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A Study of the Aryl–Aryl Coupling
Reactions of (4-X-C6H4)Ph2P55O
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ABSTRACT

The Suzuki coupling reactions of (4-X-Ph)Ph2P55O, where X ¼ bromide

or triflate, with a series of boronic acids were studied using tetrakis-

(triphenylphosphino) palladium or palladium acetate as the catalyst. The

boronic acids utilized were phenyl, p-tolyl, 3-methoxy, 4-methoxy, and

4-acetyl. Yields of the corresponding biphenyl analogues ranged from 50

to 95%. Palladium acetate provided products free of triphenylphosphine

contamination, and required significantly shorter reaction times for

complete reaction (2 to 4 hours vs. 12 to 24 hours, respectively) than when

tetrakis-(triphenylphosphino) palladium was used. The methodology was

applied to bis(4-F-Ph)(4-OTf-Ph)P55O to afford, in excellent yield (99%),

a biphenyl-based AB2 monomer precursor for dendritic and hyperbranched

poly(arylene ether phosphine oxide)s.
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INTRODUCTION

During the course of a project involving the synthesis of hyperbranched

poly(arylene ether phosphine oxide)s from unsymmetrically substituted

triarylphosphine oxides 1a, 1b, and 1c (Fig. 1), the need arose to prepare the

corresponding biphenyl analogues. Polymerization reactions of 1a, 1b, and 1c

using nucleophilic aromatic substitution conditions (K2CO3, NMP, reflux)

afforded hyperbranched poly(polyarylene ether phosphine oxide)s, HB

PAEPOs, with limited molecular weights (,15,000 g/mol) and broad

molecular weight distributions (2.5–3.5).[1] One potential reason for the

observed molecular weights may have been the presence of intramolecular

cyclization reactions. Two approaches to eliminate or decrease the possibility

of intramolecular cyclization are polymerization reactions in the presence of

core molecules[2–5] and the use of more rigid monomers. Polymerization

reactions of 1a, 1b, and 1c in the presence of a variety of core molecules has

led to HB PAEPOs with controlled molecular weights and molecular weight

distributions as low as 1.25.[6]

An alternative method for eliminating or minimizing intramolecular

cyclization during the polymerization reactions is the use of more rigid,

biphenyl-substituted monomers. Monomers 1a, 1b, and 1c are prepared using

standard Grignard chemistry and chlorophosphines, however the starting

materials that would be needed to prepare the desired biphenyl derivatives are

not readily available and thus, the biphenyl derivatives need to be prepared via

an alternate route. Coupling reactions of aryl halides with diphenylphosphine

oxide have been utilized to prepare triarylphosphine oxide derivatives in good

yield.[7–10] Unfortunately, bis-(4-fluorophenyl)phenylphosphine oxide is not

commercially available and the use of 4-bromo-40methoxybiphenyl is cost

prohibitive. Therefore, a more cost efficient route to the desired biphenyl

monomers using derivatives of 1a, 1b, and 1c as the starting materials has

been explored. A number of synthetic methodologies exist for aryl–aryl

coupling, but we have chosen to explore the most widely utilized method, the

Suzuki coupling reactions.[11,12]

Figure 1. AB2 monomers, 1a, 1b, and 1c, utilized to prepare hyperbranched

poly(arylene ether phosphine oxide)s via nucleophilic aromatic substitution reactions.
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Aryl–aryl coupling reactions of triarylphosphine oxide derivatives are

not well known. McGrath et al. have prepared linear poly(arylene phosphine

oxide)s via the nickel catalyzed coupling reaction of bis-(4-chlorophenyl)-

phenylphosphine oxide.[13] During the course of our investigation we became

aware of work by Xiao et al. in which the Suzuki coupling of (2-Br-

Ph)Ph2P55O with a variety of boronic acids using tetrakis(triphenylphos-

phino) palladium was studied as a means to prepare bulky, triarylphosphine

ligands.[14] Similar work has been reported by Buchwald et al. for the

preparation of binaphthyl based phosphine ligands.[15] This paper will

describe our efforts to develop and apply a synthetic strategy to prepare

biphenyl substituted triarylphosphine oxides for subsequent use as monomers

for HB PAEPOs.

