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The design and the synthesis of new chiral ligands are of great
importance in advancement of asymmetric catalysis.1 Among the
chiral ligands in the literature, chiral bisphosphines based on a biaryl
backbone constitute a useful family of ligands in a number of tran-
sition-metal-catalyzed asymmetric transformations.2 Since the first
development of binap,3 various modified binap’s have been report-
ed, firmly establishing the utility of this family of ligands. In ad-
dition to the substituents on the phosphorus atoms, the change of
the dihedral angle of backbone axes has shown a significant impact
on the enantioselectivity in some reactions.4

Although a large number of chiral ligands are known to date,
preparation of a new chiral ligand is still often necessary to achieve
high enantioselectivity, particularly in the context of developing a
new asymmetric transformation. In this Communication, we de-
scribe the development of a rhodium-catalyzed asymmetric isomer-
ization of racemicR-arylpropargyl alcohols toâ-chiral indanones5,6

and the achievement of high enantioselectivity through optimization
of axial chirality of bisphosphine ligands.

Initially, we conducted an isomerization reaction of (()-1a in
the presence of 5 mol % rhodium catalyst to examine the effect of
chiral ligands (Table 1). The use of (R)-binap produced only 8%
yield of indanone2a with 41% ee (entry 1). (R)-MeO-biphep,7

which has a smaller dihedral angle around the chiral axis (72° as
a free ligand vs 86° for binap),4a,8 was somewhat more effective,
furnishing2a in 30% yield with 56% ee (entry 2). The use of (R)-

segphos9 (dihedral angle: 67° as a free ligand)4a,8 gave2a in 44%
yield with 62% ee (entry 3), whereas the employment of (R)-H8-
binap10 (dihedral angle: 80.3° in a Rh complex11 vs 74.4° for binap8)
resulted in 28% yield with 40% ee (entry 4). These results may
imply that higher enantiomeric excess can be achieved by the use
of an axially chiral bisphosphine with an even smaller dihedral an-
gle, but in fact, (R)-segphos has one of the smallest dihedral angles
among the readily available axially chiral bisphosphines.2 We there-
fore decided to design and synthesize an easily accessible chiral
bisphosphine that could potentially exhibit a much smaller dihedral
angle.

As described by Geneˆt4a and Saito,9 smaller substituents at 6,6′-
positions of axially chiral bisphosphines provide smaller dihedral
angles both in free ligands and in their metal complexes, but if
these substituents are too small, the bisphosphines no longer possess
a stable axial chirality due to a free rotation around the axis. To
overcome this problem with maintaining the smallness of the 6,6′-
substituents, we chose (R,R)-3 as the target, a dimer of (R)-MeO-
mop12 (Scheme 1). This is expected to have a free rotation around
the 3′-3′′ axis at ambient temperature due to the lack of substituents
at 4′,4′′-positions, but the existence of fixed axes at 1-1′ and 1′′-
1′′′ in (R)-configurations might control the three-dimensional
structure upon complexation to a transition metal.13

Starting with (R)-MeO-mop oxide (4),14 phosphine oxide-directed
ortho-lithiation,15 followed by electrophilic quench with I2, produces
3-iodo species (R)-5. Copper-mediated reductive dimerization of
(R)-5, followed by reduction of the phosphine oxides, affords the
desired bisphosphine (R,R)-3. Consistent with our hypothesis, a 1:1
mixture of [Rh(cod)2]BF4 and (R,R)-3 (31P NMR: 1.8 ppm (s)) in
CDCl3 generated a single species (31P NMR: 25.1 ppm (d,J )
148 Hz)). We also obtained an X-ray crystal structure of a related
Rh/(R,R)-3 complex, and the absolute configuration of the 3′-3′′
axis was determined to be (R) with its dihedral angle being 72.8°
(Scheme 1; see Supporting Information).8

We then conducted an isomerization reaction of (()-1a in the
presence of (R,R)-3, obtaining indanone2a in higher yield and

Table 1. Asymmetric Isomerization of (()-1-Aryl-2-propyn-1-ols 1

entry substrate/product ligand
yield
(%)

ee
(%)

1 1a/2a (R1)R2)R3)H, Si ) SiEt3) (R)-binap 8 41
2 1a/2a (R)-MeO-biphep 30 56
3 1a/2a (R)-segphos 44 62
4 1a/2a (R)-H8-binap 28 40
5 1a/2a (R,R)-3 57 74
6 1b/2b (R1)R2)R3)H, Si)SiMe2Et) (R)-binap 10 14
7 1b/2b (R)-segphos 28 29
8 1b/2b (R,R)-3 57 99
9 1c/2c (R1)R2)R3)H, Si)SiMe3) (R,R)-3 44 92

