Tetrahedron 68 (2012) 8502-8508

Contents lists available at SciVerse ScienceDirect

Tetrahedron

journal homepage: www.elsevier.com/locate/tet

The catalytic activity of a novel recyclable alkoxypalladium complex in Suzuki reaction

Yabo Li, Xia Mi, Mengmeng Huang*, Ranran Cai, Yangjie Wu*

College of Chemistry and Molecular Engineering, Henan Key Laboratory of Chemical Biology and Organic Chemistry, Key Laboratory of Applied Chemistry of Henan Universities, Zhengzhou University, Zhengzhou 450052, PR China

A R T I C L E I N F O

Article history: Received 9 May 2012 Received in revised form 30 June 2012 Accepted 10 July 2012 Available online 15 July 2012

Keywords: Alkoxypalladium complex Recyclable catalyst Suzuki cross-coupling reaction Aryl halides Boronic acid

1. Introduction

The palladium-catalyzed Suzuki-Miyaura cross-coupling reaction¹ has been one of the most studied catalytic reactions in the last two decades. Up to now, it was widely used in the synthesis of poly-olefins and substituted biaryls, which are important skeletons in the structures of natural products, agrochemicals, pharmaceuticals, and advanced materials.² Generally, phosphine ligands are often used in palladium-catalyzed processes, but most of them are water- and air-sensitive.³ Thus, a number of phosphine-free ligands for the Suzuki-Miyaura reaction have been reported, which were successfully applied to this reaction, such as palladacycles,⁴ *N*-heterocyclic carbenes,⁵ imines,⁶ diazabutadienes,⁷ amines,⁸ pyrazoles,9 and bipyridine-based systems.3a,10 Some of these palladium catalysts have not only high catalytic activity but also recyclability. More recently, Gülcemal et al.¹¹ tested the palladium catalysts based on N,N- or N,O-ligands for the Suzuki cross-coupling reaction of aryl bromides with boronic acid in water. In this case, the obtained turnover number (TON) was up to 100,000. It is well known that compounds containing pyridine moiety represent one of the most widespread ligands in chemistry of coordinated and organometallic derivatives. It may be explained by the formation of the additional interactions between nitrogen and metal atoms.

ABSTRACT

A novel palladium complex based on *N*,*O*-ligand was synthesized, which shows a high catalytic activity in the Suzuki cross-coupling reaction without using any phosphine ligand. More importantly, no significant loss of the catalytic activity was observed after six recycles. We suggest that this catalyst has commercial and industrial potential in the future.

© 2012 Elsevier Ltd. All rights reserved.

Tetrahedror

Whereas, palladium complexes based on pyridine-containing alcohols have not employed in modified Suzuki reaction. According to these factors, in this paper we will report the synthesis of a novel palladium catalyst based on 2,6-PyCH₃(CH₂CPh₂O)⁻ fragment, and study its catalytic activity in the modified Suzuki cross-coupling reaction.

2. Results and discussion

The reaction between $Pd(OAC)_2$ and alcohol **2** is a standard approach to synthesize di(alkoxy)palladium(II).¹² We used this method for the synthesis of complex **3**, which was isolated as a white solid in an excellent yield (91%) (Scheme 1). The structure of complex **3** was confirmed by elemental analysis and high resolution mass spectrometry. Unfortunately, NMR spectra were not recorded due to insolubility of **3** in all of accessible organic solvents. According to the data of elemental analysis, we found that each molecule **3** contains two molecules of AcOH. But the data of high resolution mass spectrometry shows that in the solution state these two molecules of AcOH are dissolved in solvent. Therefore, it is proved that these two molecules of AcOH are coordinated to palladium complex *via* a coordinated bond.

In our initial investigation, we studied to explore the optimized reaction conditions of complex **3** in modified Suzuki reaction, as shown in Table 1. The results show that this reaction proceeded smoothly with Cs_2CO_3 and KOH in C_2H_5OH at 50 °C to give the product **6a** in excellent yield (99%) (Table 1, entries 3 and 5). Either

^{*} Corresponding authors. Tel./fax: +86 371 67979408; e-mail addresses: hmm@ zzu.edu.cn (M. Huang), wyj@zzu.edu.cn (Y. Wu).

