

www.elsevier.nl/locate/poly

Polyhedron 20 (2001) 111-117

Molybdenum tetracarbonyl complexes with functionalised aminophosphine ligands: cis-[Mo(CO)₄(PPh₂NHR)₂] (R = Ph, Bu^t) — molecular structures of PMes₂NHPh (Mes = 2,4,6-Me₃C₆H₂), PPh₂NHBu^t and cis-[Mo(CO)₄(PPh₂NHBu^t)₂]

Olaf Kühl, Steffen Blaurock, Joachim Sieler, Evamarie Hey-Hawkins*

Institut für Anorganische Chemie, Universität Leipzig, Johannisallee 29, D-04103 Leipzig, Germany

Received 24 July 2000; accepted 28 September 2000

Abstract

The aminophosphines PPh₂NHR [R = Ph (1a), Bu' (1b)] react readily with cis-[Mo(CO)₄(NCEt)₂] to give cis-[Mo(CO)₄(PPh₂NHR)₂] [R = Ph (2), Bu' (3)] in high yield, while the bulky aminophosphine PMes₂NHPh (1c) (Mes = 2,4,6-Me₃C₆H₂), obtained from LiNHPh and PMes₂Cl, does not react even at elevated temperature. Compounds 1c, 2 and 3 were characterised spectroscopically (IR; ¹H, ³¹P, ¹³C NMR), 2 and 3 also by MS, and crystal structure determinations were carried out on 1b, 1c and 3; for 3, this showed the presence of the *cis* isomer. Complexes 2 and 3 do not react with [Cp₂ZrCl₂]/NEt₃ or with [Cp₂ZrMe₂]. © 2001 Elsevier Science B.V. All rights reserved.

Keywords: Molybdenum; Aminophosphine ligands; cis Isomers; Molecular structures

1. Introduction

While tertiary phosphines have long been employed as ligands in the synthesis of transition metal complexes with catalytic properties [1], secondary phosphinoamines have received only limited attention [2,3], and only a few examples of heterodinuclear complexes in which a phosphinoamido or -amine ligand bridges two different metals have been reported to date [4]. Several transition metal [2d,e,5] and lanthanide complexes [6] with phosphinoamido ligands are known in which the anionic ligand can be terminal, chelating or bridging. Some of them have been employed in transition metal catalysed synthesis [2c]. Recently, we have shown that the homoleptic phosphinoamide complex [Zr(NPhPPh₂)₄] and the related bisamido complex $[TiCl_{2}{N(PPh_{2})_{2}}]$ are active catalysts for the formation of elastomeric polypropylene in the presence of methylalumoxane (MAO) [7]. In our investigations on phosphinoamides and -amines as potential mono- and bidentate ligands in transition metal complexes, we have also obtained the Ni(0) complex [Ni(PPh₂NHPh)₄] [8] with bulky phosphinoamine ligands. We now report the synthesis of the molybdenum carbonyl complexes *cis*-[Mo(CO)₄(PPh₂NHR)₂] [R = Ph (**2**), Bu^t (**3**)] in high yield.

While numerous mononuclear and heterodinuclear molybdenum(0) tetracarbonyl complexes with *cis*-coordinated phosphine ligands have been structurally characterised [9], the number of corresponding compounds with bifunctional phosphine ligands, such as phosphinoamine ligands [3], is still rather small. Only a few examples for structurally characterised heterodinuclear complexes in which Mo and M' (M' = Ni [4a,b], Cu [4c]) are bridged by P,N ligands have been reported. As molybdenum bis(diphosphine) complexes also have catalytic potential [10], the use of mixed soft-hard P,N ligands in the preparation of heterodinuclear molybdenum complexes appears attractive, as early-late

^{*} Corresponding author. Tel.: +49-341-973-6151; fax: +49-341-973-9319.

E-mail address: hey@rz.uni-leipzig.de (E. Hey-Hawkins).

bridged transition metal complexes may show cooperative reactivity in catalytic processes, which stems from the possibility for the electron-poor early transition metal and the electron-rich late transition metal to create an ideal environment for heterolytic bond cleavage of polar substrates.

2. Synthesis and spectroscopic properties of phosphinoamines

Lithium amides LiNHR (R = Ph, Bu') react readily with diarylchlorophosphines PR'_2Cl [R' = Ph, 2,4,6-

Fig. 1. Molecular structure of **1b** (ORTEP, 50% probability, SHELXTL PLUS; XP) [26]. Only one of the two independent molecules is shown.

Fig. 2. Molecular structure of **1c** (ORTEP, 50% probability, SHELXTL PLUS; XP) [26]. Hydrogen atoms (other than N–H) omitted for clarity.

 $Me_3C_6H_2$ (Mes)] to give aminophosphines PPh₂NHR (R = Ph (1a) [11], Bu^t (1b) [12]) and PMes₂NHPh (1c); Eq. (1)).

$$LiNHR + PR'_{2}Cl \rightarrow PR'_{2}NHR + LiCl$$
(1)

The P–N bond in aminophosphines is essentially a single bond [6,13], so the lone pairs on nitrogen and phosphorus are available for donor bonding towards metal atoms.

