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Rhodium-Catalyzed Asymmetric Hydrogenation of β-Branched 

Enamides for the Synthesis of β-Stereogenic Amines 
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a
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b
 Jianzhong Chen,

b
 Zhenfeng Zhang,*

a
 and Wanbin 

Zhang*
a,b

Using a rhodium complex of a bisphosphine ligand (R)-SDP, β-

branched simple enamides with a (Z)-configuration were 

hydrogenated to β-stereogenic amines in quantitative yields and 

with excellent enantioselectivities (88-96% ee). 

Chiral amines are undoubtedly some of the most common 

structural units present in natural products, chiral drugs and 

chiral catalysts, making the preparation of such compounds 

containing the chiral amine structural motif very attractive in 

the field of asymmetric catalytic synthesis. While dozens of 

methods have been developed for the construction of α-

stereogenic amines, synthetic methodologies for the 

preparation of β-stereogenic amines are relatively few, even 

though they can be used in many applications.
[1]

 The main 

methodologies for the synthesis of such compounds include 

acylative kinetic resolution of racemic β-branched amines,
[2]

 

asymmetric hydroaminomethylation of terminal 

monosubstituted alkenes,
[3]

  enantioselective addition of 

amines to terminal disubstituted alkenes,
[4]

 asymmetric 

conjugate addition of nucleophiles to nitroalkenes,
[5]

 and 

asymmetric reduction of unsaturated nitrogen-containing 

substrates.
[6-9]

 Among them, the asymmetric hydrogenation 

(AH, asymmetric reduction with hydrogen gas) is the most 

practical methodology due to its high efficiency and 

environmental friendliness.
[10]

 Until now, only three types of 

substrates have been reported for the hydrogenative synthesis 

of β-stereogenic amines. One route involves the AH of β-

branched nitroalkenes, followed by reduction of the nitro 

functionality to an amino group.
[7]

 High enantioselectivities 

were obtained for substrates bearing a β-acyl, methyl, or ethyl 

substituent. A second route involves the AH of β-branched 

allylic amines or amides to give products possessing at least 

one β-primary alkyl substituent.
[8]

 The third route involves the 

AH of β-branched enamines. However, only the hydrogenation 

of β-branched dehydroamino acids and esters has been 

reported;
[9]

 no AH of β-branched simple enamines has been 

studied, probably due to difficulties related to the 

stereocontrol of the reaction. This methodology would provide 

an alternative hydrogenative route for the synthesis of the 

above-mentioned β-aryl-β-alkyl-substituted chiral amines, and 

even β,β-diaryl-substituted chiral amines which have not been 

previously reported.
 

Continuing our efforts concerning AH,
[11]

 we have recently 

developed an efficient Rh-catalyzed AH of β-branched enol 

esters. Using a bisphosphine ligand bearing a large bite angle 

and enol ester substrates possessing an O-acyl directing group, 

the β-stereogenic alcohols were obtained in quantitative yields 

and with excellent enantioselectivities (Scheme 1).
[11i]

 In 

consideration of the fact that the catalytic mechanism and 

stereocontrol for the Rh-catalyzed AH of enamides is very 

similar to that of enol esters, we envisage that β-stereogenic 

amines can be synthesized via a Rh-catalyzed AH by using β-

branched enamide substrates possessing an N-acyl directing 

group and bisphosphine ligands bearing a large bite angle. As 

far as we know, simple enamides bearing α-branched aryl and 

alkyl substituents are model substrates widely utilized in Rh-

catalyzed AH,
[12]

 but simple enamides bearing only β-branched 

aryl and alkyl substituents are a new type of substrate which 

have not been studied for AH (Figure 1, NHAc is taken as an 

example for the amido group). 
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Scheme 1 The Asymmetric Hydrogenation of β-Branched Enol 

Esters and Enamides. 
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Figure 1 Simple Enamides for Asymmetric Hydrogenation. 
 

The initial hydrogenation reactions were conducted on the two 

isomers of N-(2-phenylprop-1-en-1-yl)acetamide, which were 

easily synthesized from 2-phenylpropanal and acetamide. Both 

of them were reduced completely in 2 hours with the (Z)-

isomer 1a giving better enantioselectivity than the (E)-isomer 

1a' (Table 1, entries 1 and 2). Different bisphosphine ligands 

were then tested in the Rh-catalyzed hydrogenation of 1a. 

Similar to the trend observed for the AH of β-branched enol 

esters,
[11i]

 ligands bearing a large bite angle showed higher 

activities (entries 1, 3-5 vs 6-8).  The catalytic system (R)-

SDP/[Rh(cod)2]SbF6 gave the best results, providing the desired 

product in 99% conversion and 93% ee (entry 1).
[13]

  After 

screening of different solvents, the enantioselectivity could be 

further increased to 96% ee by using ether solvents, especially 

THF (entries 9-14). When the hydrogenation is carried out at 

lower hydrogen pressures, the enantioselectivity is 

maintained, but prolonged reaction times are required for 

complete conversion (entries 15 and 16). Other amido groups 

have also been investigated but did not improve the 

enantioselectivity (entries 17-21).  

