; H, 4.2%. ¹⁹⁵Pt NMR (CDCl₃): δ -4709. IR: ν (Pt-Cl) 310, 306 cm⁻¹. UV-vis (CH₂Cl₂): 35.2 (4600), 41.1 (10,200).

Pd(ttp)AuCl₃

Pd(ttp)Cl₂ (0.08 g, 0.1 mmol) in CH₂Cl₂ (10 cm³) was treated with a solution of AuCl(SMe₂) (0.03 g, 0.1 mmol) in CH₂Cl₂ (10 cm³) under a nitrogen atmosphere. The solution was concentrated to small volume, diethyl ether (20 cm³) added and the white solid formed, filtered off, rinsed with diethyl ether and dried *in vacuo*. Yield 0.1 g (87%). FAB-MS: m/z 996, calc. for C₄₁H₃₉¹⁹⁷Au³⁵Cl₂P₃¹⁰⁶Pd⁺

997. Found: C, 46.4; H, 3.8. $C_{41}H_{39}AuCl_3P_3Pd$ requires: C, 47.6; H, 3.8%. ¹H NMR (CDCl₃): 0.72 (s, 3H), 2.36 (m, 2H), 2.68 (m, 4H), 7.1–7.6 (m, 30H). ³¹P{¹H}: 15.9 (s), 17.0 (s). IR: v(Pd—Cl) 315, 293 cm⁻¹; v(Au—Cl) 328 cm⁻¹. UV–vis (CH₂Cl₂): 31.3 (6100), 37.2 (22,300).

The following were prepared by the same general method.

Pt(ttp)AuCl₃

Yield 85%. FAB-MS: m/z 1124, $C_{41}H_{39}^{197}Au$ -³⁵Cl₃P₃¹⁰⁶Pt⁺ 1121. Found: C, 44.0; H, 3.6. $C_{41}H_{39}AuCl_3P_3Pt$ requires: C, 43.8; H, 3.5%. ¹H NMR (CDCl₃): 0.72 (s, 3H), 2.33 (m, 2H), 2.67 (m, 4H), 7.1–7.6 (m, 30H). ³¹P{¹H}: -2.1 [¹J(³¹P-¹⁹⁵Pt) = 3410 Hz], 15.0. ¹⁹⁵Pt: δ -4613. IR: ν (Pt-Cl) 301, 294 cm⁻¹; ν (Au-Cl) 321 cm⁻¹. UV-vis: 33.0 (1900), 36.5 (8300), 37.5 (10,300).

Pd(tta)AuCl₃

Yield 93%. Found: C, 41.0; H, 2.9; $C_{41}H_{39}As_3AuCl_3Pd$ requires: C, 42.0; H, 3.3%. ¹H NMR (CDCl₃): 0.86 (s, 3H), 2.1–2.6 (m, 6H), 7.1– 7.6 (m, 30H). IR: ν (Pd—Cl) 311, 296 cm⁻¹; ν (Au—Cl) 322 cm⁻¹. UV–vis: 28.1 (5000), 34.6 (18,700).

Pt(tta)AuCl₃

Yield 94%. Found: C, 38.1; H, 2.5; $C_{41}H_{39}As_3AuCl_3Pt$ requires: C, 39.2; H, 3.1%. ¹H NMR (CDCl₃): 0.88 (s, 3H), 2.3–2.8 (m, 6H), 7.1– 7.9 (m, 30H). ¹⁹⁵Pt: -4505. IR: v(Pt--Cl) 311, 296 cm⁻¹; v(Au--Cl) 321 cm⁻¹. UV-vis: 33.3 (1230), 39.1 (10,000).

Pd(ttt)Cl₂

Yield 71%. Found: C, 24.3; H, 4.1. $C_8H_{18}Cl_2PdS_3$ requires: C, 24.8; H, 4.6%. ¹H NMR (CDCl₃ 295 K): 1.24 (s, 3H), 2.14 (s, 3H), 2.6–3.5 (m, 12H). IR: v(Pd—Cl) 327, 305 cm⁻¹. UV–vis: 25.4 (1400), 31.2 (2700), 37.5 (17,800).

Pt(ttt)Cl₂

Yield 75%. Found: C, 20.1; H, 3.5; $C_8H_{18}Cl_2PtS_3$ requires: C, 20.2; H, 3.8%. ¹H NMR (CD₂Cl₂, 295 K): 1.25 (s, 3H), 2.15 (s, 3H), 2.7– 3.05 (m, 12H). ¹⁹⁵Pt (CH₂Cl₂): -3600, -3627, -3634. IR: v(Pt—Cl) 322, 313 cm⁻¹. UV–vis: 26.7 (330), 33.4 (1200), 38.5 (2500).