^{0040-4020/\$ –} see front matter @ 2012 Elsevier Ltd. All rights reserved. http://dx.doi.org/10.1016/j.tet.2012.07.026

Scheme 1. Reagents and conditions: (i) *n*-BuLi (1.01 equiv), THF, -60 °C; (ii) Ph₂C=O (1.01 equiv); (iii) 2 N HCl; (iv) Pd(OAc)₂ (0.5 equiv), toluene, rt, 3 days.

the polarity of solvents or the bases were changed, the yield of compound **6a** was sharply reduced (Table 1, entries 1–11). In addition, the yield of the desired product **6a** was decreased at lower temperatures, which could be explained due to the decrease of the solubility of catalyst in solvent (Table 1, entries 12 and 13). Meanwhile, the effective catalyst loading was also studied (Table 1, entries 15–20). High yield (98%) and a TON of 32,667 were obtained even at catalyst loading as low as 0.003 mol % (Table 1, entry 20). According to experimental data demonstrated in Fig. 1, it was found that the optimized time for this reaction is 4 h with 0.1 mol % catalyst **3**. Therefore, the optimized conditions for the palladacycle-catalyzed Suzuki cross-coupling reaction of aryl bromides include the following parameters: boronic acid (1.5 mmol), aryl bromide

Fig. 1. Effect of time on the yield (GC determined) of **6a** in the coupling reaction with 0.1 mol % catalyst (KOH as a base, C₂H₅OH as a solvent).

(1.0 mmol), palladacycle complex **3** (0.1 mol %), KOH (2.0 mmol), C_2H_5OH (3.0 mL), under air atmosphere, at 50 °C in 4 h.

To explore the generality and scope of catalyst **3**, the modified Suzuki reaction of different aryl bromides was carried out under the optimized reaction conditions (Table 2). The results demonstrate that complex 3 really exhibits high catalytic activity in the modified Suzuki cross-coupling reaction for a broad variety of aryl bromides containing either electron-donating or electron-withdrawing groups to give excellent yields (Table 2, entries 1–10). It should be noted that methyl 4-bromobenzoate 5h reacts with phenyl boronic acid in C₂H₅OH to give compound **6h** instead of **6i**. We proposed that the ester exchange proceeded in this process (Table 2, entry 8). In order to confirm our proposition, we repeated this reaction in CH₃OH. Not surprisingly, the compound **6i** was obtained in excellent yield, 99% (Table 2, entry 9). In addition, aryl bromides with electron-withdrawing groups could react more quickly than aryl bromides containing electron-donating groups. Especially, p-bromonitrobenzene 5j had completely transformed to compound 6j in 1 h at room temperature (Table 2, entry 10). To further extend the

Table 1

Screening of bases, solvents and temperatures for the coupling reaction of aryl bromide with phenyl boronic acid^a

Entry	Base	<i>T</i> [°C]	Solvent	Time [h]	Cat. [mol %]	Yield ^b [%]
1	K ₃ PO ₄	50	C ₂ H ₅ OH	1	1	97
2	K ₂ CO ₃	50	C ₂ H ₅ OH	1	1	98
3	Cs ₂ CO ₃	50	C ₂ H ₅ OH	1	1	99
4	KOAc	50	C ₂ H ₅ OH	1	1	80
5	КОН	50	C ₂ H ₅ OH	1	1	99
6	KF	50	C ₂ H ₅ OH	1	1	60
7	KOH	50	CH ₃ OH	1	1	86
8	KOH	50	THF	1	1	6
9	КОН	50	$(C_2H_5)_2O$	1	1	NR ^c
10	КОН	50	DMF	1	1	4
11	КОН	50	H ₂ O	1	1	34
12	КОН	40	C ₂ H ₅ OH	1	1	75
13	КОН	25	C ₂ H ₅ OH	1	1	4
14	KOH	50	C ₂ H ₅ OH	0.5	0.5	20
15	KOH	50	C ₂ H ₅ OH	1	0.5	97
16	KOH	50	C ₂ H ₅ OH	3.5	0.2	98
17	КОН	50	C ₂ H ₅ OH	4	0.1	99
18	КОН	50	C ₂ H ₅ OH	10	0.02	99
19	КОН	50	C ₂ H ₅ OH	10	0.01	99
20	КОН	50	C ₂ H ₅ OH	20	0.003	98

The values in bold represent the optimized conditions for the studied reaction.

^a Reaction conditions: boronic acid (1.5 mmol), 4-bromoanisole (1.0 mmol), base (2.0 mmol), solvent (3.0 mL), under air atmosphere.

^b Isolated yield.

^c No reaction.

 Table 2

 Modified Suzuki cross-coupling reaction of aryl bromides with boronic acid^a

	$B(OH)_2 + P$	$\begin{array}{c} & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & $	mL), T, time		
Entry	Aryl bromide	Product	<i>T</i> [°C]	Time [h]	Yield ^b [%]
1	$H_3CO \longrightarrow Br$ 5a	H ₃ CO-	50	4	99
2	H ₃ CO Br 5b	H ₃ CO 6b	50	2	97
3	$H_3C - Br$ 5c	H ₃ C-	50	1	99
4	H_{3C} Br H_{3C} Br H_{3C} 5d	$H_{3}C$ $H_{3}C$ $H_{3}C$ 6d	50	1.5	98
5	$F_3C - Br$ 5e	F ₃ C-	50	1	99
6	F_{3C} Br F_{3C} Br F_{3C} 5f	$F_{3}C$ $F_{3}C$ $F_{3}C$ 6f	50	1	99
7	H ₃ C O 5g	H ₃ C	50	1	99
8	H_3CO Br Br $5h$	C ₂ H ₅ O O 6h	50	1	99
9 ^c	H ₃ CO O 5i	H ₃ CO	50	1	99
10	$O_2N - F$	0 ₂ N-	rt	1	99
11	N Br 5k	6k	50	24	40
12	N Br 5k	6k	78	12	68
13	SI Br	$\overbrace{N=}^{N=}$	50	24	41