In the ¹H NMR spectra, the N–H signals were observed as doublets at 4.38 ppm (${}^{2}J_{PH} = 7.8$ Hz) for 1a [14], 1.96 ppm (${}^{2}J_{PH} = 11.6$ Hz) for **1b** [12,15], and 4.34 ppm $({}^{2}J_{PH} = 9.0 \text{ Hz})$ for 1c. The ${}^{31}P{}^{1}H{}$ NMR spectra of the aminophosphines in CDCl₃ show singlets at 28.6 ppm (1a), 22.5 ppm (1b), and 19.4 ppm (1c). No ${}^{2}J_{PH}$ coupling was observed in the ³¹P NMR spectra. The chemical shifts in the ${}^{31}P{}^{1}H$ NMR spectra are in accordance with the electronic properties of the substituents on nitrogen and phosphorus. Thus, substitution of mesityl for phenyl on phosphorus results in the expected high-field shift of 1c ($\Delta \delta = 9.2$ ppm) due to the increased electron density on phosphorus. The same effect, but to a higher degree, is observed when the Mes* substituent (Mes* = $2,4,6-Bu_3^tC_6H_2$, 48.6 ppm [13]) on nitrogen is substituted for phenyl (28.6 ppm) or Bu^t (22.5 ppm). 1,2-Bis(diphenylphosphinoamino)benzene (32.5 ppm) and 3,4-bis(diphenylphosphinoamino)toluene (33.3, 30.4 ppm) also fit into this series [3e].

In the IR spectra (KBr), the v(NH) band is observed at 3295 cm⁻¹ (**1a**), 3400 cm⁻¹ (**1b**) [12], and 3364 cm⁻¹ (**1c**). The v(PN) vibration is tentatively assigned to a very strong absorption at 892 cm⁻¹ (**1a**) and 979 cm⁻¹ (**1b**). 1,2-Bis(diphenylphosphinoamino)benzene and 3,4-bis(diphenylphosphinoamino)toluene have v(NH) bands at 3328 and 3329 cm⁻¹ and v(PN) bands at 904 and 887 cm⁻¹, respectively [3e].

3. Molecular structures of PPh₂NHBu^t (1b) and PMes₂NHPh (1c)

PPh₂NHBu^{*t*} (**1b**) (Fig. 1) crystallises monoclinic in the space group $P2_1$ (no. 4) with two independent molecules in the asymmetric unit and four molecules in the unit cell, PMes₂NHPh (**1c**) (Fig. 2) crystallises monoclinic in the space group $P2_1/c$ (no. 14) with four molecules in the unit cell. A comparison of selected bond lengths and angles in **1b** and **1c** with those of related aminophosphines is shown in Table 1.

In both molecules, the phosphorus atom is coordinated in a distorted tetrahedral fashion by a nitrogen atom, two carbon atoms of the phenyl [C(1), C(7), and C(17), C(23)] or mesityl [C(7) and C(16)] substituents,

Table 1						
Comparison of selected	bond	lengths	and	angles	in	aminophosphines

Complex	P–N (Å)	C–P–N (°)	P–N–C (°)
PPh ₂ NHPh ⁶	1.696(3)	b	b
PPh ₂ NHMes ¹³	1.730(2)	99.7(1), 102.1(1)	114.6(1)
PPh_2NHBu^t (1b) ^a	1.673(5),	101.8(2), 104.9(2)	120.9(4),
	1.701(5)		127.0(4)
PMes ₂ NHPh (1c)	1.703(2)	96.83(9), 108.80(9)	126.1(2)

^a Two independent molecules.

^b No values reported.

Scheme 1.

and the electron lone pair. In 1c, two of the three bond angles between the substituents [N(1)-P(1)-C(16)108.80(9) and C(16)-P(1)-C(7) 105.17(9)°] are near to the tetrahedral angle of 109.5°, while the third bond angle [N(1)-P(1)-C(7) 96.83(9)°] is significantly smaller. This effect is less pronounced in the less crowded molecule 1b [N-P-C 101.8(2)-104.9(2), C-P-C 98.8(2),100.5(2)°]. The P-C bond lengths of 1.829(5)-1.845(5) (1b) and 1.847(2)-1.853(2) Å (1c) and the P-N bond lengths of 1.673(5), 1.701(5) (1b) and 1.703(2) Å (1c) are in the expected range.

The nitrogen atom in **1b**, **c** has a trigonal-planar environment formed by H(1N) [or H(2N)], C(13) [or C(29)] and P(1) [or P(2)] (**1b**), or H(1), C(1) and P(1) (**1c**) (sum of bond angles at N: 359.0, 347.9° for **1b**; 359.1° for **1c**). In **1b**, the P–N–H [126(6), 126(4)°] and P–N–C [120.9(4), 127.0(4)°] angles are larger than the C–N–H bond angles [101(7), 106(4)°]. In **1c**, the bond angle C(1)–N(1)–P(1) of 126.1(2)° is slightly larger than expected. The conformation about the P–N bond in **1b** and **1c** is staggered.

4. Synthesis and spectroscopic properties of *cis*-[Mo(CO)₄(PPh₂NHR)₂] (R = Ph, Bu')

The aminophosphines **1a**, **b** react readily with *cis*-[Mo(CO)₄(NCEt)₂] [16] to give *cis*-[Mo(CO)₄(PPh₂NHR)₂] (R = Ph (**2**), Bu^{*t*} (**3**)) in high yield (Scheme 1). Compound **1c** does not react even at elevated temperature, only decomposition of *cis*-[Mo(CO)₄(NCEt)₂] occurs.