RESULTS AND DISCUSSION

Initial screening reactions have been performed using (4-bromophenyl)-

diphenylphosphine oxide, 2, a variety of aryl boronic acids, 3a–e, and

tetrakis(triphenylphosphino)palladium, (Ph3P)4Pd, in toluene as shown in

Sch. 1 (Method 1). The yields are listed in Table 1. While the reactions using

(Ph3P)4Pd have provided the desired biaryl derivatives in reasonably good

yields, 50–89%, removal of the residual triphenylphosphine from the catalyst

has proven difficult. “Phosphine-free” palladium catalyzed aryl–aryl coupling

reactions using palladium acetate, Pd(OAc)2 have been reported by a number

of research groups with the key advantage being the absence of Ph3P

impurities at the conclusion of the reaction.[16–19] Application of Pd(OAc)2

Scheme 1.

Aryl–Aryl Coupling Reactions of (4-X-C6H4)Ph2P55O 707
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conditions (Sch. 1, Method 2) to aryl coupling reactions of 2 with a number of

aryl boronic acids has provided the desired biphenyl compounds in excellent

yields, 92–97%, free of triphenylphosphine impurities. Reaction times using

Pd(OAc)2 have also decreased significantly. For example, a typical reaction

with (Ph3P)4Pd requires from 12–24 hours to reach completion whereas those

with Pd(OAc)2 are complete within 2–4 hours. Purification of the desired

products is afforded by recrystallization or column chromatography as

necessary. Confirmation of the desired structures has been provided by 1H and
13CNMR spectroscopy, GC/MS, and either elemental analysis or high

resolution MS as necessary.

In order to apply the Pd(OAc)2 protocol to the synthesis of biphenyl AB2

monomers, the appropriate starting material, (4-bromophenyl)-bis-(4-fluoro-

phenyl)phenylphosphine oxide, was needed. Since its synthesis proved

elusive, an alternative route was explored. Suzuki coupling reactions with aryl

triflates are well known and the synthesis of triflates from phenols, in our case

1a, 1b, and 1c, is straightforward.

Therefore, to test the feasibility of aryl coupling reactions with triaryl-

phosphine oxide-based triflate derivatives, (4-OTf-Ph)Ph2P55O, 6, was

prepared according to the route shown in Sch. 2. Treatment of (4-hydroxy-

phenyl)diphenylphosphine oxide, 5, with an excess of triflic anhydride in

dichloromethane afforded the triflate derivative, 6, in excellent yield.

Unreacted starting material, 5, was removed by dissolving the reaction

product mixture in toluene and filtering off the toluene insoluble starting

material. Subsequent removal of the toluene under reduced pressure and

drying in vacuo afforded 6 as yellow, analytically pure crystals.

As shown in Sch. 2 coupling reactions with 6 and a number of arylboronic

acids, 3a, 3d, and 3e, were performed in toluene at 908C using (Ph3P)4Pd

(Method 1b). The corresponding biphenyl derivatives, 4a, 4d, and 4e, were

Table 1. Results from Suzuki Coupling Reaction of 2 using tetrakis(triphenylphos-

phino)palladium or palladium acetate.

Boronic acid Solvent Catalyst Product % yield (GC/MS)

3a Toluene (Ph3P)4Pd 4a 60

3b Toluene (Ph3P)4Pd 4b 89

3c Toluene (Ph3P)4Pd 4c 50

3e Toluene (Ph3P)4Pd 4e 70

3a Acetone/H2O Pd(OAc)2 4a 95

3b Acetone/H2O Pd(OAc)2 4b 97

3c Acetone/H2O Pd(OAc)2 4c 92

3d Acetone/H2O Pd(OAc)2 4d 95

Czupik, Bankey, and Fossum708
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afforded in good yields (Table 2). Comparison of spectral data and GC/MS

data of 4a, 4d, and 4e prepared from the triflate derivate, 6, with those

prepared from the bromide derivate, 2, confirmed their identity.