Pd(ttse)Cl₂

Yield 82%. Found: C, 18.0; H, 2.9. $C_8H_{18}Cl_2PdSe_3$ requires: C, 18.2; H, 3.4%. ¹H NMR (CDCl₃, 295 K) : 1.31 (s, 3H), 2.10 (3H), 2.68 (s, 6H), 2.78 (s), 2.95 (s, 6H). ⁷⁷Se{¹H} (CH₂Cl₂, 233 K) : 34.0, 175.5, 177.5, 185.0, 190.0. IR : ν (Pd—Cl) 316, 303 cm⁻¹. UV–vis: 25.0 (1200), 31.5 (4300), 36.1 (15,400).

$Pt(ttse)Cl_2$

Yield 75%. Found: C, 15.4; H, 2.6. C₈H₁₈Cl₂PtSe₃ requires: C, 15.6; H, 2.9%. ¹H NMR (CDCl₃, 223 K): 1.31 (s, 3H), 2.09 (s), 2.10 (s, 3H), 2.75 (s), 2.78 (s, 6H), 2.80–3.3 (m, 6H). ⁷⁷Se{¹H} (CH₂Cl₂): 35.1, 153.9 [¹J(⁷⁷Se-¹⁹⁵Pt) = 430 Hz], 157.6 (490), 163.9 (490). ¹⁹⁵Pt (CH₂Cl₂): δ – 3691, – 3751, – 3755. IR: v(Pt-Cl) 318, 310 cm⁻¹. UV-vis: 25.8 (350), 30.5 (1100), 33.6 (15,000).

The gold complexes were made by the same general route.

$(AuCl)_3(ttp)$

AuCl(tetrahydrothiophen) (0.10 g, 0.3 mmol) in CH₂Cl₂ (10 cm³) was added slowly to a solution of ttp (0.06 g, 0.1 mmol) in CH₂Cl₂ (10 cm³). The mixture was stirred for 30 min, concentrated to 2 cm³ and treated with diethyl ether (15 cm³) to afford a white precipitate. The solid was filtered off, rinsed with ether (15 cm³) and dried *in vacuo*. Yield 0.11 g (86%). Found: C, 37.4; H, 3.1. C₄₁H₃₉Au₃Cl₃P₃ requires: C, 37.2; H, 3.0%. ¹H NMR (CDCl₃): 0.91 (s, 3H), 3.35 (m, 6H), 7.3–7.9 (m, 30H). ³¹P{¹H}: 17.6 (s, 2P), 18.7 (s, P). IR: ν (Au—Cl) 331, 325 (sh) cm⁻¹.

$(AuCl)_3(tta)$

Yield 82%. Found: C, 33.2; H, 2.5. $C_{41}H_{39}As_3Au_3Cl_3$ requires: C, 33.8; H, 2.7%. ¹H (CDCl_3): 1.05 (s, 3H), 3.28 (s, 6H), 7.2–8.1 (m, 30H). IR: ν (Au—Cl) 325 cm⁻¹.

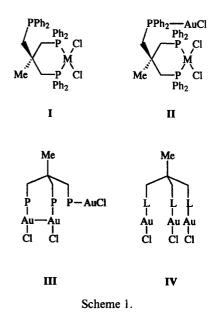
(AuCl)₃(ttam)

Yield 89%. Found: C, 12.1; H, 2.2. $C_{11}H_{27}As_3Au_3Cl_3$ requires: C, 12.2; H, 2.5. IR: $\nu(Au-Cl)$ 321 cm⁻¹.

(AuCl)₃(ttt)

Yield 80%. Found: C, 10.9; H, 2.1. $C_8H_{18}Au_3$ Cl₃S₃ requires: C, 10.6; H, 2.0%. ¹H NMR $(CDCl_3)$: 1.18 (s, 3H), 2.34 (s, 9H), 2.92 (s, 6H). IR: v(Au-Cl) 324 cm⁻¹.

(AuCl)₃(ttse)


Yield 85%. Found: C, 9.5; H, 1.4. $C_8H_{18}Cl_3Se_3$ requires: C, 9.2; H, 1.7%. ¹H NMR (CDCl₃): 0.95 (s, 3H), 2.15 (s, 9H), 3.3 (s, 6H). IR: ν (Au-Cl) 327 cm⁻¹.