Apparently, the greater steric hindrance of the mesityl substituent in 1c compared with the phenyl substituent in 1a, b is the reason for this. A similar behaviour was observed for the organic triphos ligand $CH_3C(CH_2PR_2)_3$ (R = *o*-tolyl), in which the *o*-tolyl substituent causes a significant decrease in the ligating strength of the triphos ligand relative to the phenyl-substituted ligand [17].

In the ³¹P{¹H} NMR spectra, **2** and **3** exhibit singlets which show the expected low-field shifts relative to the uncoordinated ligands [**2**: 70.8 ppm ($\Delta\delta = 42.2$ ppm), **3**: 69.2 ppm ($\Delta\delta = 46.7$ ppm)]. In addition, satellites indicative of an ABX spin system are visible, but at a resolution too poor to determine the ³¹P-³¹P coupling constant. In the ¹³C{¹H} NMR spectrum of **2** the pattern of an ABX spin system is clearly visible for the *trans*-CO carbon atoms at 214.8 ppm and the *ipso*-C atoms of the phenyl rings on phosphorus at 136.8 ppm, respectively.

The IR spectra of **2** and **3** show the typical pattern for *cis*-[Mo(CO)₄(phosphine)₂] complexes (local symmetry C_{2v}) in the carbonyl region. In these and related complexes [3,9,18] usually only three of the four expected absorptions are observed in the range of 1870– 2025 cm⁻¹. In addition, **2** and **3** exhibit a v(NH) band at 3383 and 3385 cm⁻¹, respectively, which is shifted to higher wavenumbers for **2** ($\Delta v = 85$ cm⁻¹), but to lower wavenumbers for **3** ($\Delta v = -15$ cm⁻¹) compared with **1a**, **b**. The v(PN) vibration in **2** and **3** is tentatively assigned to strong absorptions at 906 cm⁻¹ (**2**) and 1010 cm⁻¹ (**3**). In *cis*-[Mo(CO)₄(PPh₂NR₂)₂] (R = Me, Et, Pr, Bu), the v(PN) band is observed in the same range (at 926–985 cm⁻¹) [31].

5. Molecular structure of *cis*-[Mo(CO)₄(PPh₂NHBu^t)₂] (3)

Cis-[Mo(CO)₄(PPh₂NHBu')₂] (Fig. 3) crystallises monoclinic in the space group $P2_1$ (no. 4) with two molecules in the unit cell. Selected bond lengths and angles are given in Table 2.

The molybdenum atom is octahedrally coordinated by four carbonyl groups and the two phosphorus atoms of the two *cis*-oriented aminophosphine ligands. The P-Mo-P bond angle of 95.44(3)° is slightly larger than the ideal angle of 90°. The Mo-P bond lengths in **3** are

0(2) C(7) O(1) C(8) C(9 C(30 C(13) P(1) C(29 N(1) N(2 C(16 C(14) C(18) C(17 C(20 C(15) C(25 C(19) C(35) C(36

Fig. 3. Molecular structure of 3 (ORTEP, 50% probability, SHELXTL PLUS; XP) [26]. Hydrogen atoms (other than N-H) omitted for clarity.

similar to those in related complexes (Table 2). Another general feature is that the Mo-C bond lengths of the carbonyl groups *trans* to the aminophosphine ligands (*trans* effect) are slightly shorter [3: Mo(1)-C(2)1.984(4), Mo(1)–C(4) 1.995(4) Å] than those of the other two carbonyl groups [3: Mo-C 2.048(4) Å]. The phosphorus atoms of the aminophosphines show distorted tetrahedral coordination. Here the N-P-Mo bond angles are markedly larger than 109.5° [113.0(1) and 112.4(1)°], and the other bond angles are correspondingly smaller. The smallest bond angle at phosphorus is that between the two phenyl substituents [C-P-C 102.9(2) and 102.2(2)°]. The nitrogen atom is coordinated in a trigonal-planar fashion by phosphorus, the carbon atom of the But substituent, and a hydrogen atom. The sum of the bond angles is 358.8° (N1) and 355.7° (N2). The bond angles between the two bulky substituents (P-N-C) are larger (136.8(2) and $133.7(2)^\circ$) than the ideal angle of 120° , whereas those angles involving the hydrogen atom are correspondingly smaller (109–113°). As in [Ni(PPh₂NHPh)₄] [8], the overall structure of PPh₂NHPh [6] is almost uninfluenced by coordination to the Mo atoms.

6. Attempted formation of heterodinuclear complexes

Several attempts to employ 2 and 3 in the synthesis of heterobimetallic ligand-bridged dinuclear complexes were unsuccessful. Thus, cis-[Mo(CO)₄(PPh₂NHR)₂] (R = Ph, Bu') does not react with $[Cp_2ZrCl_2]$ in the presence of NEt₃ as an auxiliary base, and no CH₄ elimination occurred when cis-[Mo(CO)₄(PPh₂NHR)₂] (R = Ph, Bu') was treated with $[Cp_2ZrMe_2]$. Apparently, the acidity of the N-H group in coordinated aminophosphines is too low.