The synthetic methodology developed with model compound 6 was then

applied to prepare the desired AB2 monomer precursor, 8 (Sch. 3). Reaction of

1a with an excess of triflic anhydride provided the corresponding triflate

derivative, 7, in 90% yield after workup. Coupling of 7 with 3b using the

conditions of Method 1b provided the desired biphenyl derivative, 8, in 99%

yield after workup (Sch. 3). Characterization by 1H and 13C NMR spectro-

scopy as well GC/MS and elemental analysis confirmed the structure of 8.

Deprotection of the phenol group in 8 to provide the corresponding AB2

monomer and subsequent polymerization to prepare a HB PAEPO is currently

being investigated.

A general route to biphenyl substituted triarylphosphine oxides via the

use of Suzuki coupling of either bromo or trifluorosulfonyl derivatives of

triphenylphosphine oxide and arylboronic acids has been developed.

Reactions using Pd(OAc)2 with the bromo derivative, 2, provided the desired

biphenyl analogues, 4a–d, in excellent yields (92–97%) free of triphenyl-

phosphine impurities. Reactions using (Ph3P)4Pd with 2 and 6 provided the

corresponding biphenyl derivatives, 4a–e, in good yields, 50 to 89%. The

Scheme 2.

Table 2. Results from Suzuki Coupling Reactions of the triarylphosphine oxide

triflate derivative, 6.

Boronic acid Solvent Catalyst Product % yield (GC/MS)

3a Toluene (Ph3P)4Pd 4a 77

3d Toluene (Ph3P)4Pd 4d 70

3e Toluene (Ph3P)4Pd 4e 65

Aryl–Aryl Coupling Reactions of (4-X-C6H4)Ph2P55O 709
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methodology has been applied to prepare an AB2 monomer precursor, 8, in

excellent yield (99%). The polymerization and subsequent property studies of

the HB PAEPO prepared from 8 will be described elsewhere.

EXPERIMENTAL

Materials

All reactions were performed under a nitrogen atmosphere and all

transfers were done using syringes or cannula as necessary. The boronic acids

were purchased from the Aldrich Chemical Co. and used as received.

Tetrakis(triphenylphosphino) palladium and palladium acetate were pur-

chased from the Aldrich Chemical Co. and used as received. Toluene was

dried over and distilled from sodium/benzophenone prior to use. Both

4-bromophenyldiphenylphosphine oxide[20] and bis(4-fluorophenyl)-4-hydroxy-

phenylphosphine oxide[1] were synthesized according to literature procedures.
1H, 13C, and 31P NMR spectra were obtained using a Bruker Avance DMX

300MHz instrument operating at 300, 75.5, and 121.5MHz, respectively.

Samples were dissolved in CDCl3. Elemental analyses were obtained from

Midwest Microlabs, Inc., Indianapolis, IN. High-resolution mass spectra were

obtained at the Campus Chemical Instrumentation Center—Mass Spec-

trometry and Proteomics Facility at Ohio State University.

(4-Tolyphenyl)diphenylphosphine oxide, 4b. Method 1. A 25mL RB

flask was charged with 0.40 g (1.12mmol) of 2, 0.22 g (1.624mmol) of

Scheme 3.
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4-tolyboronic acid, 0.44 g of K2CO3, 5mL of nitrogen sparged toluene, and

1mol% Pd(PPh3P)4. The mixture was heated to 908C overnight at which point

GC/MS analysis showed the presence of unreacted 2. An additional 0.05 g

(0.37mmol) of 4-tolyboronic acid were added and the mixture was heated for

24 hours further. GC/MS analysis showed complete conversion of 2 to 4b.

Additional toluene, 5mL, was added and the organic layer was washed 3 times

with 10mL of distilled water, followed by drying over MgSO4. Removal of

the solvent under reduced pressure afforded the desired compound as a white

powder. The identity of 4b was confirmed via comparison of its analytical data

with the analytical data obtained for 4b from Method 2 below.