10 1d/2d (R1)R3)H, R2)Me, Si)SiMe2Et) (R,R)-3 60 93
11 1e/2e(R1)R3)H, R2)OMe,Si)SiMe2Et) (R,R)-3 57 94
12a 1f/2f (R1)Me, R2)R3)H, Si)SiMe2Et) (R,R)-3 56 92
13a 1g/2g (R1)R2)Me, R3)H, Si)SiMe2Et) (R,R)-3 50 95
14b 1h/2h (R1)H, R2,R3)OCH2O, Si)SiMe2Et) (R,R)-3 55 96

a The regioselectivity of cyclization is>20:1. b The regioselectivity of
cyclization is 10:1.

Scheme 1. Synthesis of (R,R)-3 (left)a and ORTEP Illustration of
[Rh((R,R)-3)(MeCN)2]PF6 (right; MeCN, PF6, hydrogens are omitted)

a Conditions: (a)t-BuLi (5.0 equiv), THF,-96 °C; then I2 (3.5 equiv),
51%; (b) Cu powder (3.7 equiv), DMF, reflux, 83%; (c) MeOTf (6.0 equiv),
DME, 60 °C; then LiAlH4 (15 equiv), 60°C, 89%.
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enantiomeric excess (57% yield, 74% ee; entry 5). We subsequently
identified that the use of a substrate with EtMe2Si or Me3Si group
instead of Et3Si group on the alkyne leads to further enhancement
of enantiomeric excess (92-99% ee (S); entries 8 and 9).16 Under
these conditions, several (()-R-arylpropargyl alcohols bearing
substituents on the aromatic ring are also isomerized to indanones
in high enantiomeric excess (92-96% ee; entries 10-14).

A catalytic cycle of this process is illustrated in Figure 1.5 â-H
elimination of alkoxorhodium intermediateA, followed by conju-
gate hydrorhodation, destroys the stereocenter of the substrate to
give alkenylrhodium speciesB. After 1,4-rhodium migration (B
f C), a new stereocenter is created at the step of intramolecular
1,4-addition of intermediateC. This sequence indicates that a
racemic substrate could undergo a full conversion to provide the
corresponding indanone, and its stereochemical outcome is con-
trolled at the step ofC to D, independent of the original stereo-
chemical information of the substrate. In reality, however,∼20%
of starting propargyl alcohols always remain under the conditions
we employed, and we found that these remaining substrates are
enantioenriched. For example, 24% of starting material1b was
recovered in 89% ee (R) in Table 1, entry 8.

To gain insight into these isomerizations catalyzed by Rh/(R,R)-
3, we employed optically active propargyl alcohol1b (eq 2). The
use of (R)-1b (98% ee) did not provide indanone2b under our
standard conditions, and1b was recovered in 48% yield and 98%
ee (R). In contrast, (S)-1b (98% ee) was smoothly converted to
(S)-2b in 91% yield with>99% ee. These results, along with the
fact that (S)-1b provides2b as a racemate by using an achiral cata-
lyst (RhCl(PPh3)3; eq 3), indicate that the Rh/(R,R)-3 catalyst plays
two different roles in one catalytic cycle. Thus, as is the case with
a typical kinetic resolution, the first role is to distinguish the (S)-
substrate from the (R)-substrate, preferentially incorporating the (S)-
isomer into the catalytic cycle.17 The second role, which is more
important, is to differentiate the enantiotopic faces of an olefin of
intermediateC during the intramolecular 1,4-addition step, creating
a new stereocenter with very high stereocontrol. This conclusion
is consistent with the moderate yield of indanones from racemic

propargyl alcohols in Table 1 (up to 60% yield) and the enantio-
enrichment of the remaining starting materials.

In summary, we have developed a rhodium-catalyzed asymmetric
synthesis of indanones by isomerization of racemicR-arylpropargyl
alcohols. High enantioselectivity has been achieved by the use of
a newly developed axially chiral bisphosphine ligand ((R,R)-3). This
ligand is unique in the sense that its axial chirality is fixed to a
single configuration upon complexation to a transition metal due
to the chiral axes existing at other positions within the molecule.
Future studies will explore further development and application of
this class of chiral ligands.
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Figure 1. Catalytic cycle of the rhodium-catalyzed isomerization of
R-arylpropargyl alcohols to indanones.
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