The phosphinoamine PPh₂NHPh [11] is readily deprotonated by BuLi to give LiNPhPPh₂ [19]. Two mesomeric structures can be formulated for these anions in which the negative charge is localised at the N (phosphinoamide) or P atom (iminophosphide). According to theoretical calculations [20], the phosphinoamide structure is dominant. However, while lithiation of 3 with BuLi was successful, no further reaction with [Cp₂ZrCl₂] was observed.

7. Experimental

All experiments were carried out under purified dry argon. Solvents were dried and freshly distilled under argon. NMR spectra: Avance DRX 400 (Bruker), standards: ¹H NMR (400.1 MHz): trace amounts of protonated solvent, C₆D₆, ¹³C NMR (100.6 MHz): internal solvent, ³¹P NMR (161.9 MHz): external 85% H₃PO₄. The IR spectra were recorded as KBr mulls on a Perkin-Elmer FT-IR spectrometer system 2000 in the range 350-4000 cm⁻¹. The mass spectra were recorded with a Sektorfeldgerät AMD 402 (AMD Intectra GmbH; EI, 70 eV). The melting points were determined in sealed capillaries under argon and are uncorrected. PPh_2NHR (R = Ph (1a) [11], Bu^t (1b) [12]), [Mo(CO)₄(NCEt)₂] [16], LiNHPh [21], PMes₂Cl [22], [Cp₂ZrCl₂] [23] and [Cp₂ZrMe₂] [24] were prepared by literature procedures.

Table 2

Selected bond lengths (Å) and bond angles (°) in cis-[Mo(CO)₄L₂] (L = phosphinoamine, L₂ = 3,4-(PPh₂NH)₂C₆H₃Me)

L or L ₂	PPh ₂ NHPh (3)	PPh ₂ NH ₂ [3b]	PPh(Cl)NHPr ⁱ [3c]	3,4-(PPh ₂ NH) ₂ C ₆ H ₃ Me [3e]
Mo-P	2.5386(8), 2.5503(8)	2.5218(7), 2.5290(7)	2.459(1), 2.463(1)	2.516(2), 2.471(2)
P–N	1.665(3)	1.677(3), 1.682(2)	1.637(2), 1.639(2)	1.688(6), 1.717(6)
Mo-Cax	2.048(4), 2.048(4)	2.031(3), 2.051(2)	2.035(2), 2.043(3)	a
Mo-C _{eq}	1.984(4), 1.995(4)	2.002(3), 1.987(3)	1.999(3), 2.013(3)	a
P-Mo-P	95.44(3)	90.06(2)	90.5(1)	84.6(1)
Mo-P-N	113.0(1), 112.4(1)	111.6(1), 112.0(1)	116.5(1), 116.9(1)	113.9(2), 115.6(2)
P-Mo-C _{trans}	175.3(1), 178.1(1)	176.71(8), 178.36(8)	178.9(1), 179.7(1)	a
P-Mo-C _{cis}	86.4(1)-91.9(1)	85.8(1)-94.3(1)	89.6(1)-91.3(1)	a

^a No values reported.

114

7.1. Preparation of PMes₂NHPh (1c)

At -78° C, 9.23 ml (13.85 mmol) of a 1.5 M BuLi solution in hexane was added with a dropping funnel to a solution of 1.45 ml (13.85 mmol) PhNH₂ in 30 ml thf. The solution was slowly warmed to room temperature (r.t.) and stirred for 1 h. The solution was then transferred into a dropping funnel and added dropwise to a solution of 5.4 g (13.85 mmol) Mes₂PCl·C₆H₁₄ in 50 ml thf at -78° C. The solution was stirred for 2 h and then slowly warmed to r.t. The solvent was removed in vacuo, the off-white residue dissolved in hexane and LiCl filtered off. After concentration of the hexane solution, beige crystals of **1c** formed. Yield: 4.0 g (80%). M.p.: 124–126°C.

¹H NMR (CDCl₃, ppm): 7.21 (m, 3 H, *o*,*p*-H in Ph), 7.00 (m, 2 H, *m*-H in Ph), 6.80 (d, ${}^{4}J_{PH} = 1.9$ Hz, 2 H, C₆H₂(CH₃)₃), 4.34 (d, ${}^{2}J_{PH} = 9.0$ Hz, 1 H, NH), 2.30 (s, 12 H, *o*-CH₃ in Mes), 2.26 (s, 6 H, *p*-CH₃ in Mes). ³¹P{¹H} NMR (CDCl₃, ppm): 19.4 (s). IR (KBr, cm⁻¹): 3364 cm⁻¹ (vst, NH). Elemental analysis: C₂₄H₂₈NP (361.45 g): C, 79.53 (79.75); H, 7.94 (7.81); N, 4.01 (3.88); P, 8.65 (8.57).

7.2. Preparation of $cis-[Mo(CO)_4(PPh_2NHPh)_2]$ (2)

PPh₂NHPh (5.54 g, 20 mmol) and 3.18 g (10 mmol) [Mo(CO)₄(NCEt)₂] were stirred in 50 ml CH₂Cl₂ for 2 h. The solution was concentrated in vacuo, and the white product was precipitated with 30 ml hexane. Crystals were obtained from the mother liquor at -20° C. Yield: 6.55 g (86%). M.p.: 190–191°C.