RESULTS AND DISCUSSION

Tripodal tridentate ligands $MeC(CH_2ER_n)_3$ (E = P or As, n = 2; E = S or Se, n = 1) usually coordinate all three donor atoms to octahedral, tetrahedral or five-coordinate metal centres,⁷ for example in $CoCl_3{MeC(CH_2PMe_2)_3}^{8}$ Pd $(CO){MeC(CH_2PPh_2)_3,^9 \text{ or } Ru(CO)_2{MeC(CH_2)}$ PPh_2 ₁, ¹⁰ However, the steric constraints of the ligands only allow coordination as bidentates to square planar metal centres as in PtMe₂{MeC $(CH_2PPh_2)_3$ ¹¹ $NiCl_{2}{MeC(CH_{2}PPh_{2})_{3}}$.¹² or Hence our strategy was to prepare the square planar complexes $M(tripod)Cl_2$ with Cl_2E_2 donor sets, and then to attempt to attach an AuCl group to the free E donor atom.

Palladium and platinum complexes of ttp, tta and ttam

The reaction of ttp with $M(MeCN)_2Cl_2$ gave high yields of the $M(ttp)Cl_2$ complexes. These were formulated as *cis* square planar (I) with P_2Cl_2 donor sets on the basis of the IR, UV-vis and particularly NMR spectroscopic data (Experimental section).

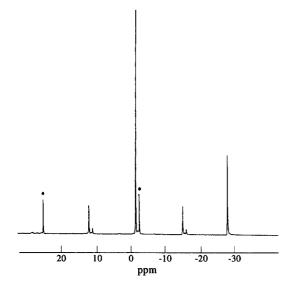


Fig. 1. The ${}^{31}P{}^{1}H$ NMR spectrum of $Pt(ttp)Cl_2$ in CDCl₃. The lines marked with an asterisk are due to phosphine oxide impurity.

The ${}^{31}P{}^{1}H$ NMR spectra show two resonances* in the ratio 2:1 due to coordinated and free PPh₂ groups (Fig. 1), and the ¹H NMR spectra show the corresponding two methylene resonances with illdefined couplings. The $^{195}Pt{^1H}$ spectrum of Pt(ttp)Cl₂ contains a triplet at δ -4602 [¹J(¹⁹⁵Pt- 31 P) = 3440 Hz] typical of a *cis* planar Pt^{II} complex.¹³ The complexes of MeC(CH₂AsPh₂)₃ have very similar spectroscopic properties and are assigned a similar structure. For both the ttp and tta complexes, exchange between the free and coordinated donor groups was not evident in the ¹H or ³¹P NMR spectra. The M(ttam)Cl₂ complexes are poorly soluble in chlorocarbon solvents, and the ¹H NMR spectra are complex due to the overlap of AsMe and AsCH₂ resonances. However, the IR and UV-vis spectra, and for Pt(ttam)Cl₂, the ¹⁹⁵Pt NMR resonance at δ -4709, are consistent with planar complexes with As₂Cl₂ donor sets.

Pd/Pt-Au bimetallics

The reaction of $M(ttp)Cl_2$ with AuCl(SMe₂) in CH_2Cl_2 produced white powders which had

Pd(Pt): Au ratios of 1:1 as determined by EDX measurements, and microanalytical data were consistent with the formula M(ttp)AuCl₃. The FAB mass spectrum of the platinum complex showed a multiplet corresponding to the parent ion, but for the palladium complex the highest mass fragments observed corresponded to loss of one chlorine. The clearest evidence that the AuCl moiety has attached to the "free" PPh₂ group is provided by the ${}^{31}P{}^{1}H{}$ NMR spectra, which show two resonances (Fig. 2) due to coordinated phosphines, consistent with structure II. Coordination of the AuCl group has a minimal effect on the MP_2Cl_2 groups, as shown by the UV-vis and IR spectra. The ¹⁹⁵Pt chemical shift of Pt(ttp)AuCl₃ is only 7 ppm, different from that of Pt(ttp)Cl₂, which demonstrates the absence of any Pt...Au interaction. Unfortunately, repeated attempts to obtain suitable crystals of either complex to confirm this by an X-ray study have been unsuccessful.