Method 2. A method similar to that first reported by Novak et al. was

utilized for Pd(OAc)2 catalyzed reactions.[16] A 25mL Schlenk flask was

charged with 0.40 g (1.12mmol) of 2, 0.18 g (1.32mmol) of 4-tolyphenyl-

boronic acid, and 3.0mL of reagent grade acetone. In separate Schlenk flasks

were placed 0.38 g of K2CO3 in 3.0mL of distilled water and 1mol%

Pd(OAc)2 in acetone, respectively. The contents of the Schlenk flasks were

subjected to three freeze-pump-thaw cycles, back-filled with nitrogen, and

combined. The reaction mixture was heated to 608C for 2 hours at which point

an additional 10% of the boronic acid was added followed by heating for an

additional 4 hours. The layers were separated and the organic layer was diluted

with toluene (�10mL), washed with brine and dried over MgSO4. Removal of

the solvent under reduced pressure followed by recrystallization from

ethanol/water afforded 0.40 g (99%) of 4b as white crystals (m.p. ¼ 159–

1618C). 1H NMR (CDCl3, d): 2.42 (s, 3 H), 7.28 (m, 2 H), 7.46–7.58 (m, 8 H),

7.66–7.80 (m, 8 H); 13C NMR (CDCl3, d): 21.5 (s), 127.3 (d), 127.5 (s), 128.9

(d) 130.1 (s), 131.2 (d), 132.5 (d), 133.0 (d), 133.4 (d), 137.4 (s), 138.6 (s)

145.0 (d). Elem. Anal. Calc’d for C25H21OP: C, 81.50%, H, 5.75%. Found: C,

81.44%, H, 5.86%.

4-Biphenyldiphenylphosphine oxide, 4a. 95% yield; preparation of 4a

from 0.40 g (1.12mmol) of 2 using Method 2 gave 0.39 g (98%) of 4a. 1H

NMR (CDCl3, d): 7.52 (m), 7.59 (m), 7.67 (m); 13C NMR (CDCl3, d): 127.6

(d), 127.7 (s), 128.6 (s), 129.0 (d), 129.4 (s), 131.5 (d), 132.4 (d), 132.5 (d),

133.1 (d), 134.1, (d), 140.3 (s), 145.2 (d). HRMS: molecular mass þ sodium

m/z, calc. For C24H19OPNa 377.1071, found 377.1088.

4-(30-Methoxy)biphenyldiphenylphosphine oxide, 4c. 92% yield; 1H

NMR (CDCl3, d): 3.87 (s, 3 H), 6.95 (d, 1 H), 7.20 (m, 2 H), 7.40 (t, 1 H), 7.55

(m, 6 H), 7.74 (m, 8 H); 13C NMR (CDCl3, d): 55.8 (s), 113.5 (s), 113.9 (s),

120.2 (s), 127.7 (d), 129.0 (d), 130.4 (s), 131.5 (d), 132.4 (d), 132.5 (d), 132.8

(d), 141.8 (s), 145.1 (d), 160.3 (s). HRMS: molecular mass þ sodium m/z,
calc. For C25H21OPNa 407.1177, found 407.1158.

4-(40-Methoxy)biphenyldiphenylphosphine oxide, 4d. 95% yield;

(m.p. ¼ 146–1508C). 1H NMR (CDCl3, d): 3.87 (s, 3 H), 7.00 (d, 2 H),

Aryl–Aryl Coupling Reactions of (4-X-C6H4)Ph2P55O 711
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7.47–7.58 (m, 8 H), 7.65–7.76 (m, 8 H); 13C NMR (CDCl3, d): 55.8 (s), 114.8

(s), 127.1 (d), 128.8 (d), 129.1 (s), 130.5 (d), 132.2 (d), 132.5 (d), 132.6 (s),

132.9 (d), 133.0 (d), 144.8 (d), 160.3 (s). HRMS: molecular mass þ sodium

m/z, calc. For C25H21OPNa 407.1177, found 407.1158.

4-(40-Acetyl)biphenyldiphenylphosphine oxide, 4e. 70% yield;

(m.p. ¼ 201–2038C) 1H NMR (CDCl3, d): 2.64 (s, 3 H), 7.48–7.57 (m, 6

H), 7.69–7.82 (m, 10 H), 8.05 (d, 2 H); 13C NMR (CDCl3, d): 27.1 (s), 127.1

(d), 127.9 (s), 129.0 (d), 129.4 (s), 132.2 (d), 132.5 (d), 132.6 (d), 132.7 (d),

132.9 (d), 137.0 (s), 143.8 (d), 144.8 (s), 198.0 (s). Elem. Anal. Calc’d for

C26H21O2P: C, 78.78%, H, 5.34%. Found: C, 78.00%, H, 5.54%.