¹H NMR (CDCl₃, ppm): 7.56 (br, 8 H, *m*-H in P–Ph), 7.34 (t, ${}^{3}J_{HH} = 5.1$ Hz, 12 H, o,p-H in P–Ph), 6.76 (t, ${}^{3}J_{HH} = 7.7, 4$ H, *m*-H in N–Ph), 6.58 (t, ${}^{3}J_{HH} =$ 7.3 Hz, 2 H, *p*-H in N–Ph), 5.93 (d, ${}^{3}J_{HH} = 8.0$ Hz, 4 H, *o*-H in N–Ph), 4.34 (d, ${}^{2}J_{PH} = 22.2$ Hz, 2 H, NH). ${}^{13}C$ NMR (CDCl₃, ppm): 214.81 (m, CO trans to P), 209.78 $(t, {}^{2}J_{PC} = 9.9 \text{ Hz}, \text{ CO } cis \text{ to } P), 142.51 (t, {}^{2}J_{PC} = 5.5 \text{ Hz},$ ipso-C in N-Ph), 136.76 (m, ipso-C in P-Ph), 131.51 (d, ${}^{2}J_{PC} = 6.2$ Hz, o-C in P–Ph), 131.45 (d, ${}^{2}J_{PC} = 6.6$ Hz, o-C in P-Ph), 130.45 (s, p-C in P-Ph), 129.26 (d, ${}^{3}J_{PC} = 4.6$ Hz, *m*-C in Ph), 129.21 (d, ${}^{3}J_{PC} = 4.6$ Hz, m-C in Ph), 129.07 (s, m-C in N-Ph), 120.91 (s, p-C in N–Ph), 118.58 (t, ${}^{3}J_{PC} = 2.6$ Hz, *o*-C in N–Ph). ${}^{31}P{}^{1}H{}$ NMR (CDCl₃, ppm): 70.84 (s, P), ¹³C satellites at 70.96 (s), 70.77 (s), 70.60 (s), 70.41 (s). MS [m/z, %]: 514 $[(OC)_5Mo(PPh_2NHPh)^+, 3], 486 [(OC)_4Mo(PPh_2^-)]$ NHPh)⁺, 3], 430 [(OC)₂Mo(PPh₂NHPh)⁺, 12], 374 [Mo(PPh₂NHPh)⁺, 24], 277 (PPh₂NHPh⁺, 100), 200 $(PPh_2NH^+, 66)$, and fragmentation products thereof. IR (KBr, cm⁻¹): 3383 (m, NH), 2022 (vst, CO), 1929 (vst, CO), 1902 (vst, CO), 906 (st, PN). Elemental analysis: C40H32MoN2O4P2 (762.58 g): C, 61.31 (63.00); H, 4.13 (4.23); N, 3.43 (3.67); O, 8.49 (8.39); P, 8.21 (8.12).

7.3. Preparation of cis- $[Mo(CO)_4(PPh_2NHBu^t)_2]$ (3)

 PPh_2NHBu^t (0.89 g, 3.47 mmol) and 0.55 g (1.73 mmol) [Mo(CO)₄(NCEt)₂] were stirred in 30 ml CH₂Cl₂ for 2 h. The solution was then concentrated in vacuo and the light brown product precipitated by adding 30 ml hexane. Crystals were obtained from the mother liquor at -20° C. Yield: 1.04 g (83%). M.p.: 117–120°C.

¹H NMR (CDCl₃, ppm): 7.34–7.70 (m, 4 H, *m*-H in Ph), 7.40–7.38 (m, 6 H, *o*,*p*-H in Ph), 2.15 (d, ${}^{2}J_{PH} = 20.0$ Hz, 2 H, NH), 0.85 (s, 18 H, C(CH₃)₃). ¹³C NMR (CDCl₃, ppm): 216.89 (d, ${}^{2}J_{PC} = 8.1$ Hz, CO *trans* to P), 216.80 (d, ${}^{2}J_{PC} = 8.7$ Hz, CO *trans* to P), 210.31 (t, ${}^{2}J_{PC} = 9.9$ Hz, CO *cis* to P), 139.83 (d, ${}^{1}J_{PC} = 18.2$ Hz, *ipso*-C in Ph), 139.65 (d, ${}^{1}J_{PC} = 18.0$ Hz, *ipso*-C in Ph), 132.62 (d, ${}^{2}J_{PC} = 6.5$ Hz, *o*-C in Ph), 132.55 (d, ${}^{2}J_{PC} = 6.5$ Hz, *o*-C in Ph), 128.47 (d, ${}^{3}J_{PC} = 4.3$ Hz, *m*-C in Ph), 128.41 (d, ${}^{3}J_{PC} = 4.3$ Hz, *m*-C in Ph), 128.41 (d, ${}^{3}J_{PC} = 4.3$ Hz, *m*-C in Ph), 128.45 (d, ${}^{2}J_{PC} = 6.7$ Hz, *C*(CH₃)₃), 56.27 (d, ${}^{2}J_{PC} = 6.7$ Hz, *C*(CH₃)₃), 32.69 (s, C(CH₃)₃). ³¹P{¹H} NMR (CDCl₃, ppm): 69.2 (s). IR (cm⁻¹): 3385 (m, NH), 2018 (vst, CO), 1905 (vst, CO), 1872 (vst, CO), 1010 (st, PN).