Table 2 (continued	1)				
Entry	Aryl bromide	Product	<i>T</i> [°C]	Time [h]	Yield ^b [%]
14	SI Br	$\sqrt[N]{N} = \sqrt[6]{6l}$	78	12	92
15 ^d	Br N 5m	6m	50	7	78

^a Reaction conditions: boronic acid (1.5 mmol), aryl bromide (1.0 mmol), KOH (2.0 mmol), catalyst (0.1 mol %), C₂H₅OH (3.0 mL), under air atmosphere.

^b Isolated yield.

^c Reaction conditions: CH₃OH (3.0 mL), under air atmosphere.

^d Reaction conditions: boronic acid (1.5 mmol), aryl bromide (0.5 mmol).

scope of this catalytic system, we tried to carry out the coupling reaction of heteroaryl bromides **5k**—**m** with phenyl boronic acid. It was found that the standard conditions used for aryl bromides were not suitable for 2-bromopyridine and 3-bromopyridine, and low yields (only 40%) were obtained in 24 h at 50 °C (Table 2, entries 11 and 13). Increasing the temperature to 78 °C, the corresponding products could be obtained in moderate to excellent yields (Table 2, entries 12 and 14). On the other hand, the Suzuki reaction of 3,5-dibromopyridine **5m** with phenyl boronic acid could proceed at 50 °C to give moderate yield (Table 2, entry 15).

In light of the high reactivity of this new catalyst in reaction with aryl bromides, we investigated the modified Suzuki coupling reaction of aryl chlorides. However, the reaction conditions optimized for aryl bromides were ineffective for aryl chlorides. Thus, the new reaction conditions for aryl chlorides were selected (Table 3). It was found that the reaction of aryl chloride **7a** could proceed in the presence of K_2CO_3 in DMF at 100 °C to give the product **6j** in excellent yield (Table 3, entry 3).

Under optimized conditions, the Suzuki cross-coupling reaction of aryl chlorides with phenyl boronic acid was studied (Table 4). The results suggest that there is a great difference in the reaction rate of various aryl chlorides. The cross-coupling reaction of 4-chlorobenzonitrile **7b** with phenyl boronic acid could proceed easily to give an excellent yield (92%). However, 2-chlorotoluene **7h** did not react with phenyl boronic acid under the same conditions (Table 4, entries 2 and 8). Aryl chlorides with electronwithdrawing substituents (Table 4, entries 1–5) react more easily than aryl chlorides with electron-donating groups (Table 4, entries 6–8).

Recently, the catalyst recycling has attracted chemists' attention in organic synthesis. A large number of polymer-supported organometallic catalysts were synthesized and used in different catalytic reactions. For example, Ley et al.¹³ used 0.4 mol % MC-[Pd] at 100 °C for 4-bromoanisole only a 60% conversion was observed, and this catalyst could only be recycled four times. At the same year, the catalytic activity of 2 mol % polymer-supported palladium was confirmed in the reaction of aryl iodides with aryl boronic acid with excellent yield. However, authors did not investigate recyclable character of the catalyst.¹⁴ Using the recycling of a salen-type palladium(II) catalyst, N.T.S. Phan et al.¹⁵ studied the Suzuki reaction of 4-bromoanisole at 90 °C for 24 h. After three cycles, the yield of the reaction reduced from 99% to 82%. Although the iron oxide-Pd exhibits a high activity toward the Suzuki cross-coupling reaction. authors only used this supported catalyst for aryl iodides and bromides.¹⁶ Therefore, due to the insolubility and high activity of complex **3**, we investigated the possibility of the reuse of catalyst for the modified Suzuki reaction of phenyl boronic acid with 5a, and the results were shown in Fig. 2. Upon completion of each reaction, the solid catalyst was isolated by centrifugation, washed with ethyl acetate and reused without further purification. The product **6a** was obtained in 99% yield from the first to fifth cycles, 95% for the eighth cycle, and 88% for the 10th cycle. From the data of recycling experiments we found that no significant loss of the catalytic activity was observed for complex 3 after six consecutive reactions, and proposed that this catalyst could be used within eight-recycle runs. Comparing our catalyst 3 to above-mentioned supported catalysts, it was found that the catalyst 3 has some advantages over all others in Suzuki reaction.