(4-Trifluoromethylsulfonylphenyl)diphenylphosphine oxide, 6. An

oven-dried RB flask was charged with 3.37 g (11.5mmol) of 5, 45mL of

CH2Cl2, and 2.3mL of pyridine. The flask was immersed in an ice bath (08C)
and a solution of 1.95mL (11.6mmol) of triflic anhydride dissolved in 10mL

of CH2Cl2 was added drop-wise. The resulting cloudy mixture was allowed to

warm to room temperature and subsequently stirred overnight. The mixture

was filtered and the CH2Cl2 solution was poured slowly into an excess of ice

water. The layers were separated and the aqueous layer was washed twice with

10mL of CH2Cl2. The organic layers were combined and dried over MgSO4.

Removal of the solvent under reduced pressure afforded a mixture of 5 and 6

that was separated by dissolution of 6 in toluene leaving behind insoluble 5.

Removal of the toluene afforded 3.61 g (74%) of 6 as yellow crystals

(m.p. ¼ 120–1248C). 1H NMR (CDCl3, d): 7.39 (dd, 2 H), 7.51 (m, 4 H), 7.59

(m, 2 H), 7.67 (m, 4 H), 7.79 (dd, 2 H); 13C NMR (CDCl3, d): 122.0 (d), 129.3

(d), 131.8 (d), 132.5 (d), 132.9 (d), 133.8 (d), 134.8 (d), 152.3 (d). Elem. Anal.

Calc’d for C19H14F3O4P: C, 53.53%, H, 3.31%. Found: C, 53.57%, H, 3.71%.

bis-(4-Fluorophenyl)-(4-trifluoromethylsulfonylphenyl)phosphine

oxide, 7. The synthesis of 7 was carried out as described for 6 starting with

2.55 g (7.73mmol) of 1a to provide 3.21 g (90%) of 7 as yellow crystals

(m.p. ¼ 96.5–998C). 1H NMR (CDCl3, d): 7.20 (dt, 4 H), 7.41 (dd, 2 H), 7.67

(m, 4 H), 7.78 (dd, 4 H); 13C NMR (CDCl3, d): 116.7 (dd), 122.2 (d), 127.2

(dd), 133.6 (d), 134.1 (dd), 134.8 (d), 152.5 (d), 165.8 (dd), 167.3 (d). HRMS:

molecular mass þ sodium m/z, calc. For C19H12F5O4PNa 485.0012, found

485.0016.

bis-(4-Fluorophenyl)-(4-methoxybiphenyl)phosphine oxide, 8. An

oven dried RB flask was charged with 0.5 g (1.10mmol) of 7, 0.25 g

(mmol) of p-methoxy phenyl boronic acid, 0.5 g of potassium carbonate,

15mg of Pd(0) tetrakis triphenyl phosphine and 5.0mL of sparged toluene.

The reaction mixture was heated to reflux for 16 hours at which point the

solution was slowly poured into 150mL distilled water. The layers were

separated and the aqueous layer was extracted three times with 35mL of

chloroform. The chloroform layers were combined, washed three times with

Czupik, Bankey, and Fossum712
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distilled water (3 � 40mL), dried over MgSO4 and the solvent was removed

under reduced pressure to afford 8 (99%) as white crystals (m.p. 149–1508C).
1H NMR (CDCl3, d): 3.87 (s, 3 H), 7.01 (d, 2 H), 7.20 (m, 4 H), 7.57 (d, 2 H),

7.71 (m, 8 H); 13C NMR (CDCl3, d): 55.8 (s), 116.5 (m), 127.2 (d), 130.9 (s),

132.8 (d), 134.9 (m), 45.0 (d), 160.4 (s), 163.9 (d), 167.3 (d); 31P NMR

(CDCl3, d): 28.70 (s). Elem. Anal. Calc’d for C25H19F2O2P: C, 71.43%, H,

4.56%. Found: C, 71.61%, H, 4.61%.
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