MS [m/z, %]: 723 (M⁺, 0.01), 695 (M⁺ – CO, 0.02), 667 (M⁺ – 2 CO, 0.4), 495 [(OC)₅Mo(PPh₂NBu^tH)⁺, 2], 467 (M⁺ – PPh₂NHBu^t, 5), 439 (M⁺ – CO – PPh₂NHBu^t, 1), 411 (M^{+ –} 2CO – PPh₂NHBu^t, 10), 383 (M^{+ –} 3CO – PPh₂NHBu^t, 0.5), 355 (Mo(PPh₂NBu^tH)⁺, 25), 257 (PPh₂NHBu^{t+}, 93), 200 (PPh₂NH⁺, 100), 185 (PPh₂⁺, 75), and fragmentation products thereof. Elemental analysis: C₃₆H₄₀MoN₂O₄P₂ (722.58 g): C, 58.76 (59.84); H, 5.61 (5.58); N, 3.65 (3.88); O, 8.95 (8.86); P, 8.65 (8.57).

7.4. Data collection and structure refinement of 1b,c and 3

Data were collected on a Siemens CCD (SMART) diffractometer with monochromated Mo K α radiation ($\lambda = 0.71073$ Å) (Table 3). All observed reflections were used for determination of the unit cell parameters. Absorption correction with SADABS [25].

The structure of compound **1b** could be solved only in the monoclinic space group $P2_1$ ($\beta = 90^\circ$). The R_{int} value for the monoclinic crystal system was 0.04 and that for the orthorhombic system 0.12. The normal refinement procedure for the space group $P2_1$ gave a wR_2 value of 0.289 with anisotropic temperature factors for all non-hydrogen atoms. The refinement procedure for a pseudo-merohedral twin with the matrix 100 0 $-10 \ 00-1$ and BASF = 0.30 gave a better convergence ($wR_2 = 0.131$ and $R_1 = 0.050$).

Positions of non-hydrogen atoms were located by using direct methods (SHELXTL PLUS) [26]. Subsequent least-squares refinement and difference electron density

Table 3									
Crystal	data	and	structure	refinement	for	1b,	1c	and	3

	1b	1c	3
Formula	C ₁₆ H ₂₀ NP	C ₂₄ H ₂₈ NP	C ₃₆ H ₄₀ MoN ₂ O ₄ P ₂
Mr	257.30	361.45	722.58
Temperature	213(2)	220(2)	220(2)
(K) Countral countrant			
Crystal system	monoclinic	monoclinic	monoclinic
Space group	$P2_1$ (no. 4)	$P2_1/c$ (no. 14)	$P2_1$ (no. 4)
$a(\mathbf{A})$	10.085(2)	13.4020(3)	9.7956(1)
b (A)	9.560(2)	7.2409(1)	20.7138(1)
<i>c</i> (A)	15.650(3)	21.4066(2)	10.0850(1)
α (°)	90	90	90
β (°)	90.00(3)	92.138(1)	115.879(1)
γ (°)	90	90	90
V [Å ³]	1508.9(5)	2075.09(6)	1841.08(3)
Ζ	4	4	2
ρ_{calcd} (Mg m ⁻³)	1.133	1.156	1.303
F(000)	552	776	748
Crystal size (mm)	$0.3 \times 0.3 \times 0.2$	$0.5 \times 0.4 \times 0.2$	$0.2 \times 0.4 \times 0.5$
Absorption coefficient (mm ⁻¹)	0.166	0.139	0.481
$2\Theta_{max}$ (°)	2.6-57.6	3.4-56.0	4.0-54.4
Reflections	9864	11457	9883
Independent reflections	6073	4551	5819
R _{int}	0.0438	0.0447	0.0281
Parameters	486	347	566
$R (I > 2\sigma(I))$	0.0498	0.0527	0.0273
wR_2 (all data)	0.1316	0.1241	0.0690
Absolute			-0.07(3)
structure			
(1/a)	0.221	0 272	0.255
$(2/p)_{min}$ (e Å ⁻³)	0.551	0.275	0.355
$(\Delta/\rho)_{\rm max}$ (e Å ⁻³)	-0.200	-0.267	-0.490

map calculations revealed the positions of the H atoms (non-hydrogen atoms anisotropic approximation, H atoms isotropic approximation).

8. Supplementary material

Atomic coordinates, bond lengths and angles, and thermal parameters have been deposited at the Cambridge Crystallographic Data Center (CCDC nos. 145916 (1b), 145918 (1c), 145917 (3)). Copies of this information may be obtained free of charge from The Director, CCDC, 12 Union Road, Cambridge CB2 1EZ, UK (fax: +44-1223-336-033; e-mail: deposit@ ccdc.cam.ac.uk or www: http://www.ccdc.cam.ac.uk).