Table	e 3
-------	-----

Screening of bases, solvents and temperatures for the coupling reaction of aryl chloride with boronic acid^a

4	<u> </u>	sorvent, I	6j
В	$(OH)_2 + O_2N$	catalyst (0.5 mol %), base	O ₂ N
	1 0 5		

Entry	Base	<i>T</i> [°C]	Solvent	Time [h]	Yield ^b [%]
1	КОН	110	DMF	16	86
2	КОН	110	DMSO	16	80
3	K ₂ CO ₃	100	DMF	6	90
4	K ₂ CO ₃	80	DMF	12	62

The values in bold represent the optimized conditions for the studied reaction.

^a Reaction conditions: boronic acid (1.5 mmol), 4-chloronitrobenzene (1.0 mmol), catalyst (0.5 mol %), base (2.0 mmol), solvent (3.0 mL), under air atmosphere. ^b GC yield.

Table 4

Modified Suzuki cross-coupling reaction of aryl chlorides with boronic acid^a

	$B(OH)_2 + \frac{R}{Cl}$	catalyst (0.5 mol %), K_2CO_3 (2.0 mmol)	
		DMF (3.0 mL), 100 °C, 6 h	
Entry	Aryl chloride	Product	Yield ^b [%]
1		O ₂ N-	82
2	NC CI	NC - 6n	92
3		F ₃ C	60
4	O ₂ N Cl	O ₂ N 6p	35
5	H_3C Cl O Te	H ₃ C O 6g	35
6	H ₃ C-Cl	H ₃ C-	30
7	H ₃ CO-Cl	H ₃ CO-	31
8	CH ₃ Cl 7h	CH ₃ 6q	Trace ^c

^a Reaction conditions: boronic acid (1.5 mmol), aryl chloride (1.0 mmol), K₂CO₃ (2.0 mmol), catalyst (0.5 mol %), DMF (3.0 mL), 100 °C, 6 h, under air atmosphere.

^b Isolated yield.
 ^c Determined by GC.

Fig. 2. Recycling experiments of catalyst ${\bf 3}$ in the palladium-catalyzed Suzuki cross-coupling reaction.

3. Conclusion

In summary, we synthesized a novel palladium(II) catalyst based on *N*,*O*-ligand. This catalyst is insoluble in various organic solvents, but exhibits high catalytic activity in the modified Suzuki crosscoupling reaction. More importantly, there is no significant loss of catalytic activity after six recycles. In addition, a series of biaryl derivatives were obtained in moderate to excellent yields in mild conditions from the reaction of phenyl boronic acid with aryl bromides or chlorides. Therefore we consider that this catalyst has commercial and industrial potential in the future.

4. Experimental

4.1. General

All reactions were carried out under air atmosphere. Compound 2,6-PyCH₃(CH₂CPh₂OH) was prepared according to the literature

procedure.¹² Other chemical reagents were purchased from commercial suppliers and used without further purification. All organic solvents were purified prior to use. The products 6a-p were known, and the purified products were identifiable by comparison of melting points, ¹H NMR, ¹³C NMR spectra with the literature. ¹H 44–46 °C); 7.45–7.40, 127.38, 127 (OCH₃).

NMR and ¹³C NMR spectra were recorded on a Bruker DPX-400 instrument using CDCl₃ as the solvent and TMS as the internal standard. High resolution mass spectrometry data of the products were collected on an Agilent Technologies 6540 UHD Accurate-Mass Q-TOF LC/MS instrument. Elemental analyses (EA) data were recorded on Elementar Vario ELIII spectrometer. Melting points were measured using a WC-1 microscopic apparatus and are uncorrected.

4.2. Synthesis of [PyCH₃(CH₂CPh₂O)]₂Pd · 2AcOH (3)

A solution of PyCH₃(CH₂CPh₂OH) (318.3 mg, 1.10 mmol) in toluene (10 mL) was added to a stirred solution of Pd(OAc)₂ (123.5 mg, 0.55 mmol) in toluene (10 mL). The mixture was stirred at room temperature. After 3 days, the solid was filtered off to give **3** as a white solid. Yield: 91%. HRMS (ESI): calcd for C₄₀H₃₆N₂O₂Pd [M+H]⁺ 683.1812; found 683.1902. Anal. Calcd for C₄₄H₄₄N₂O₆Pd·2AcOH (802.2234): C, 65.79; H, 5.52; N, 3.49. Found: C, 65.55; H, 5.51; N, 3.81%.