The complexes $M(tta)AuCl_3$ were obtained in a similar manner; coordination of the AuCl to the "free" — CH_2AsPh_2 groups was evident by a shift of the appropriate methylene ¹H NMR resonance from $ca \delta 2.1$ to ca 2.4, with minimal changes to the spectroscopic fingerprints of the MAs₂Cl₂ moieties. Surprisingly, the reaction of $M(ttam)Cl_2$ with AuCl(SMe₂) in CH₂Cl₂ at ambient temperatures resulted in the rapid appearance of gold mirrors. Conducting the reactions at low temperatures ($ca - 30^{\circ}C$) in the dark resulted in the M(ttam)Cl₂ complexes being recovered unchanged.

Palladium and platinum complexes of ttt and ttse

The $M(ttse)Cl_2$ complexes have been described previously,¹⁴ and the $M(ttt)Cl_2$ complexes were

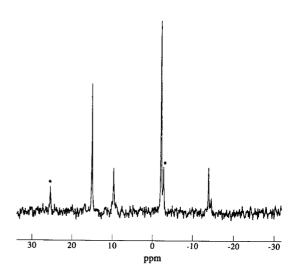
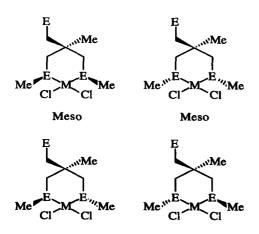



Fig. 2. The ³¹P{¹H} NMR spectrum of Pt(ttp)AuCl₃ in CDCl₃. The lines marked with an asterisk are due to phosphine oxide impurity.

^{*} The ligand ttp is air-sensitive and samples often show weak resonances at -24.7 (PPh₂) and +28.7 (O==PPh₂) due to the presence of MeC (CH₂PPh₂)₂(CH₂PPh₂O). The uncoordinated —PPh₂ group in the planar complexes also seems to oxidize on prolonged exposure to air, and weak resonances due to this oxidized form M{MeC(CH₂PPh₂)₂(CH₂PPh₂O)}Cl₂ are present in the spectra of old samples.

readily obtained from $M(MeCN)_2Cl_2$ and the ligand in CH₂Cl₂. The IR and UV-vis spectra of these complexes are consistent with planar complexes, and hence with bidentate coordination by the ttt and ttse ligands. When these ligands coordinate as bidentates four diastereoisomers result, two meso and two DL (Fig. 3), which interconvert by pyramidal inversion at the group 16 atom. Hope et al.¹⁴ identified all four invertomers in dimethyl sulphoxide solutions of Pt(ttSe)Cl₂, but found that at room temperature the Pd(ttse)Cl₂ was inverting rapidly, showing only two 77 Se{ 1 H} resonances due to coordinated and free SeMe groups, respectively. Our data from CH₂Cl₂ solutions are broadly in agreement, although the invertomer population in the platinum complex varies between solvents, and moderate solvent shifts are present in both the 77 Se{ 1 H} and 195 Pt spectra. In addition, we obtained the ⁷⁷Se{¹H} spectrum of Pd(ttse)Cl₂ at 233 K, at which temperature inversion had slowed, and four resonances due to coordinated SeMe groups were present, confirming the structure. The ¹H NMR spectra (Experimental section) are consistent with the proposed structures, but too complex to assign the resonances of individual invertomers. The ¹H NMR spectra of the M(ttt)Cl₂ complexes in CDCl₃ at 295 K show simple patterns with separate resonances due to MeC-, coordinated and uncoordinated SMe groups and a broad SCH₂ resonance consistent with fast pyramidal inversion. Inversion barriers decrease in the order S < Se and are low in six-membered rings.¹⁵ The spectra show complex resonance patterns on cooling as inversion slows. Exchange between free and coordinated SMe groups, however, is slow on the NMR time scale at room temperature. The ¹⁹⁵Pt NMR spectrum of Pt(ttt)Cl₂ in CD₂Cl₂ at 295 K contained three res-

DL pair

Fig. 3. Possible isomers (invertomers) of $M(ttt)Cl_2$ and $M(ttse)Cl_2$ complexes.

onances, consistent with the three invertomers expected (Fig. 3). Unfortunately, neither the ttt nor ttse complexes reacted with $AuCl(SMe_2)$ to produce bimetallic complexes. No reaction appeared to occur on mixing the reagents in CH_2Cl_2 at room temperature, and on standing for several hours the mixtures deposited gold mirrors.