With the optimized reaction conditions in hand, we 

investigated the substrate scope (Scheme 2). All the reduced 

products, regardless of the electronic properties of R
1
 and the 

steric hindrance of R
2
, were obtained in excellent yields and 

enantioselectivities. The electron-withdrawing 4-halogen-

substituted amides 2g-i were obtained in 90%, 96%, and 96% 

ee's, respectively. The 4-Ph-substituted amide 2j gave 

relatively lower ee (91%), while the 4-CF3-substituted amide 2k 

gave better ee (96%). For substrates bearing an electron-

donating group, such as a methyl substituent at the  4-, 3-, and 

2-positions, the desired products 2l-n were  obtained in 93%, 

96%, and 96% ee's, respectively. Increasing the size of the 4-

alkyl group from Me to Et, iPr, and tBu showed a slight effect 

on enantioselectivity (2o-q). A substrate possessing the 

electron-donating 4-OMe group gave its related product 2r 

with 94% ee. Disubstituted substrates bearing 1,3-

benzodioxol-5-yl, 1-naphthyl, or 2-naphthyl groups gave 

comparatively lower enantioselectivities (2s-u). Additionally, 

substrates bearing different R
2
 substituents have also been 

tested. The use of larger alkyl substituents led to a decrease in 

enantioselctivity (2v-x). A substrate bearing β-2-naphthyl and 

β-phenyl groups was also subjected to hydrogenation to give 

the desired product 2y with 96% ee. This is the first time that 

β,β-diayl-substituted β-stereogenic amines have been 

obtained via AH. 

Table 1 Condition Optimization.
 

 

entry
a
 sub. cat. sol. conv (%)

b
 ee (%)

c
 

1 1a A DCM 99 93 

2 1a' A DCM 99 -76 

3
 

1a B DCM 99 58 

4
 

1a C DCM 99 -60 

5
 

1a D DCM 99 -18 

6
 

1a E DCM 65 12 

7
 

1a F DCM 85 -80 

8
d 

1a G DCM 0
 

/ 

9 1a A MeOH 99 86 

10 1a A toluene 99 88 

11 1a A EtOAc 99 92 

12 1a A THF 99 96 

13 1a A dioxane 99 94 

14 1a A DME 99 94 

15
e
 1a A THF 99 96 

16
f
 1a A THF 99 96 

17 1b A THF 99 30 

18 1c A THF 99 60 

19 1d A THF 60 nd 

20 1e A THF 99 91 

21 1f A THF 99 39 

a
 Conditions: 1 (0.2 mmol), catalyst (1 mol %), H2 (20 atm), 

solvent (2 mL), 25 °C, 2 h, unless otherwise noted. Please see 

the structures in the Supporting Information for A: (R)-

SDP/[Rh(cod)2]SbF6, B: [Rh((R)-PhanePhos)(cod)]BF4, C: 

[Rh((R,R)-Me-FcPhos)(cod)]BF4, D: (R)-BINAP/[Rh(cod)2]SbF6, E: 

(R,Sp)-JosiPhos/[Rh(cod)2]SbF6, F: [Rh((R,R)-BenzP*)(nbd)]SbF6, 

and G: (R,R)-Me-DuPhos/[Rh(cod)2]SbF6. 
b
 The conversions 

were calculated from 
1
H NMR spectra. 

c
 The ee's were 

determined by HPLC using chiral columns. 
d
 Repeated result. 

e
 

10 atm, 8 h (61% conversion was obtained after 2 h) . 
f
 5 atm, 

24 h (49% conversion was obtained after 8 h). 
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Scheme 2 Substrate Scope.  

 

Some of the (E)-isomers have also been evaluated under the 

optimized conditions (Scheme 3). All the substrates 2a', 2l', 2x', 

and 2y' were hydrogenated to obtain the corresponding 

products in complete conversions. However, comparitevely 

lower enantioselectivities (71-80% ee) were observed 

compared with the (Z)-isomers (88-96% ee). 

 

Scheme 3 Asymmetric Hydrogenation of (E)-Isomers.  

 

To demonstrate the applicability of this methodology, the 

hydrogenation was conducted at a higher S/C and the product 

was transformed to useful bioactive molecules (Scheme 4). For 

instance, hydrogenation of 1a at 500 S/C, under 30 atm 

hydrogen pressure, and for 36 h produced the β-stereogenic 

amide 2a in 96% yield and with 96% ee. The amide 2a was 

smoothly hydrolyzed to the corresponding β-stereogenic 

amine 3a, which can be further derivatized to a potassium 

channel inhibitor 4a in high yield with no loss in 

enantioselectivity.
[14a]

 This β-stereogenic amine 3a can also 

reacted with methylsulfonyl chloride to give a sulfamide 5a, 

which is a key intermediate for the preparation of a positive 

allosteric modulator of AMPA receptors.
[14b]

 After cyclization 

with paraformaldehyde in an acidic medium followed by 

hydrolyzation, the amide 2a was simply converted to chiral 4-

methyl-1,2,3,4-tetrahydroisoquinoline 7a, which is a useful 

synthon for the preparation of several bioactive compounds.
[15] 

 

Scheme 4 Applications for the Synthesis of Bioactive Compounds. 

 

In conclusion, using the bisphosphine ligand (R)-SDP bearing a 

large bite angle, β-branched simple enamides with a (Z)-

configuration were enantioselectively hydrogenated for the 

first time to give the corresponding products in quantitative 

yields and with excellent enantioselectivities. Furthermore, 

this methodology can be applied to the preparation of several 

bioactive compounds bearing the important β-stereogenic 

amine skeletons. 
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University. 
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β-Branched simple enamides were hydrogenated to give β-stereogenic amines in quantitative 

yields and with excellent enantioselectivities. 
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