4.3. General procedures for synthesis compounds 6a-q

4.3.1. General procedures of aryl bromides To a flask were added complex **3** (0.7 mg, 0.001 mmol, 0.1 mol %), phenyl boronic acid (182.9 mg, 1.5 mmol), KOH (112.2 mg, 2.0 mmol), aryl bromide (1.0 mmol), and C₂H₅OH (3.0 mL). Unless the otherwise note, the reaction mixture was stirred at 50 °C. After the completion of the reaction it was cooled to room temperature. The reaction mixture was dissolved in H₂O, and extracted with ethyl acetate (3×5.0 mL). The organic layer was collected and dried by Na₂SO₄, then concentrated under reduced pressure. The residue was purified by silica gel column chromatography to give the desired product.

4.3.2. General procedures of aryl chlorides To a flask were added with complex **3** (3.4 mg, 0.005 mmol, 0.5 mol %), phenyl boronic acid (182.9 mg, 1.5 mmol), K₂CO₃ (276.4 mg, 2.0 mmol), aryl chloride (1.0 mmol), and DMF (3.0 mL). Unless the otherwise note, the reaction mixture was stirred at 100 °C for 6 h. After the completion of the reaction it was cooled to room temperature. The reaction mixture was dissolved in H₂O, and extracted with ethyl acetate (3×5.0 mL). The organic layer was collected and dried by Na₂SO₄, then concentrated under reduced pressure. The residue was purified by silica gel column chromatography to give the desired product.

4.4. Analytical data for compounds 6a-p

4.4.1. 4-Methoxybiphenyl (**6a**).¹⁷ White solid, mp 84–86 °C (lit. mp 83–84 °C); ¹H NMR (400 MHz, CDCl₃): δ 7.60–7.53, 7.47–7.40, 7.36–7.29, 7.03–6.97 (9H, 4m, aromatic hydrogens), 3.87 (3H, s, OCH₃). ¹³C NMR (100 MHz, CDCl₃): δ 159.14, 140.81, 133.77, 128.69, 128.13, 126.71, 126.63, 114.19 (aromatic carbons), 55.31 (OCH₃).

4.4.2. 3-Methoxybiphenyl (**6b**).^{3b} Colorless oil; ¹H NMR (400 MHz, CDCl₃): δ 7.65–7.58, 7.49–7.43, 7.42–7.34, 7.23–7.19, 7.16–7.13, 6.95–6.89 (9H, 6m, aromatic hydrogens), 3.89 (3H, s, OCH₃). ¹³C NMR (100 MHz, CDCl₃): δ 159.84, 142.71, 141.03, 129.72, 128.70,

127.38, 127.17, 119.64, 112.82, 112.60 (aromatic carbons), 55.26 (OCH₃).

4.4.3. 4-Methylbiphenyl (**6**c).¹⁷ White solid, mp 42–43 °C (lit. mp 44–46 °C); ¹H NMR (400 MHz, CDCl₃): δ 7.62–7.55, 7.52–7.47, 7.45–7.40, 7.36–7.29, 7.26–7.23 (9H, 5m, aromatic hydrogens), 2.39 (3H, s, CH₃). ¹³C NMR (100 MHz, CDCl₃): δ 141.10, 138.29, 137.00, 129.45, 128.69, 126.97, 126.94 (aromatic carbons), 21.10 (CH₃).

4.4.4. 3,5-*Dimethylbiphenyl* (**6d**).¹⁷ Yellow oil; ¹H NMR (400 MHz, CDCl₃): δ 7.65–7.58, 7.50–7.41, 7.40–7.32 (5H, 3 m), 7.24 (2H, s), 7.03 (1H, s) (aromatic hydrogens), 2.41 (6H, s, CH₃). ¹³C NMR (100 MHz, CDCl₃): δ 141.41, 141.21, 138.22, 128.86, 128.60, 127.16, 127.05, 125.07 (aromatic carbons), 21.41 (CH₃).

4.4.5. 4-(*Trifluoromethyl*)-*biphenyl* (**6***e*).¹⁸ Colorless solid, mp 68–69 °C (lit. mp 70–71 °C); ¹H NMR (400 MHz, CDCl₃): δ 7.74–7.68, 7.64–7.60, 7.52–7.45, 7.44–7.39 (9H, 4m, aromatic hydrogens). ¹³C NMR (100 MHz, CDCl₃): δ 144.73, 139.76, 128.97, 128.74, 128.17, 127.40, 127.26, 127.15 (aromatic carbons), 125.69 (q, CF₃).

4.4.6. 3,5-*Bis*(*trifluoromethyl*)-*biphenyl* (*6f*).¹⁹ Yellow oil; ¹H NMR (400 MHz, CDCl₃): δ 8.03 (2H, s), 7.89 (1H, s), 7.64–7.60, 7.56–7.44 (5H, 2 m) (aromatic hydrogens). ¹³C NMR (100 MHz, CDCl₃): δ 143.35, 138.25, 129.27, 128.87, 127.23, 124.76, 122.05, 120.90 (aromatic carbons), 132.14 (q, CF₃).