References

- T.B. Rauchfuss, in: L.H. Pignolet (Ed.), Homogeneous Catalysis with Metal Phosphine Complexes, Plenum Press, New York, 1983 Chapter 7.
- [2] (a) J.D. Korp, I. Bernal, J. Organomet. Chem. 220 (1981) 355.
 (b) K.-I. Onuma, A. Nakamura, Bull. Soc. Chem. Jpn. 54 (1981) 761.
 (c) W. Schirmer, U. Flörke, H.-J. Haupt, Z. Anorg. Allg. Chem. 545 (1987) 83.
 (d) G. Süss-Fink, M.A. Pellinghelli, A. Tiripicchio, J. Organomet. Chem. 320 (1987) 101.
 (e) D. Fenske, M. Maczek, K. Maczek, Z. Anorg. Allg. Chem. 623 (1997) 1113 and references therein.
- [3] (a) D.L. Davies, F.I. Healy, J. Howarth, D.R. Russell, L.J.S. Sherry, J. Organomet. Chem. 376 (1989) C31. (b) G.M. Gray, Y. Zhang, J. Crystallogr. Spectrosc. Res. 23 (1993) 711. (c) T.G. Hill, R.C. Haltiwanger, T.R. Prout, A.D. Norman, Inorg. Chem. 28 (1989) 3461. (d) G.M. Gray, C.S. Kraihanzel, J. Organomet. Chem. 146 (1978) 23. (e) T.Q. Ly, A.M.Z. Slawin, J.D. Woollins, J. Chem. Soc., Dalton Trans. (1997) 1611. (f) V.S. Reddy, S.S. Krishnamurthy, M. Nethaji, J. Chem. Soc., Dalton Trans. (1994) 2661. (g) H.-J. Chen, A. Tarassoli, R.C. Haltiwanger, V.S. Allured, A.D. Norman, Inorg. Chim. Acta 65 (1982) L69. (h) A. Tarassoli, H.-J. Chen, M.L. Thompson, V.S. Allured, R.C. Haltiwanger, A.D. Norman, Inorg. Chem. 25 (1986) 4152. (i) T.G. Hill, R.C. Haltiwanger, A.D. Norman, Inorg. Chem. 24 (1985) 3499. (j) A. Tarassoli, H.-J. Chen, M.L. Thompson, T.G. Allured, V.S. Hill, R.C. Haltiwanger, A.D. Norman, Inorg. Chem. 25 (1986) 3541. (k) F.C. Bradley, E.H. Wong, E.J. Gabe, F.L. Lee, Inorg. Chim. Acta 120 (1986) L21. (l) L.K. Atkinson, D.C. Smith, J. Organomet. Chem. 33 (1971) 189. (m) O. Stelzer, H.-B. Eikmeier, G. Johannsen, Z. Naturforsch., Teil B 32 (1977) 1449. (n) G. Johannsen, O. Stelzer, Chem. Ber. 110 (1977) 3438. (o) G. Johannsen, O. Stelzer, E. Unger, Chem. Ber. 108 (1975) 1259. (p) G.M. Gray, C.S. Kraihanzel, J. Organomet. Chem. 187 (1980) 51. (q) R.A. Sinclair, A.B. Burg, Inorg. Chem. 7 (1968) 2160. (r) W. Seidel, Z. Chem. 7 (1967) 462. (s) E.W. Ainscough, L.K. Peterson, Inorg. Chem. 9 (1970) 2699. (t) E.W. Ainscough, A.M. Brodie, S.T. Wong, J. Chem. Soc., Dalton Trans. (1977) 915. (u) W. Seidel, M. Alexiev, Z. Anorg. Allg. Chem. 438 (1978) 68 and references therein.
- [4] (a) C.S. Kraihanzel, E. Sinn, G.M. Gray, J. Am. Chem. Soc. 103 (1981) 960. (b) G.M. Gray, A.L. Zell, H. Einspahr, Inorg. Chem. 25 (1986) 2923. (c) G.M. Gray, N. Takada, A.L. Zell, H. Einspahr, J. Organomet. Chem. 342 (1988) 339.
- [5] (a) A.M. Baranger, R.G. Bergman, J. Am. Chem. Soc. 116 (1994) 3822. (b) A.M. Baranger, F.J. Hollander, R.G. Bergman, J. Am. Chem. Soc. 115 (1993) 7890. (c) J.T. Mague, Z. Lin, Organometallics 11 (1992) 4139. (d) E. Lindner, M. Heckmann, R. Fawzi, W. Hiller, Chem. Ber. 124 (1991) 2171. (e) N. Dufour, J.-P. Majoral, A.-M. Caminade, R. Choukroun, Y. Dromzee, Organometallics 10 (1991) 45. (f) E. Hey, U. Müller, Z. Naturforsch., Teil B 44 (1989) 1538. (g) E. Hey, M.F. Lappert, J.L. Atwood, S.G. Bott, Polyhedron 7 (1988) 2083. (h) M.G. Newton, R.B. King, M. Chang, J. Gimeno, J. Am. Chem. Soc. 100 (1978) 1632.
- [6] T.G. Wetzel, S. Dehnen, P.W. Roesky, Angew. Chem., Int. Ed. Engl. 111 (1999) 1155.
- [7] O. Kühl, T. Koch, F.B. Somoza Jr, P.C. Junk, E. Hey-Hawkins, D. Plat, M.S. Eisen, J. Organomet. Chem. 604 (2000) 116.
- [8] O. Kühl, P.C. Junk, E. Hey-Hawkins, Z. Anorg. Allg. Chem. 626 (2000) 1591.
- [9] (a) F.A. Cotton, D.J. Darensbourg, S. Klein, B.W.S. Kolthammer, Inorg. Chem. 21 (1982) 294. (b) F.A. Cotton, D.J. Darensbourg, S. Klein, B.W.S. Kolthammer, Inorg. Chem. 21 (1982) 2661. (c) W.S. Sheldrick, Chem. Ber. 108 (1975) 2242. (d) R.T. Baker, T.H. Tulip, S.S. Wreford, Inorg. Chem. 24 (1985) 1379.