Gold complexes of ttp, tta, ttam, ttt and tttse

The reaction of three equivalents of Au(SMe₂)Cl or Au(tetrahydrothiophen)Cl with one equivalent of the tripod ligand in CH₂Cl₂ produced white L(AuCl)₃ complexes. The X-ray structure (AuCl)₃(ttp) was reported ¹⁶ some time ago, but no spectroscopic data were provided. The structure contains one AuCl unit bonded to each phosphine group, and unusually two of the gold units are linked by a long Au—Au bond (III). The ³¹P{¹H} NMR spectrum in CDCl₃ contains two singlets at δ 17.6 and 18.7 in the ratio 2:1, and the ¹H NMR spectrum contains overlapping multiplet CH₂ resonances, which suggests that structure III is retained in solution.

The $(AuCl)_3(L)$ (L = ttam, tta, ttt and ttse) complexes all contain single sharp v(Au-Cl) vibrations in the range 320-330 cm⁻¹, typical of linear LAuCl moieties.¹⁷ The (AuCl)₃(ttam) complex was insoluble in chlorocarbons, but the ¹H NMR spectrum of $(AuCl)_3(tta)$ contains a single sharp δ (CH_2) resonance, indicating that all three gold environments are the same, and hence the absence of an Au—Au bond (IV). (AuCl)₃(ttt) and (AuCl)₃(ttse) also showed singlet δ (Me) and δ (CH₂) resonances in their ¹H NMR spectra, consistent with structure IV, but unfortunately a ⁷⁷Se NMR spectrum of $(AuCl)_3$ (ttse) could not be obtained due to poor solubility. The ready displacement of the SMe₂ or tetrahydrothiophen from the starting materials by ttt and ttse contrasts with the failure of these two ligands to form the Pd/Pt-Au bimetallics described above. The reason for this different behaviour is unclear, possibly in the coordination of ttt or ttse to Pd^{II} or Pt^{II}, although the third —S(Se)Me group is neither coordinated nor undergoing fast exchange with the bound groups, electronic effects reduce its donor power. Similar effects would be less significant in ttp or tta complexes, where the group 15 centres are stronger σ -donors.

Acknowledgements—We thank EPSRC and B.P. Chemicals Ltd for a CASE award (A.F.C).

REFERENCES

 A. F. Chiffey, J. Evans, W. Levason and M. Webster, Polyhedron, 1996, 15, 591.

- A. F. Chiffey, J. Evans, W. Levason and M. Webster, J. Chem. Soc., Dalton Trans. 1994, 2835.
- 3. W. Hewertson and H. R. Watson, J. Chem. Soc. 1962, 1490.
- 4. R. D. Feltham, A. Kasenally and R. S. Nyholm, J. Organomet. Chem. 1967, 7, 285.
- 5. R. Ali, S. J. Higgins and W. Levason, *Inorg. Chim.* Acta 1984, 84, 65.
- D. J. Gulliver, E. G. Hope, W. Levason, S. G. Murray, D. M. Potter and G. L. Marshall, J. Chem. Soc., Perkin II 1984, 429.
- 7. L. Sacconi and F. Mani, *Transition Met. Chem.* (N.Y.) 1982, 5, 190.
- K. Kashiwabara, M. Kita, J. Fujita, S. Kurachi and S. Ohba, *Bull. Chem. Soc. Japan* 1994, 67, 2145.
- 9. J. Grevin, P. Kalck, J. C. Daran, J. Vaissermann and C. Bianchini, *Inorg. Chem.* 1993, **32**, 4965.
- S. V. Hommeltoft and M. C. Baird, Organometallics 1986, 5, 190.

- 11. R. E. Kirchner, R. G. Little, K. D. Tau and D. W. Meek, J. Organomet. Chem. 1978, 149, C15.
- P. Zanello, A. Cinquantini, C. A. Ghilardi, S. Midollini, S. Moneti, A. Orlandini and A. Bencini, *J. Chem.* Soc., Dalton Trans. 1990, 3761.
- E. G. Hope, W. Levason and N. A. Powell, *Inorg. Chim. Acta* 1986, 115, 187.
- E. G. Hope, W. Levason, S. G. Murray and G. L. Marshall, J. Chem. Soc., Dalton Trans. 1985, 2185.
- E. W. Abel, K. G. Orrell and S. K. Bhargava, Prog. Inorg. Chem. 1984, 32, 1.
- M. K. Cooper, K. Henrick, M. McPartlin and J. L. Latten, *Inorg. Chim. Acta* 1982, 65, L185.
- D. A. Duddell, P. L. Goggin, R. J. Goodfellow, M. G. Norton and J. G. Smith, *J. Chem. Soc.* (A) 1970, 545.