4.4.7. 1-Biphenyl-4-yl-ethanone (**6**g).¹⁸ Colorless solid, mp 112–114 °C (lit. mp 121–122 °C); ¹H NMR (400 MHz, CDCl₃): δ 8.06–8.01, 7.72–7.60, 7.50–7.38 (9H, 3m, aromatic hydrogens), 2.64 (3H, s, CH₃). ¹³C NMR (100 MHz, CDCl₃): δ 197.68 (C=O), 145.74, 139.85, 135.84, 128.92, 128.88, 128.19, 127.23, 127.19 (aromatic carbons), 26.62 (CH₃).

4.4.8. 4-Ethylphenylbenzoate (**6h**).²⁰ White solid, mp 46–47 °C (lit. mp 47–48 °C); ¹H NMR (400 MHz, CDCl₃): δ 8.15–8.09, 7.70–7.59, 7.51–7.36 (9H, 3m, aromatic hydrogens), 4.41 (2H, q, *J*=7.2 Hz, CH₂), 1.42 (3H, t, *J*=7.2 Hz, CH₃). ¹³C NMR (100 MHz, CDCl₃): δ 166.48 (C=O), 145.47, 140.00, 130.02, 129.18, 128.88, 128.07, 127.24, 126.96 (aromatic carbons), 60.95 (CH₂), 14.34 (CH₃).

4.4.9. Methyl 4-phenylbenzoate (**6i**).¹⁷ White solid, mp 111–112 °C (lit. mp 113 °C); ¹H NMR (400 MHz, CDCl₃): δ 8.15–8.08, 7.70–7.60, 7.51–7.37 (9H, 3m, aromatic hydrogens), 3.95 (3H, s, CH₃). ¹³C NMR (100 MHz, CDCl₃): δ 166.99 (C=O), 145.61, 139.97, 130.07, 128.90, 128.12, 127.26, 127.19, 127.03 (aromatic carbons), 52.13 (CH₃).

4.4.10. 4-Nitrobiphenyl (**6j**).^{3b} Yellow solid, mp 110–112 °C (lit. mp 113–115 °C); ¹H NMR (400 MHz, CDCl₃): δ 8.32–8.26, 7.77–7.70, 7.66–7.60, 7.54–7.42 (9H, 4m, aromatic hydrogens). ¹³C NMR (100 MHz, CDCl₃): δ 147.55, 147.03, 138.70, 129.10, 128.86, 127.72, 127.32, 124.03 (aromatic carbons).

4.4.11. 2-Phenylpyridine (**6***k*).^{3b} Colorless oil; ¹H NMR (400 MHz, CDCl₃): δ 8.72–8.69, 8.02–7.97, 7.79–7.70, 7.54–7.39, 7.25–7.20 (9H, 5m, aromatic and Py hydrogens). ¹³C NMR (100 MHz, CDCl₃): δ 157.40, 149.62, 139.33, 136.73, 128.91, 128.71, 126.86, 122.07, 120.55 (aromatic and Py carbons).

4.4.12. 3-Phenylpyridine (**6l**).^{3b} Colorless oil; ¹H NMR (400 MHz, CDCl₃): δ 8.87–8.84, 8.60–8.56, 7.89–7.83, 7.60–7.55, 7.52–7.44, 7.42–7.32 (9H, 6m, aromatic and Py hydrogens). ¹³C NMR

(100 MHz, CDCl₃): δ 148.38, 148.25, 137.76, 136.56, 134.25, 128.99. 128.01, 127.07, 123.45 (aromatic and Py carbons).

4.4.13. 3,5-Diphenylpyridine (**6m**).²¹ White solid, mp 136–138 °C (lit. mp 137–138 °C); ¹H NMR (400 MHz, CDCl₃): δ 8.85–8.80, 8.08-8.04, 7.68-7.63, 7.54-7.48, 7.47-7.40 (13H, 5m, aromatic and Py hydrogens). ¹³C NMR (100 MHz, CDCl₃): δ 146.98, 137.73, 136.57, 132.86, 129.09, 128.19, 127.23 (aromatic and Pv carbons).

4.4.14. 4-Phenylbenzonitrile (6n).²² White solid, mp 80-82 °C (lit. mp 84–88 °C); ¹H NMR (400 MHz, CDCl₃): δ 7.76–7.66, 7.62–7.57, 7.53–7.40 (9H, 3m, aromatic hydrogens). ¹³C NMR (100 MHz, CDCl₃): δ 145.61, 139.10, 132.55, 129.07, 128.62, 127.68, 127.18, 118.94, 110.82 (aromatic carbons).