(e) I.R. Butler, W.R. Cullen, Tae-Jeong Kim, S.J. Rettig, J. Trotter, Organometallics 4 (1985) 972. (f) L. Gelmini, L.C. Matassa, D.W. Stephan, Inorg. Chem. 24 (1985) 2585. (g) M.G.B. Drew, S.R. Wade, M.G.H. Wallbridge, G.R. Willey, J. Chem. Soc., Dalton Trans. (1986) 713. (h) W. Tikkanen, Y. Fujita, J.L. Petersen, Organometallics 5 (1986) 888. (i) E.J. Fernández, M.C. Gimeno, P.G. Jones, A. Laguna, M. Laguna, E. Olmos, J. Chem. Soc., Dalton Trans. (1994) 2891. (j) D.L. Davis, F.I. Healey, J. Howarth, D.R. Russell, L.J.S. Sherry, J. Organomet. Chem. 376 (1989) C31. (k) A. Heßler, S. Kucken, O. Stelzer, W.S. Sheldrick, J. Organomet. Chem. 553 (1998) 39. (1) J. Powell, C. Couture, M.R. Gregg, J.F. Sawyer, Inorg. Chem. 28 (1989) 3437. (m) E. Lindner, M.F. Günther, H.A. Mayer, R. Fawzi, M. Steimann, Chem. Ber. 130 (1997) 1815. (n) K. Maitra, V.J. Catalano, J.H. Nelson, J. Organomet. Chem. 529 (1997) 409. (o) M. Watson, S. Woodward, G. Conole, M. Kessler, G. Sykara, Polyhedron 13 (1994) 2455. (p) E.J. Fernandez, M.C. Gimeno, P.G. Jones, A. Laguna, M. Laguna, E. Olmos, J. Chem. Soc., Dalton Trans. (1996) 3603. (q) J. Szymoniak, M.M. Kubicki, J. Besancon, C. Moise, Inorg. Chim. Acta 180 (1991) 153. (r) D.R. Tueting, M.M. Olmstead, N.E. Schore, Organometallics 11 (1992) 2235.

- [10] (a) J.S. Casas, A. Castineiras, I. Haiduc, A. Sanchez, J. Sordo, E.M. Vazquez-Lopez, Polyhedron 13 (1994) 2873. (b) B. Chaudret, B. Delavaux, R. Poilblanc, Coord. Chem. Rev. 86 (1988) 191.
- [11] (a) W. Wiegräbe, H. Bock, Chem. Ber. 101 (1968) 1414. (b)
 R.F. Hudson, R.J.G. Searle, F.H. Devitt, J. Chem. Soc. (C) (1966) 1001.
- [12] H.H. Sissler, N.L. Smith, J. Org. Chem. 26 (1961) 611.
- [13] N. Poetschke, M. Nieger, M.A. Khan, E. Niecke, M.T. Ashby, Inorg. Chem. 36 (1997) 4087.

- [14] (a) F. Jäkle, M. Mattner, T. Priermeier, M. Wagner, J. Organomet. Chem. 502 (1985) 123. (b) A. Schmidpeter, G. Burget, Z. Naturforsch., Teil B 40 (1985) 1306.
- [15] (a) J.M. Al-Rawi, M.-A. Sheat, N. Ayed, Org. Magn. Res. 22 (1984) 336. (b) R.J. Cross, T.H. Green, R. Keat, J. Chem. Soc., Dalton Trans. (1976) 1424 and 1428.
- [16] G.F. Kubas, L. Stepan von der Slugs, Inorg. Synth. 28 (1990) 31.
- [17] H. Heidel, J. Scherer, A. Asam, G. Huttner, O. Walter, L. Zsolnai, Chem. Ber. 128 (1995) 293.
- [18] (a) O. Stelzer, E. Unger, Chem. Ber. 110 (1977) 3430. (b) D.J. Brauer, G. Hasselkuß, S. Morton, S. Hietkamp, H. Sommer, O. Stelzer, Z. Naturforsch., Teil B 40 (1985) 1161. (c) U. Senff, S. Kurz, E. Hey-Hawkins, Z. Anorg. Allg. Chem. 623 (1997) 1255. (d) F. Lindenberg, T. Gelbrich, Hey-Hawkins, Z. Anorg. Allg. Chem. 621 (1995) 771.
- [19] M.T. Ashby, L. Zhong, Inorg. Chem. 31 (1992) 1321.
- [20] G. Trinquier, M. Ashby, Inorg. Chem. 34 (1992) 1306.
- [21] From aniline and BuLi at r.t. in toluene in 73% yield as yellow air-sensitive powder. F. Lindenberg, Dissertation, Universität Leipzig, 1995.
- [22] H. Schmidbauer, S. Schnatterer, Chem. Ber. 116 (1983) 1947.
- [23] E. Samuel, Bull. Soc. Chim. Fr. (1966) 3548.
- [24] P.C. Wailes, H. Weigold, A.P. Bell, J. Organomet. Chem. 35 (1972) 155.
- [25] G.M. Sheldrick, SADABS, A Program for Empirical Absorption Correction, Göttingen, Germany, 1998.
- [26] SHELXTL PLUS, XS, Program for Crystal Structure Solution, XL, Program for Crystal Structure Determination, XP, Interactive Molecular Graphics, Siemens Analytical X-ray Institute Inc., 1990.