4.4.15. 3-(Trifluoromethyl)-biphenyl (60).²³ Yellow oil; ¹H NMR (400 MHz, CDCl₃): δ 7.85 (1H, s), 7.81–7.76, 7.64–7.53, 7.52–7.45, 7.44–7.38 (8H, 4m, aromatic hydrogens). ¹³C NMR (100 MHz, CDCl₃): δ 141.95, 139.72, 130.93, 130.41, 129.21, 128.98, 128.01, 127.17, 125.52, 122.81 (aromatic carbons), 123.91 (g, CF₃).

4.4.16. 3-Nitrobiphenyl (6p).^{3b} Yellow solid, mp 57–58 °C (lit. mp 59–60 °C); ¹H NMR (400 MHz, CDCl₃): δ 8.50–8.44, 8.24–8.19, 7.94-7.89, 7.66-7.58, 7.54-7.41 (9H, 5m, aromatic hydrogens). ¹³C NMR (100 MHz, CDCl₃): δ 148.65, 142.81, 138.61, 133.04, 129.69. 129.13, 128.51, 127.13, 122.01, 121.92 (aromatic carbons).

Acknowledgements

We are grateful to the National Natural Science Foundation of China (No. 21172200) for financial support to this research.

References and notes

- 1. (a) Miyaura, N.; Suzuki., A. Chem. Rev. 1995, 95, 2457-2483; (b) Suzuki, A. J. Organomet. Chem. 1999, 576, 147-168; (c) Wolfe, J. P.; Singer, R. A.; Yang, B. H.; Buchwald, S. L. J. Am. Chem. Soc. 1999, 121, 9550-9561; (d) Hassan, J.; Sevignon, M.; Gozzi, C.; Schulz, E.; Lemaire, M. Chem. Rev. 2002, 102, 1359-1470; (e) Corbet, J. P.; Mignani, G. Chem. Rev. 2006, 106, 2651-2710; (f) Phan, N. T. S.; Van Der Sluys, M.; Jones, C. W. Adv. Synth. Catal. 2006, 348, 609-679; (g) Yin, L.; Liebscher, J. Chem. Rev. 2007, 107, 133-173; (h) Molander, G. A.; Ellis, N. Acc. Chem. Res. 2007, 40, 275-286; (i) Martin, R.; Buchwald, S. L. Acc. Chem. Res. 2008, 41, 1461-1473; (j) Alonso, F.; Beletskaya, I. P.; Yus, M. Tetrahedron 2008, 64, 3047-3101.
- 2. (a) Markham, A.; Goa, K. L. Drugs 1997, 54, 299-311; (b) Gangjee, A.; Devraj, R.; Queener, S. F. J. Med. Chem. 1997, 40, 470-478; (c) McPhail, K. L.; Rivett, D. E. A.;

Lack, D. E.; Davies-Coleman, M. T. Tetrahedron 2000, 56, 9391-9396; (d) Tomori, H.; Fox, J. M.; Buchwald, S. L. J. Org. Chem. 2000, 65, 5334-5341; (e) Capdeville, R.; Buchdunger, E.; Zimmermann, J.; Matter, A. Nat. Rev. Drug Discov. 2002, 1, 493-502; (f) Rosowsky, A.; Chen, H.; Fu, H.; Queener, S. F. Bioorg. Med. Chem. 2003, 11, 59-67; (g) Long, Y. Q.; Jiang, X. H.; Dayam, R.; Sachez, T.; Shoemaker, R.; Sei, S.; Neamati, N. J. Med. Chem. **2004**, 47, 2561–2573; (h) Kertesz, M.; Choi, C. H.; Yang, S. Chem. Rev. 2005, 105, 3448-3481; (i) Lightowler, S.; Hird, M. Chem. Mater. 2005, 17, 5538-5549.

- (a) Trilla, M.; Pleixats, R.; Man, M. W. C.; Bied, C.; Moreau, J. J. E. Adv. Synth. Catal. 2008, 350, 577-590; (b) Desmarets, C.; Omar-Amrani, R.; Walcarius, A.; Lambert, J.; Champagne, B.; Fort, Y.; Schneider, R. Tetrahedron 2008, 64, 372-381.
- (a) Wu, Y. J.; Yang, L. R.; Zhang, J. L.; Wang, M.; Zhao, L.; Song, M. P.; Gong, J. F. Arkivoc **2004**, *ix*, 111–121; (b) Kostas, I. D.; Andreadaki, F. J.; Kovala-Demertzi, D.; Prentjas, C.; Demertzis, M. A. Tetrahedron Lett. **2005**, 46, 1967–1970; (c) Zhang, J. L.; Zhao, L.; Song, M. P.; Mak, T. C. W.; Wu, Y. J. J. Organomet. Chem. **2006**, 691, 1301–1306; (d) Ma, J.; Cui, X. L.; Zhang, B.; Song, M. P.; Wu, Y. J. Tetrahedron **2007**, 63, 5529–5538.
- (a) Zhang, C.; Huang, J.; Trudell, M. L.; Nolan, S. P. J. Org. Chem. 1999. 64. 5 3804–3805; (b) Gstottmayr, C. W. K.; Bohm, V. P. W.; Herdtweck, E.; Grosche, M.; Herrmann, W. Angew. Chem., Int. Ed. 2002, 41, 1363-1365; (c) Navarro, O.; Kelly, R. A., III; Nolan, S. P. J. Am. Chem. Soc. 2003, 125, 16194-16195.
- (a) Weissman, H.; Milstein, D. Chem. Commun. 1999, 1901–1902; (b) Bedford, R. 6. B.; Cazin, C. S. J. Chem. Commun. 2001, 1540–1541; (c) Wu, K. M.; Huang, C. A.; Peng, K. F.; Chen, C. T. *Tetrahedron* **2005**, *61*, 9679–9687; (d) Lai, Y. C.; Chen, H. Y.; Hung, W. C.; Lin, C. C.; Hong, F. E. Tetrahedron 2005, 61, 9484–9489. Ting, W. C., En, C. C., Hong, F. E. Fordante, and T. J. C., Solan, S. P. Org. Lett. 2001, 3, 1077–1080.
- (a) Tao, B.; Boykin, D. W. Tetrahedron Lett. 2003, 44, 7993-7996; (b) Li, J. H.; Liu,
- W. J. Org. Lett. 2004, 6, 2809-2811; (c) Li, J. H.; Liu, W. J.; Xie, Y. X. J. Org. Chem. 2005, 70, 5409–5412; (d) Li, J. H.; Liang, Y.; Wang, D. P.; Liu, W. J.; Xie, Y. X.; Yin, D. L. J. Org. Chem. 2005, 70, 2832–2834; (e) Zhang, L.; Cui, Y. C. Acta Chim. Sinica 2005, 63, 924-928; (f) Yang, Y. F.; Zeng, C. X.; Luo, M. F.; Li, Q. L.; Huang, C. B. Acta Chim. Sinica **2005**, 63, 1469–1473; (g) Yi, H.; Liu, J. B.; Li, Q.; Tang, J. Chin. Chem. Lett. **2005**, 16, 1173–1176; (h) Cui, Y. C.; Zhao, X. W.; Zhang, J. W.; Zhang, L.; Liu, X. M. Acta Chim. Sinica 2006, 64, 42-46; (i) Xie, Y. X.; Li, J. H.; Yin, D. L. Chin. J. Org. Chem. 2006, 26, 1155–1163; (j) Yang, Y. F.; Zhuang, M.; Zeng, C. X.; Huang, C. B.; Luo, M. F. Chin. J. Chem. 2006, 24, 1309-1314.
- 9. Mukherjee, A.; Sarkar, A. Tetrahedron Lett. 2005, 46, 15-18.
- 10. Farina, V. Adv. Synth. Catal. 2004, 346, 1553-1582.
- 11. Gülcemal, S.; Kani, İ.; Yılmaz, F.; Çetinkaya, B. *Tetrahedron* **2010**, 66, 5602–5606.
- 12. Koning, B.; Buter, J.; Hulst, R.; Stroetinga, R.; Kellogg, R. M. Eur. J. Org. Chem. 2000, 15, 2735-2743.
- 13. Ley, S. V.; Ramarao, C.; Gordon, R. S.; Holmes, A. B.; Morrison, A. J.; McConvey, I. F.; Shirley, I. M.; Smith, S. C.; Smith, M. D. Chem. Commun. 2002, 1134-1135.
- 14. Uozumi, Y.; Nakai, Y. Org. Lett. 2002, 4, 2997-3000.
- Phan, N. T. S.; Browna, D. H.; Styring, P. Tetrahedron Lett. 2004, 45, 15. 7915-7919.
- Stevens, P. D.; Li, G. F.; Fan, J. D.; Yen, M.; Gao, Y. Chem. Commun. 2005, 16. 4435-4437
- 17. Old, D. W.; Wolfe, J. P.; Buchwald, S. L. J. Am. Chem. Soc. 1998, 120, 9722-9723.
- 18. Han, W.; Liu, C.; Jin, Z. L. Org. Lett. 2007, 9, 4005-4007.
- 19. Tu, T.; Feng, X. K.; Wang, Z. X.; Liu, X. Y. Dalton Trans. 2010, 39, 10598 - 10600
- 20. Ackermann, L.; Potukuchi, H. K.; Althammer, A.; Born, R.; Mayer, P. Org. Lett. 2010, 12, 1004-1007.
- 21. Chuang, T. H.; Chen, Y. C.; Pola, S. J. Org. Chem. 2010, 75, 6625-6630.
- 22. Grossman, O.; Gelman, D. Org. Lett. 2006, 8, 1189-1191.
- 23. Kasper, W. L.; Morten, M. Eur. J. Org. Chem. 2008, 5244-5253.